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ON STRONG AND ABSOLUTE SUMMABILITY
. by D. BORWEIN
(Received 13 July, 1959 ; and in revised form 2 Qctober, 1959)

1. Introduction. Suppose throughout that ) - 0, k> -1, v is real and that

5 n+y) n 1 »
€y = ( , 8, = a o — =1
n " ?EO . 8 e r§0 &n—rs, (0 =0,1,..).
=]
The series 3, a, is said to be
0

(1) summable (C, «) to s if 55— 8,

(i) strongly summable (C, k +1) with index ), or summable @’, K+ lj 1 to s if

IS
ari B, - P = o),
)

(iii) absolutely summable (C, «) with indices ¥s A, or summable |C, « ¥p if
LIRS ] A

oD
2 g < oo,

Definitions (ii) and (iii), for general «, A

Their papers contain references to speci
Let, Q = (Qn,r)

» 7> are due respectively to Hyslop [11] and Flett [4].
al cases considered earlier,

(n,r =0,1,..) be a (summability) matrix, and let

[+ +]
Uy = Q(Sn) = r§0 Inr Spe

It is to be supposed that all matrices referred to in this

symbol P will be reserved for m e T

atrices (p, ) with Py =0 (n,r =0,1, ...).  The series

o
% @, is said to be

(iv) summable Q to s, and we write s, — 5(Q)

o if o, is defined for all % and tends to s as

We now generalise the above definitions of strong and absolute summabi

> lity in a natural
way as follows. We say that Ya,is a
0

(v) summable [P, @] to s, and we write 8p — 8[P, Q],, if

Plon-sP) = 3 p,,] 0,

is defined for each n and tends to 0 as n — oo
(vi) summable | @, | if ’

oo
YA+A—1
El n Op =0, |* < 0.
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We also define *“ product *’ processes of the form @R, [P, QR),, | @R, y |,, where R is any
matrix, by replacing ¢ in (iv), (v), (vi) by QR and taking o, to be Q{E(s,)}; ie. o, = Q(r,)
where 7, = R(s,).

Denoting by C, the matrix of the transformation which changes {s,} into {s}, we observe
that the summability processes [C, x+1], and | C, «, y |, are respectively the same as
[015 Ca and | Co O |A-

The unit matrix will be denoted by I, so that I(s,) = s,.

Let V and W be summability processes (or matrices). We shall use the notation

V=W
to mean that any series summable ¥ to s is necessarily summable W to s provided that neither
¥ nor W is an absolute summability process ; otherwise we shall understand the notation to
mean simply that every series summable 7" is also summable W. In either case we say that
¥ is included in W. We say that ¥V and W are equivalent and write

VW
if each is included in the other, and we write V = W if V and W denote the same process (or
matrix).

If I = V and ¥V is not an absolute summability process, then ¥ is said to be regular.

In this paper some of the properties of the strong and absolute summability processes
defined above are investigated.

2. Simple inclusions.

TuroreMm 1. If Q is any matrix and P = (p, ,), where
zopn,r<M (n =0,1,...),
=

and if A > p > 0, then [P, @], = [P, @],
In particular, the conclusion holds if A > > 0 and P is regular.
This generalises a result proved by Hyslop [11, Theorem 1].

Proof. By Hoélder’s inequality,
@ ® 1A
Z pﬂ,’r | Wy lu = (2 Pnr I Wy |A)'u Ml—,u,'}\
r=0 r=0

for any sequence {w,}. The required inclusion follows.

To complete the proof we have only to note that (1) is a necessary condition for the regu-
larity of P [7, Theorem 2].

Note. Here and elsewhere an inclusion involving an arbitrary matrix @ is essentially no
more general than the same inclusion with I in place of ), the former being an immediate
consequence of the latter.

THEOREM 2. If Q is any matriz and A > p > 0, A > ap > 0, then [C,, @y = [Cs, @),

Proof. Let p = Au, ¢ = p/(p—1) and let {w,} be any sequence. Then, by Hélder’s
inequality (cf. Hyslop [11, Theorem 2).

]

Co(| wn |*) =

n
€ rgn Eg_l 1 Wa-rp iu

E
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Ip a4 B—1.a N 1/g
5 Z 57'-1 iw'n T!A} (E ) Z ( S 3!:[,
En r=0 r=0 )

1/q

s;Mﬁ@ﬂwnmPMQn+nm@4ﬂz(r+MMWWWﬁ
=0
(o 2)

since « > 0, 8> 0, Bg —ag/p = (BA —ap)g/A > 0. The numbers M, and M are independent
of n and the sequence {w,}.

The required result follows from (2).

Note. Since C, = Cy (B> o> —1), it is evident that

[Cos @1 = [Cp, @) (B> 2> 0,2 0),
and it follows from this and a well known Tauberian theorem [7, Theorem 93] that
[Co @I = [C1, @ (x> 1,2 0).
Consequently the condition SA > ap > 0 in Theorem 2 is only significant if 0 < a < 1.
When « > 1 the condition can be replaced by A > u.
TaroreM 3. If P, Q are matrices and P is reqular, then

) @=[P,Ql for X>0, (i) [P,Q],> PQ for A>=1.

Proof. (i) If s, — s, then, since P is regular, P(ls,~s ") >0, ie. I = [P, I], and
inclusion (i) follows.
(i} Suppose that s, — s[P, IT,. Then, by Theorem 1, s, —» s[P, T ], and so
| P(sp—8) | < P(|8,~&|)=0(1).
Since P is regular, it follows that P(s,) — s. Hence [P, I], = P and inclusion (ii) is an im-
mediate consequence.
As a corollary of part (i) of Theorem 3 we have

(@). If P, Q are regular matrices and A > 0, then [P, Q], s regular.

TaeorEM 4. If A = p > 0, y > 3, then

1/ © 1/a
() ( ¥ niutul | g, I”) i <M ( 3 -l | g 'A) »
n=1 n=1
where M is independent of the sequence {w,},
(ii) | @,y |h = |@Q, 8|, for any matriz Q.

Proof of (i). The case A = p is evident.
Hélder’s inequality,

2 = w/Af o 1-ufr
2wt o < (B et p) 7§ ),
n=1 1

n=1 s

Suppose therefore that A > u. Then, by

where e (1 - p/A) = Su+p—
required inequality follows.
Result (i) is an immediate consequence of (1).

L-(yA+A-1)p/A = ~ply —8) — (1 —p/A), so that « << —1. The
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Note. The case A = p == 1,y = 0 of Theorem 4(i) is contained in a result proved by Flett

({4, Theorem 4] ; take o = B, h = nw,). . 5
The following three results, which concern the relation of | @, y [y to | @, 3 |, whep W =0,
were kindly communicated to me by Dr B. Kuttner. The first of these shows that it is not

valid to replace the condition y >> 8 by y = 8 in either part of Theorem 4.

A. There are regular (and non-regular) matrices Q such that, for positive A, p and every

v, | @, v |x is not included in | Q, v |, unless A = p.
B. There are regular (and non-regular) matrices @ such that, for every v, | @, v [ = | @, v |,

whenever A > p > 0. _ |
C. If A> p > v > 0and Q is any matriz, then every series summable | @, v yand | Q, y |,

is also summable | Q, v |,.

Proofs. A. Suppose that @=(g,,) is a matrix having the property that given any
sequence {o,} there is a sequence {s,} (not necessarily unique) satisfying the equations

= Q@) = 3 dustr (=01,

In particular, @ could be any matrix with g, , = 0 for r > n, g, » =0 (n=0,1,..).
Leta>0; andlet x; = 2z, = 0,
x, = n~t(log n)~1Mloglog n)"1*-= for n = 3,
m~lA-e2-m(1-1%  forp = 2m (m = 0,1, ...),
s

otherwise.
Then E (2,)* n#=1 is convergent if and only if p >
n=1

= A and E (4,)* n#~1 is convergent if and

< A. Henece % (2, +1/,)* n#-1 is convergent if and only if p = A.
n=1

Now let {o,}, {5} be sequences such that

only if p <

1Y (0p = Op_y) = TntYn (n = 1)
and Q(s,) = o, The series of which {s,} is the sequence of partial sums is then summable
| @, y |, but not | @, y |, for any p # A. Result A follows.
B. Given an arbitrary matrix @ = (g,,), form the matrix @* = (g;,) by repeating
certain rows in @ as follows : let

9o = Qo Iy = Gms TOT 2rln <27 (m = 1,2,..).

Note that Q* is regular if and only if ¢ is regular.

Tets, = }] a, of = @%(s,) and let

(m =0,1,..).

Bm = Uﬁém—dﬂém_l
Then o —o*_; = 0 whenn = 2™ and so summability | Q@*, v |x of EO] a,, is equivalent to the
4 =

convergence of

i gmiri+a=) | § A,
m=0
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Consequently, if 3 a, is summable | @*, y |,, then
0

Sm 20 (2—w1€y+l—1f?\})

and so 9mlyutu—1) [ 8, [u _ D(z—m(l—y;’}\)),

from which it follows that the series is summable | @*, y|, provided A > u > 0. ie.
[@*% v |h= | @% ylfor A>p>0.
C. If A> u > v > 0 and {w,} is any sequence, then, by Holder’s inequality,
a0 A—w o0 v 0 A—p
(Emmrttwnb)™ < ( Ewmt g7 E ool )7

n=1 =

and the required  convexity ’ result is a direct consequence.

3. Hausdorff matrices. Given a real sequence {£,}, let

() - (") o 0 <rm,

) v=0
0 otherwise,

Tpp =

and denote the matrix (z,,) by (h, £,). Matrices of this type are said to be real Hausdorff
matrices. We shall assume hereafter that all Hausdorff matrices considered are real.

Let X = (b, &), ¥ = (b, m,). Then it is known that XY = YX = (h, £,7,). Conse-
quently X-1 = (%, 1/£,) provided £, # 0, and it is familiar and easily verified that in this case
X = Y if and only if Y X! is regular.

Further, it is known that X is regular if and only if

1
b = [t axe)
0
where y is a real function of bounded variation in [0, 1] such that
xO0+) =x(0) = x(1) =1, coirrriiiiririiinn e (3)

it being assumed in the case of &, that 0° = 1.
The above results are proved in [7, Ch. XI].

"
Suppose as before that s, = X @, and let o, = X(s,), 0; = 0. Since both X and
r=0

07! are Hausdorff matrices [7, § 11.2],
X0 (s0) = O ' X (s0)-
Also, it is easily verified that
07 (30) = 8p + 11y,
Clonsequently
ot X (nay) = X(s,+na,) = XCT (s,) = OT'X (s,) = 07" (04) = 0+ (0 = 0ny),

and so

X(na,) = 00, =0gq) (B =1,2,..)  coeevserenvansssnsizanssanll (5)

Conversely, reversing the above argument, we see that (4) holds for any matrix X satis-

fying (5), and it is known [7, Theorem 198] that (4) implies that X must be a Hausdorff matrix.
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It follows from (5) that, for a Hausdorff matrix X, § @, is summable | X, y |, if and only
0
if
2 w1 X (nay,) [P < 0.
n=1

We proceed to prove two general theorems about strong and absolute summability pro-
cesses associated with Hausdorfl matrices. We shall use

Lemma 1. If X = (b, &), X = (, £,), where

1 1
b= [ oax, &= [ rlo@l <o @=01,.,

and if X = 1, then, for any sequence {w,},
| X (wa) [* < (&)X (| wy, D)

Proof. Let X = (x,,), X = (#,,). Then it is known and easily verified that, for
0<r<mn,

wur = (0) [ w00 tx, a0, = (0) [ r-r | x0).

Hence, by Holder’s inequality,

1 A
N By | = (
=0 i

I X(wn”h =

1 Ms

A—1 n
cfﬂ,,,) Eo ﬁﬂ,r I Wy |A = (Eo)A_lX( | Wy |A)-

0

TurEOREM 5. If P, X are regular Hausdorff matrices, Q i3 ony matriz and A = 1, then
[P, @], = [P, XQ),.
Proof. Let X = (h, £,) and let o, = X (s5,).

gp—8 = X{(s,~8),

Since X is regular,

and
1
5=Lw@m

where y is a real function of bounded variation in [0, 1] satisfying (3). Hence, using Lemma 1
and its notation, we get
| ous ' < @1 X (|50 ).
Since P is a Hausdorff matrix with non-negative elements and X is a Hausdorff matrix, it
follows that

P(log—a) <GP 1PX(|8,—8Y = EP1EP(| 8«8 ) covvrrrervinnnnnns (6)

Now it is easily verified by means of a variant of Toeplitz’s theorem [7, Theorem 4] that
X, though not necessarily regular, is such that X (u,) —0 whenever u, — 0. Hence if
'P( [$,~s|) — 0 then, by (6), P( | o —8 ") >0, ie. [P, I], = [P, X],. The required
inclusion follows.

As an immediate consequence of the above theorem we have

(II). If X\ = 1 and P, Y, Z are Hausdorff matrices such that P is regular, ¥ = (h, u,,) with
Un # 0, and Y = Z, then [P, Y], = [P, Z],.
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TeEoREM 6. If X = (b €,), where

1
én = fut" dx(t) (n=0,1,..),

x being a real function of bounded variation in [0, 1], and if

LTI

and A = 1, then

(1) 2 w1 | Xna,) P < M E} wWA=L] ng, P,
n=1 n=1

where M s independent of the sequence {a,}),

(i) [@ v |s=|XQ y|s for any matriz Q.

When y > 0 the integral in condition (7) should be interpreted in the Lebesgue-Stieltjes
sense ; when y << 0 the condition is redundant.

Proof of (i). Suppose first that y < 0. Then, by Lemma 1, since n** < 1 for n =0

w3 b (0) [ e | ay |

=1 r=1

2 =1 | X (na,) | <

- (&.)f‘*lfo | dx(t) | El ey ¥ n(" 1)(1~t) ~

=T

<& E 1 ra, |
r=1
as required.
Suppose now that v > 0, and let

) = 3 (f) (1 -ty-rra,

=0

where 0 << ¢t << 1. Then (cf. Hardy [7, § 11.17]), by Hélder’s inequality,
n ‘0 A—1
o< B () ea-o—imp{E () ra-m)
r=0 \T =0 \"
L)
_— (1 =fyn—r A
5 (7)ea-o i,
and so
S Lo P <M 5 &7 E (F) e e, p
= =1

kel
7 ra, e B G
n=r

o
= Ml i t)n—r
r=1

fee]
< Myt~ 3 921 rq, |2,
r=1
where M, and M, are independent of {a,}.

nay) = f RACENC

Now
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and $0, by a form of Minkowski’s inequality,

(£ w1 x0an )" < [ 101 (£ wtig0 1)

1A 1 5 o0
<M fot ldx® | S

1/A
AL | v |")

The proof of part (i) is thus complete.
It follows from (i) that | I, y [, = | X, y |, and inclusion (ii) is an immediate consequence,
The next theorem generalises a result given by Hyslop [11, Theorem 3].

TaeoREM 7. If P is a regular matriz, Q is a matriz and A = 1, then necessary and sufficient
conditions for a series to be summable [P, ], to s are that it be summable PQ to s and summable

[P, (I - P)Q]. to 0.

Proof. Let v, = Q(s,), 7, = P(o,). We have to prove that

P gt 1 = Bl sunaiemvessimsammmnisem (8)
if and only if
B S bl o e S S 9)
and
P og=7n ) = 0(1). woveererereeeeereeareieesnenenns (10)

(i) Suppose that (8) holds. Then, by Theorem 3(ii), (9) holds, and so P( |1, -5 [}) = o(1)
since P is regular. Hence, by Minkowski’s inequality and (8),

{P(| on—7a WA <AP(| 05 =8 NI +{P(| 7 -8 I} = 0(1)
and (10) follows.
(ii) Suppose that (9) and (10) hold, Since P is regular, it follows from (9) that
P(|r,-5]") = o(l).
Hence, by Minkowski’s inequality and (10),
{P(] on =5 PR < {P(] 00 =7 [P +{P(| 70 =5 PIPA = 0(1)
8o that (8) holds.

The proof is thus complete.

Now it is known [7, Ch. XI] that O, = (%, 1/¢f) (x > -1) and that

Cl=Ciip (x> -L B> -La+B8> -1).  ccviiiiencinenns (11)
Further, if s, = % a,, then for any Hausdorff matrix X,
r=0
I -C)X(ss) = X(I-C)(s5,) = X{5,-C1(s,)} = XO,(na,). .coevrnnnen. (12)

In virtue of (12) we have the following corollary of Theorem 7.

(III). If X is @ Hausdorff matriz and X =

Serzes E a, to be summable [C, X], to s are that it be summable C,X to s and that
0

1, then necessary and sufficient conditions for a

na, — 0 [C,, C,X],.
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Now by (11), C,C, , = C, (2> 0}, and so, by result (II), [C}, C,C, ]y = [Cy, C.];

(¢ > 0,2 >=1). Consequently, by (III), we have

o0
(IV). If A = 1, a > 0, then necessary and sufficient conditions for a series 3, a,, to be sum-
0

m
mable [C, «], to s are that it be summable (C, «) to s and that X | C,(na,) [} = o(m).
n=0
This result has been proved directly by Hyslop [11] and it suggested the following defini-
tion of summability [C, 0], to him : ﬁ] @, is summable [, 0], to s if it is convergent with sum

and

m
> | na, | = o(m).
n=0

4. Equivalence of Cesaro and Hélder summability processes. For any real o let H,
be the Hausdorff matrix (b, (n+1)"%). Then C,=H,, HHy=H, g and it is known [7,
Theorem 211] that

R A - SR L (13)

In conformity with the notation described in § 1, we denote the Hélder type summability
processes H,, [Hy, H, ], and | H,, y |y by (H, «), [H,«], and | H, «, y |, respectively.

We now prove two theorems.

THEOREM 8. If o == 0, A = 1, then [C, &), ~ [H, a];.

For a > 0 this follows from (13) by result (II), and for « = 0 it is a consequence of (III)
with X = H_, = C7.

The next theorem is a generalisation of the known result (see Knopp and Lorentz [12] and
Morley [14]) that

lC,a,OIIEJH,a,()[l (¢ > —1).

TrEOREM 9. (i) Ifa> -1, A= 1,y <<min (1,1 +a), then
|Gy s = | Hy oy s
(i) If either « > -1, A= 1,y <<lora =2,3,..., Az=1,y <2, then
|Hyo,y [x = | Cony s
In connection with the second part of (ii) it should be noted that
| H,0,y [ =100,y and |H Ly|i=[C1y|

The cases y << 0 of the propositions contained in Theorem 9 follow directly from (13) by
Theorem 6(ii). To deal with the remaining cases we shall use

LemMa 2. If oy << 0 and g(s) is an analytic function of s = o +i7 in the region ¢ > o, and
if, for o > oy and large | s |,
g(s) = K+0 (5],

where K, 3 are constants and 8 > }, then

1
gw=fJMW)m>w
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where x 18 @ function of bounded variation in [0, 1] such that

i
[ 1o <o
for every ¢ = a,.

Proof. Let f(s) = g(s) - K. Then, for ¢ > oy +€ > oy,
F | Flo+it) P dt < M.,

where M, is a finite number independent of ¢. Hence, by a result due to Rogosinski [15,
].85"‘6}:

1
ﬂm=fgwww (n = 0),

where £°¢ (t) € L(0, 1) for every ¢ > o, +¢ and so for every ¢ > o,.
Consequently

1
gw:f“WW)m>w

where x(f) = f: du)du for 0 < ¢ << 1and (1) = K+f1 & (u) du.
0

1
1t is evident that f to | dx(t) | << oo for every ¢ > a,,.
0

The lemma is thus proved.
Completion of the proof of Theorem 9. Let
B . L +a+1)
W) = )™ F e T T

and let W be the Hausdorff matrix (%, w,), where w,, = w(n).

(i) By Stirling’s theorem, w/(s) satisfies the hypotheses of g(s) in Lemma 2 with § = 1,
0y = max (-1, -1 ~«). Hence by Theorem 6 (ii), with X = W,

[Covli=| Wyl

for ~y > gy, ie. for y < min (1,1 +«). Since WC, = H,, the proof of part (i) is complete.

(ii) The function 1/w (s) satisfies the hypotheses of g(s) in Lemma 2 with § = 1, o, = -1

When o > —1land with 8 =1, ¢y = ~2 whena = 2,3, .... Hence by Theorem 6(ii), with
X = w1,

‘Hzi ¥ i)\ e J W_l'Ha:’ ¥ [/\

for —y > —1when «> -1, and for -y> —2whena =2,3, ....

Since W-H, = C,, this
completes the proof of part (ii).

5. Hausdorff matrices associated with functions of class L?. In this section we deal
. 1
with Hausdorff matrices (h, £,) such that & e f " (t) dt, where ¢ (¢)e L(0, 1) and
0

¥ (1) e L?(0, 1) for some real ¢ and some p > 1. Itis known [7, Theorem 215] that a Hausdorff
matrix (z, ,) satisfies these conditions with ¢ = 0 if and only if
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% |, o [P < Mn+1)-? (n=0,1,..),

where M is independent of n. Note that if ¢ (t) is in L?(0, 1) then it is necessarily in L0, 1).
We establish two theorems which augment Theorems 5 and 6. In the proof of the first

of these we use

Lemya 3. Let ¢ (1) be a real function in the class L (0, 1), where p > 1, and let

1 1
£o= J' m () dr, £, = f Pl Pd (=01, X = (b&), XO = (b &P).
0 0
If p>X>=1and 1+1ju-1/X = 1/p, then, for any sequence {w,},
| X (wy) [ < (€= UNC (| w, NP1 D | 0 ).
Proof. Let
n [y o
faly = £ (1) e -tr—ren
where 0 << ¢ << 1. Then, as in the proof of Theorem 6,
hor< 3 (ra-ojwp,
80 that f | fult) ! dt <n+1 2 [ B =01 ] seeresmrmenmsesn il (14)
snd jﬂ (0 1R P S (a0 1) seonsesssessmsissmessaisincd) (15)
Further, using Holder’s inequality twice, we have
A
(X P =| [ sonoa
i A
(1—-1/%) e
<([l1s0 1= g 121 £ | 1)
1 A—1 M1
<([L1sora)” [ 1401 01 a
1 1—AMu 1 M
£ (gﬁf”)H(fo | £ B) |} dt) UO [ @) 7] fa®) nlt) ......... (16)

The required result follows from (14), (15) and (16).

Tueorem 10. Letp> A= 1,1/p = 1 +1/u -1/}, and let X = (h, £,), where
1

& o= f ind (8 dt with ¢ (t)e L*(0, 1) and & = 1.
0

Then [0y, @, = [O1, XQ), for any matriz Q.

Proof. Observe that X is a regular Hausdorff matrix and (in the notation of Lemma 3)

that X () is a Hausdorff matrix such that X*!(v,) — 0 whenever v, — 0.
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Suppose that s, — s[C;, @1;, and let

B =0 J w, lz\)’ Tt = (Eép))uu—m;

w, = Q(Sn)_s = 0y, —8, sup (tun)“M*l.
n=0

Then v, —+ 0 so that k is finite and, by Lemma 3,
Ci(| X(on) =8[9 = Oy | X(w,) |#) < RCLXD(|w, [)) = kXP)(v,) = o(l).
Hence s, — s[C, X@],, and the theorem is established.

Remark. Iam indebted to Dr B. Kuttner for pointing out that Theorem 10 continues to
hold when p = 0 (with 1/p = 1-1/Aif A > 1 and p = o0 if A = 1) provided the following
natural conventions are taken to apply : (i) [}, X@], denotes the same summability process
as XQ (cf. Glatfeld [6, Theorem 4]), (ii) ¢ (t) € L (0, 1) means that ¢ () is measurable and essen-

tially bounded in (0, 1). To justify this assertion suppose that the hypotheses of Theorem 10
hold with p = co. Then (16) can be replaced by the simpler inequality

AL
| X (w,) | émfﬂ]fn(t) | dt,

1 A1
where m = (fo | $(2) det) if A>1 and m = ess-sup | ¢(t) | if A = 1. Since (14) applies
0<t<l
unchanged, it follows that
| X (w,) ' <m0y (| w, | ;
and this yields the required inclusion, namely | C}, @ |, = X@Q.
TeporeM 11. Let p> A= 1,1/p =1+1/u-1/A, y =0, and let X = (b, £,), where

b= f: tn (1) dt with ¢ (t) e L(0, 1) and £1-r-Yrd () e L (0, 1).

Then

L )
(1) (E pre—l1 | X (na,) Iu)llu. <M ( 3 it ’ na, ‘,\)IM ,
n=1 n=1
where M is independent of the sequence {a,},
(i) [@ v = | XQ, v |, for any matriz Q.

Proof of (i). We shall use the symbols M,, M,, M,, M, to denote positive numbers inde-
pendent of #, ¢ and the sequence {a,}.
Let
a0
2 n| na,, P < o,
and let sty =% (V) -0r ra,

Where 0 << t < 1. Then, as before,

FEIUNGES

( ) L-5)n" | ra, |,

and go
T
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1 n n\ 1
w [oisopasw 3 jrap () Lo g
0 r=1 0

nyA - 1 v A
- SR e | |
e
My Y PN R = BB . vesscrmerrss o) (17)
r=1
Also
21 nL | F @) P Myt S o) [ 78, [} = M85 ovcirninsinienns (18)
n= =1

for y = 0 this has been established in the proof of Theorem 6 (i), and an argument similar tq
that used in the proof of the case y = 0of Theorem 6 (i), involving the identity

Iin\y 1/n-1
n\t/)  r\r-1/7
shows that the inequality is valid when y = 0.
Nowlet ¢ = 1 -y ~1/p, ¢(t) = #4(t), and let

1
k =f | (8) |2 dt.
0
Then £ is finite, and, as in the proof of Lemma 3,

1 A
| Xma)P = | [ gy r<r,0 dtf

1
< k:\—lf ' l,[l(t) lpA,’ptl—Ac—Mtvhﬁl lfﬂ (ﬁ) I}\ dt
0

<k ([ o iraora) ™" ([ [ preresemon |, p )"
o1 (f om0 ra)”" ([ 1w e o )",

since p/A*}LC——IL’y = ,(L/A—,u.(] 71/}?) = 1. Hence

w1 | X (naty) [* < KD (w’“ f o) £ dt)“/h—l f L) ot £ e
0 0
and so, by (17) and (18),
3w | X (na) |+ < M, Gt f 0 perdt 3w | fg
n=1 0 n=1

< M, 8401k M, 8 = M, 8,

Result (i) follows. Hence | 1, y [, = | X, y | w and result (ii) is an immediate consequence.

We state next two propositions.
(V). If Q is any matriz and either (i) p=> > 1, p>1/A-1/p or (i) p>Aa>1,
p = 1/A =1/u, then
[011 Q]A e {01, OpQ]p'

ON STRONG AND ABSOLUTE SUMMARBILITY 135

(VI). If @ is any matriz and either (i) p = A > 1, p>YA-1fp, a+l>5=0 or
{ip>2>L p=1A-1u a+l>y>0,then

' Oz@! 7 'A = i Oaz+pQ’ Y Iu'

Proposition (V) follows directly from the case « = 0 of a theorem on strong Cesaro sum-
mability given by Flett (Theorem 2 in [5], where the notation {C, a}; is used with the same
meaning as [C, « + 1], in the present paper). The case « > — 1/k of this theorem is a corollary
of an earlier result on strong Rieszian summability due to Glatfeld ([6, Theorem 8] ; see also
line 7 on p. 130 and the references there given). Proposition (VI) can be immediately derived
from a result due to Flett [4, Theorem 17,

To indicate the scope of Theorems 10 and 11 we shall employ them, together with (II)
and Theorem 6 (ii), to give alternative proofs of (V) (i) and (VI) (i). Parts (ii) of propositions
(V) and (VI) cannot be deduced from the general theorems of the present paper ; the proofs of
Flett and Guatfeld, pertaining to these parts of the propositions, depend ultimately on a deep
but special inequality of Hardy, Littlewood and Pélya [9] (see also [3, 120]).

Proof of (V) (i). The case X = puis a direct consequence of result (IT). Suppose therefore
that p > Aand let 1/p = 1+1/p-1/A. Now C, = (h, 1/e") and

ey = f; ind (2) di,

where ¢ (t) = p(1—-f)>-1. Further, p—1> -1 -1/u+1/A = —1/p so that p(p-1) > -1.
Hence ¢ (t) € L7 (0, 1), and the required inclusion follows by Theorem 10.

Proof of (VI) (i). Note that C,,, = C,,,07'C, = XC, where X = (h, el and
1
ot e2/cz e — f #i (0 ot where
0

IMa+p+1)

b(t) = TG -

Suppose first that A = u. Then, since « =y > -1, p >0, we see that t-7¢ (¢) e L(0, 1),
and so, by Theorem 6(ii), | C',, y [ = | Cavps ¥ [»- The required inclusion is an immediate
consequence.

Suppose now that p > X and let 1/p = 1 +1/u—1/A. Then, as above, p(p-1) > -1,
and, since a +1 —y > 0, p(a+1 —y—1/p) > ~1. Hence ¢(t) e L(0, 1) and

f=r=1lirg (£) € L?(0, 1),

and the required inclusion follows by Theorem 11 (ii).

Many special inclusions can be established with the aid of the above results. As an illus-
tration we prove the following (cf. [5, Theorem 2]) :

[H, o]y = [H, B]u

ifeither,u‘},l; l,ﬁ>oc+1/).—1/y.0?"u,>)\> 1, B'= a+1/A-1/u.

By (13), C.H, ,~H pta—1 (p > —1), and the result is therefore a consequence of (II)
and (V). Note that « can be any real number.
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6. Relations between summability processes of different types. We first prove

oD
Taeorem 12. IfA>1, 2> p> -1, X isa Hausdorff matriz, and if 2 a, is (i) summable
0

| C,X, 0|, and (i) summable AC,X to s, then the series is summable [Cy, X], fo s.

When A = 1 condition (ii) is not required.

Here A denotes the Abel method of summability and summability AC X is to be inter-
preted as follows : s, — s(AC,X) means that ¢, = C,X(s,) — s(4), i.e. that

o0
lim (1-2)) o,2"

T—>1— 0

Tt is known (see [1] and the references there given) that

C'“:>AC’E=:>AO,, (i =y B =)o o cvevensssmmsmnnsonens (19)

= 8.

k)
Proof. Lets, =2 a, 7, = 0;X(na,). Then, by hypothesis (i),
r=0

el L |7 [
r %+1r§1(n+1 i 7

 § w 5 n 1
ones i) = i)

so that
na, — 0[0,, C; X1,

Hence, by result (I1I), we have only to show that
8, — s(01X)

in order to complete the proof. When A = 1, (20) is an immediate consequence of hypothesis
(i), and so hypothesis (ii) is redundant in this case.

Suppose now that A > 1 and that 2 > p = 1 +1/A. In view of (19) the additional restric-
tion of p can be imposed without loss in generality. Let

O.X(sp) = w, = 3 u

so that, by (5),
Then, by (ii),

nu, = C X (na,).

o0
i.e. > u, is summable 4 to S,
0

Further, by result
Hence, by (i),

(VI), |CX,0],=>|CX, 0], (p>A) since p—1>1/A-1/p

o
2 [ | ”?;n|f< 0.

n=1

Now by a Tauberian theorem of Hardy and Littlewood [8] (see also Flett [3, Theorem 4]),

a consequence of (21) and (22) is that, for every 8 > 1/u -1, i u,, is summable (C, 3) to s, i.e.
0
that
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But p can be taken arbitrarily large and so (23) holds for every 8 > —1. Consequently
Oy w,) = C,_C.X(s,) >&

and, since C;_,C, =~ (', (20) follows.
In order to establish the next theorem we require
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Levma 4. If Q is any matric and either
DA=p=ly=0,a+l>y> S, BP=a—y+8, 8> -1,
or (ii))\>p21,y}0,m+l>'y> 3,‘3>aﬂy+3,,3> — 1
then | C.@: v |a = [ Ca®, 3 |-

The two results incorporated in this lemma are immediate consequences of theorems due
to Flett [4, Theorems 3 and 4].

TusoreM 13. If X is @ Hausdorff matriz, A = 1, >y > 0,B=a-y-1, then
| C.X, v |x = [Ch, CpX i
Proof. Let Y = O7'0, X, so that, by (11)
Y~C,,4X and C,.,¥= . X
Then, by Lemma 4 and (19),
|C.X, y|a=|C.X, 0|y = CX =~ ACY
for every p > —1. Further, by Lemma 4 (i),
|0.X, 5 = | G.F, 0 |
Hence, by Theorem 12 and result (1I), | C.X, v Iy = [Cy Y1) = [Cy, CaX]
We conclude with some corollaries of Theorems 12 and 13, but first we prove the inclusion :
[H,els=> (H,B) A>1,8>a-1+1/A).
By Theorem 2,
[H, o}y = [Cp, Hyala = [Consrs Haal
since B —o+1 > 1/A. Consequently, by Theorem 3 (ii) and (13),
(H, o)y = Opgiaflay = He,

and (24) is thus established. Alternatively, (24) can be deduced directly from the case p =
of Theorem 10. By Theorem 3 (ii), the inclusion is also valid when A = 1, 8 = a.

Similarly we can prove the companion inclusion :
[C,aly= (C,B) A>1,B>a-1+1/Aa=0).

This result is known {except possibly for the case o = 0), the cases ¢ = 1, > 1/Aand « > 0
being due respectively to Kuttner [13], Hyslop [11] and Chow [2] (see also Flett [5]).

(VID). If x> 1, 1+a>> p,and if § a,, is (i) summable | H, «, 0 |, and (ii) summable AH to s,
0

then the series is summable [H,a], to s and consequently summable (H, B) to s for every
B>a—-1+1/A
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Proof. Let 8 be a positive number such that 2> 8> p+1 -« Then, by (13),

H,= H;H, , =~ CsH, ,, and s0, by a result due essentially to Hausdorff ([9]; see alsg

[1, Theorem 4]),
AH, -~ ACH,_,.
Since H, = C,H,_;, we obtain the required result by applying first Theorem 12 (with § in
place of p) and then inclusion (24).
In the same way we can prove

oD
(VII). If A> 1L 1+a>p=0,8> a-1+1/) and if ¥ a, is (i) summable | C, «, 0 i
0

and (ii) summable AC, to s, then the series is summable (H, B) to s.

The case « = 0, p = 0 of this result is effectively the theorem of Hardy and Littlewood
used in the above proof of Theorem 12. The case A = 2, p = 0, > -}, is due to Zygrmund
[16], and Flett [4] has established the case « > —1/A, p = 0.

(VITI). If A> 1,y > 0, B> a—1 —y + 1/A, then

| H, o,y s = [H, x~yla = (H, B).
Proof. Let X = C,;'H, where p > y. Then 0,X = H, and, by (13),

O G S
Consequently, by Theorem 13 and results (II) and (24),
| Hiwyils =| OX v b= 1610, X = [Hi, Hy y ol =[H, «-yly= (H,B).

A similar proof shows that
(VIIY. IfA>La> -Ly>0,8> a—1—y+1/A then

IO: oy Y ‘)\ = (Hs ,B)'
The case a > v —1/X of this result has been proved by Flett [4].
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