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In two recent papers ((1), (2)) I investigated inclusion relations between IF (integral
function) methods of summapbility. Tn the present paper the investigation is continued
with the aid of standard Mellin transform theory and results due to Rogosinski and
to Kuttner.

1. Notation and preliminary results. Let

M8

p(z) =

D"
n=0

be an integral function such that p, > 0, 3 p, > 0 for all n. Associated with p(z) are
r=n

two regular IF methods of summability P*, P defined as follows. We write s,, = [(P*) i

25 DPnSp?™ = ps(z)
n=0

is an analytic function at the origin having, in a region containing the positive real
axis, an analytic continuation pj(z) such that p*(z)/p(x) > as x — o (through real
values). And we write s, — I(P) if s,, — [(P*) and p,(z) is an integral function.
Let o
by >0, g, = pn//’l’n (n=0,1,...), q(z)= nE_:Oanﬂs

and, whenever ¢(z) is an integral function, denote the associated IF methods by Q*, Q.
Following standard practice, we say that P includes @, and write P 2 @, if s, — I(P)
whenever s, — /(@) (! finite); and we say that P and @ are equivalent if each includes
the other. We use the same terminology and notation for methods P*, @*. In addition,
we introduce for convenience the notation P* 2 @ to signify that s, — I(P*) whenever

both s, — I(@)) and the radius of convergence of ¥ p, s, 2" is greater than zero.
0

We state first an easily verified lemma. As a precondition it is to be supposed that
q(z) is an integral function.

Lemma 1. Let P¥, P,, Q*, @, be the TF methods associated with the integral functions
E pn+vzns Z gn-wz”'n
="My n="1m,

where ny, v are integers such that n, = 0, ny+v = 0. Then the relations P 2 Q, P* 2 Q*,
P* 2 Q are equivalent respectively to P, = Q,, P*¥ 2 Q*, P*5 (,.
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The following theorem is a slight extension of a known result ( (1), Theorem A).

TurOREM 1. Suppose that vy > 0,1>68 >0, N 2 0, N—v > ny > 0, where N, ng, v
are integers, and that
(i) x(t) 25 a function of bounded variation in the interval [0, 1];

1 1
(i) x(f) vs real Lmdj tndy(t) = SJ tn|dx(t)| >0 (n=mnyne+1,...);
0 0

1
(iii) 4, = fyﬂj t"vdy(t) (n=N,N+1,..).
0

Then (iv) q(2) s an integral function; (v) P 2 @, and (vi) P* = Q*.

To establish this theorem we may suppose, without loss in generality, that y = 1
and, in view of Lemma 1, that v = 0. That (iv) and (v) are consequences of the hypo-
theses in this case is proved in (1). That (vi) is also a consequence can be established

1
by a similar argument incorporating the following simple result: F(z) = f f(=zt)dx(t)
0

is an analytic function for all real z > 0 whenever f(z) is analytic for such z and (i)
holds.
Applying Lemma 1 to another known result ((2), Theorem 2), we obtain

THEOREM 2. Suppose that 1 >8>0, 72 A >0, N >0, N—v > mny >0, where
N, ng, v are infegers, and that
(i) @(z) is an analytic funclion in the region |z| > 0, |argz| < A, and the integral

jm |p(t €i?)| dt is uniformly convergent (at both limits) in the interval —A < 0 < A;
0
(i1) @(t) is real for t > 0 and

0 > fmt“¢(t)dt = 6Jw ()| dt > 0 (n=mng,my+1,...);
0 0

(iii) g, = f tn—d(t)dt (n=N,N+1, ..).
0
Then ¢(z) is an integral function and P* S ().

2. Moment sequences. We say (as in (1)) that a sequence {k,} is an m-sequence if
the equations

Ky = f:t“dx(t) (NEZIONIRON)

admit a solution y satisfying (i) of Theorem 1. If the equations admit a solution satis-
fying both (i) and (ii) of Theorem 1 we call {«,} an 7-sequence. Further, we shall call
a sequence {A,} an M *-sequence if the equations

T

s [mtnqsmdt =01, )
JO

have a solution ¢ satisfying (i) and (ii) of Theorem 2.
We can now reword Theorems 1 and 2 as follows:

Tueorem 1. If {k,} is an m-sequence and, for any fived integer v and all lorge integers n,
fy = Y%K, _, (¥ > 0), then q(2) is an integral function, P = Q, and P* 2 @*.
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TarorEM 2'. If {A,} is an M*-sequence and, for any fived integer v and oll large
integers n, p,, = A,,_,, then q(2) is an integral function and P* 2 Q.

We state next three useful lemmas. The first is due to Rogosinski ((7), 185-6), the
second essentially to Kuttner ((6), Lemma 10), and the third sets out results given
in (1),

RocosiNskr’'s LEMMA. If f(s) is an analytic fumction of s = o +ir in the region

o > ¢, and if "
f |[flc+it)|2dt < K < o0

1
Jorall ¢ > ¢, then f(8) = f #BPt)dt (o > cqg)s
0
where °@(t) € L(0, 1) for all ¢ > c,.
Kurrner's Lemma. If A(s) is an analytic function of s = o+i7 in the region
o > 04 such that, when o > oy and |s| is large,
1
A(s) = g@sthg—s {O+0 (?)}:
where C, o are positive and f is real; and if

1 c+im
F(z) = — 274 (8)ds (¢ > o),

then, as t — oo (through real values)
F(t) ~ Be—tt@+dle
where B is a positive constant.
Lemma 2. (i) If {o,} and {f8,} are m-sequences then so also are {a,, + f,} and {o, £, }.
(i) Any real m-sequence which converges to a positive limit is an m-sequence.
We conclude this section with two lemmas concerning m- and M*-sequences.

Lemma 3. If
(i) g(s) is an analytic function of s = o +11 in the region o > o, such that, when
o > o, and |s| is large, g(s) = s~{C+O(|s|™*)}, where C > 0, ¢ > 0,b > ¥;
(i1) g(o) is real for o > oy;
(iii) k, =gn+v)(n=0,1,...), wherev > 0, v —04 > 0;
then {k,} is an m-sequence.
Proof. Note that
f&)y=g(s+v)(s+v)e-C
satisfies the hypotheses of Rogosinski’s lemma with ¢, = 4(oy—v) <0, and
that «, (n+v)* =f(n)+C—C >0 as n —o0. Hence by Rogosinski’s lemma and
Lemma 2 (ii), {k,(n+»)%} is an m-sequence. Since {(n+v)~%} is an m-sequence, it
follows, by Lemma 2 (i), that {«,,} is an m-sequence.
Lemma 4. If
(i) h(s) is an analytic function of 8 = o +it in the region o > o such that, when
o > oy and || is large,
h(s) = sxsthers {C'+O(1/[s|)},

where C, a are positive and f, y are real;
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(ii) R(o) s real for o > oy;

(iii) A, =h(n+v)(n=0,1,...), wherev > 0,v—0, > 0;
then {A,} is an M*-sequence.

Proof. Denote the principal value of arg s by y. Then yr = |7| and, for any € > 0
and ¢, 2 0 = ¢; > 0y,

V>3 -5
when || is large. Consequently, by (i), when |7| - o0
h(s) = O{(0? + 72)oo+D g—a¥r) — Ofgle—tamirl)
uniformly in the strip ¢, > & = ¢;. Nowlet 0 < A < jomr and let

1 c+1i00

$(2)

=5 . Z-5-1h(s)ds (¢ > oy, |argz| < A).
In view of the above order relation, the integral is absolutely convergent and, by
Cauchy’s theorem, its value is independent of ¢. Applying a standard result on Mellin
transforms ( (8) Theorem 31) we obtain the following conclusions:

(i)" ¢(2) is analytic in the region |z| > 0, |argz| < A;

(ii)" forany p > oy—vandall ¢ > 0,

p(te) = O(t=)

uniformly in the interval —A < 0 < A;
(iii)" for o > oy fm

hs) = | ts~et)dt,

0
and the integral is absolutely convergent.

It follows from (i)" and (ii)’, since oy —v < 0, that ¢ satisfies (i) of Theorem 2. Further,
by Kuttner’s lemma with A(s) = e~@+5}(s), it follows from (i) that when ¢t — o
(through real values),

11t exty) ~ O gt {B+Dix
where C’ > 0. Hence

(iv)" when ¢ - oo, P(t) ~ K e—xt* gk,
26+1

where K>0, k=oaelrtde | —p_14 %o

Next, by the Schwartz principle of symmetry, it follows from (i) that A(s) = A(3)
and hence that

(v)" () is real for ¢ > 0.
In virtue of (iv)"and (v)’, there is a number T > 0 such that ¢(t) > 0 for ¢ > 7. Also,
by (@), lim T%/h(n +v) = 0.

n—>®

Hence, by (iii)’,

lim ;jwtﬂqﬁ(tﬂdt =1—lim —l—thn{QS(t)—qu(t) l}dt = 1;
o BN+ V) = An+v) Jo i

0 n—»o
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and so, for all large n,

h(n+v) = fowt”¢(t) dt > %f:tn ()] dt > 0.

It follows that ¢ satisfies (ii) of Theorem 2. Consequently, by (iii) and (iii)’, {A,} is
an M*-sequence.

3. Applications. Suppose that & > 0 and /4 is real; and denote by (B, a, §)*, (B, o, )
the IF methods associated with the integral function

o0 z‘n,

where N is a non-negative integer such that aN + £ > 0. The actual choice of N is
clearly immaterial. By Stirling’s theorem,

Tas+p) = (2m)e=s (asy=+1-4 {1 +0(1/|s|)},
when |s| is large and o > N. Consequently, if @ > 0, b is real and
Oy = m&x(-—b/a, _ﬂ/{x),

I'(as + f)
Ias-+b)

— ppsgla—m)s+i—b {0 +0 (Isll)} (C > 0, preal),

when |s| is large and o > o,. Hence, by Lemma 4 and Theorem 2’, we obtain the
following result:
(I) if « > a > 0 and B, b are real, then (B,a,b)* > (B,a, f). (For a somewhat
different proof of the case # = b = 1 of this result see (2).)
Further, by Lemma 3 and Theorem 1’, we have
(II) of @ > 0 and b > B, then (B,a,b) = (B,a,p) and (B,a,b)* 2 (B,a, f)* (cf.
Knopp (5)).
Suppose now that k(s) satisfies (i) and (ii) of Lemma 4. Then A(c) > Oforo > N > T
where N is some non-negative integer; and the functions

h(s) k* es+4+14)
Tas+6+3) b

(k = a®e="Y)

satisfy the hypotheses for g(s) in Lemma 3 (with @ = 0, b = 1). Hence, by Lemma 3
and Theorem 1’, we have

(III) if h(s) satisfies (i) and (ii) of Lemma 4, then the IF methods associated with the
integral function

[>+] 2n
WZ )

are equivalent respectively to (B, a, f+ 1)* and (B, , B + 3).

An interesting special case of this result is obtained by taking

h(s) = {['(as+b)}¢ (s + p)otr,
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where b, ¢, p, ¢, r are real, ¢ > 0 and ac-+g > 0. This function satisfies (ii) and (i) of
Lemma 4 with

a=ac+q, B=cb-3+r, y=uaclloga—1), C=ert(2m)tcagb-be

Consequently
(IV) the IF methods associated with the integral function

® on
o2y Tan + b)Y (n + pyoss

are equivalent respectively to (B, ac+q,bc+r—3c+ 3)* and (B,ac+q,be+7—$c+1).

In virtue of results I to IV we now have a comprehensive account of the inclusion
relations between different IF methods of the above type. In connexion with these
methods it is of interest to examine the behaviour of the series appearing in IIT and
1V for large positive z. We start with the known result (see (4), 197-8)

el xﬂ!ﬂ 83’4’
K ,,EO IMan+1) “a
as x — co. Consequently, in view of a standard result of the Toeplitz type, we have,
for & > 0,

(@ > 0,ac+q > 0)

v(x) (a > 0)

oA [ R SRy P
,,,:or(om+a+1)‘1“(3)f0"3 B oo o

as & — co. It follows that

Sl B 0, aN +8+%> 0
E T ipen g > ),
and hence that < ol ISR S o ] ot
i R
as x —» 00, Suppose, as above, that A(s) satisfies (i) and (ii) of Lemma 4. Then, asn — co,
i Kk

W) Tl

where K = (2m)taf|C, k = a®e~==7. Since (B,w, f+3) is regular, it follows that, as

Foii sl K
—= 2 G—pew plrayti
'n:ZN h(n) Kulenyialty] o D) -

In particular, we find that, as .« — o0,
e " K
g G—Ple plcaytio
n:ZN {T(an+b)} (n+p)tr  «a ) 3 =B antg =),
where o =ac+q, f=clb—1)+r, and k=eata % K = e Pla—Fub(2m)i-o,
(See Hardy (3), 55 for special cases.)

Note added in proof. Since submitting this paper for publication T have been
informed that Dr L. Wlodarski has proved independently the following case of

result I:if ¢>a>0, s, (B, a,1) and gjsn z"I'(an + 1) is an integral function, then
8, (B, a,1). %

==
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