ON MOMENT CONSTANT METHODS OF SUMMABILITY

D. Borweint.

1. Introduction.

Suppose that $\chi(x)$ is a real non-decreasing and bounded function in the range $0 \le x < X \le \infty$, that $\chi(y) < \lim_{x \to X^-} \chi(x)$ when $0 \le y < X$, and that

$$0 < \mu_n = \lim_{x \to X_-} \int_0^x t^n d\chi(t) < \infty \quad (n = 0, 1, ...).$$

Let $l, a_n \ (n = 0, 1, ...)$ be arbitrary complex numbers, let

$$s_n = \sum_{r=0}^n a_r$$
, $M(x) = \sum_{n=0}^\infty x^n/\mu_n$,

and denote the radius of convergence of the power series by R.

Associated with the sequence of moment constants $\{\mu_n\}$ are methods of summability $(J_{\chi})^*$, (J_{χ}) , $(J_{\chi}')^*$, (J_{χ}') defined as follows:

If $\sum_{n=0}^{\infty} s_n z^n / \mu_n = S(z)$ is an analytic function in a neighbourhood of the origin admitting, in a region containing the real open interval (0, R), an analytic continuation $S^*(z)$ such that

$$\lim_{x \to R^-} S^*(x)/M(x) = l,$$

we write $\sum_{0}^{\infty} a_n = l(J_{\chi})^*$ or $s_n \to l(J_{\chi})^*$. We omit the stars when S(z) is analytic in the region |z| < R. (See [5], §4.12.)

If $\sum_{n=0}^{\infty} a_n z^n / \mu_n = A(z)$ is an analytic function in a neighbourhood of the origin admitting, in a region containing the interval (0, X), an analytic continuation $A^*(z)$ such that

$$\lim_{x\to X^{-}}\int_{0}^{x}A^{*}(t)\,d\chi(t)=l,$$

we write $\sum_{n=0}^{\infty} a_n = l(J_{\chi}')^*$ or $s_n \to l(J_{\chi}')^*$. We omit the stars when A(z) is analytic in the region |z| < X.

It is known ([5], §4.13) that the method (J_{χ}') is regular, i.e. $s_n \to l(J_{\chi}')$ whenever $s_n \to l$; and it follows that $(J_{\chi}')^*$ is regular. It is also known (see [2], Theorem 1) that $(J_{\chi})^*$ and (J_{χ}) are regular if and only if $\lim_{x\to R} M(x) = \infty$.

This note is concerned with relations linking certain of the "unprimed" and "primed" J-methods.

[†] Received 18 February, 1959; read 19 February, 1959.

[JOUPVAL LONDON MATH, Soc. 35 (1960), 71-77]

Given summability methods P, Q we say that P includes Q and write $P \supseteq Q$ if $s_n \to l(P)$ whenever $s_n \to l(Q)$. If $P \supseteq Q$ and $Q \supseteq P$ we say that P and Q are equivalent and write $P \simeq Q$.

Borel-type methods. Denote by $(B, \alpha, \beta)^*$, (B, α, β) , $(B', \alpha, \beta)^*$, (B', α, β) the J-methods based on the function

$$\chi(x) = \alpha^{-1} \int_0^x t^{(\beta-\alpha)/\alpha} e^{-t^{1/\alpha}} dt \qquad (\alpha > 0, \ \beta > 0 \ ; \ \ 0 \leqslant x < X = \infty).$$

In this case $\mu_n = \Gamma(\alpha n + \beta)$, $R = \infty$ and it is known (see [3]) that $\alpha M(x) \sim x^{(1-\beta)\alpha} e^{x^{1/\alpha}}$ as $x \to \infty$. Note that (B, 1, 1), (B', 1, 1) are respectively the Borel exponential and the Borel integral methods, and that $(B, 1, 1)^*$ is the method (B^*) defined in [5], p. 192.

The above definitions of Borel-type methods are equivalent to ones appearing in [4]† where the following results are proved:

(a)*.
$$\sum_{0}^{\infty} a_n = l(B, \alpha, \beta)$$
* if and only if $\sum_{0}^{\infty} a_n = l(B', \alpha, \beta)$ * and $a_n \to 0(B, \alpha, \beta)$ *.

(b)*.
$$(B, \alpha, \beta+1)* \simeq (B', \alpha, \beta)*$$
.

Also proved there are the versions of these results obtained by deleting the stars.

Our primary object is to obtain similar results for the following methods.

Abel-type methods. Denote by $(A_{\alpha})^*$, (A_{α}) , $(A_{\alpha}')^*$, (A_{α}') the J-methods based on the function

$$\chi(x) = -(1-x)^{\alpha}$$
 $(\alpha > 0, 0 \le x < X = 1).$

Then

$$\mu_n = 1 / \binom{n+\alpha}{n}, \quad R = 1, \quad M(x) = (1-x)^{-\alpha-1}.$$

We extend the definitions of $(A_{\alpha})^*$, (A_{α}) to the range $-1 < \alpha \le 0$ by taking μ_n to be $1 / \binom{n+\alpha}{n}$ in this range. These two methods are then regular for all $\alpha > -1$ (see [1], Theorem 1). The method (A_0) is the ordinary Abel method and it is easily verified that it is equivalent to (A_1') .

The theorems established in this note are:

THEOREM 1*. For $\alpha > 0$, $\sum_{n=0}^{\infty} a_n = l(A_{\alpha})^*$ if and only if $\sum_{n=0}^{\infty} a_n = l(A_{\alpha}')^*$ and $na_n \to 0$ $(A_{\alpha-1})^*$;

THEOREM 2*. For $\alpha > 0$, $(A_{\alpha}')^* \simeq (A_{\alpha-1})^*$;

and Theorems 1 and 2 which denote these results with the stars omitted.

2. Preliminary results.

Let

$$\epsilon_n^{\alpha} = \binom{n+\alpha}{n}, \quad a(t, \alpha) = (1+t)^{-\alpha-1} \sum_{n=0}^{\infty} a_n \, \epsilon_n^{\alpha} \left(\frac{t}{1+t}\right)^n \ (\alpha > -1),$$

let $\rho_a(\alpha)$ be the upper bound of real values of t for which the series is convergent, and define $s(t, \alpha)$, $\rho_s(\alpha)$ similarly. It is evident that, if $\alpha > -1$, $\beta > -1$, then $\rho_a(\alpha) = \rho_s(\beta) = \rho$ say.

We shall say that a function f(z) is in class $\mathscr A$ if it is analytic in a region containing the real open interval $(0, \infty)$.

The following results are easily verified.

(A). For
$$\alpha > -1$$
, $\sum\limits_{0}^{\infty} a_n = l(A_{\alpha})$ if and only if $\rho = \infty$ and $\lim\limits_{y \to \infty} s(y, \alpha) = l$.

(A)*. For
$$\alpha > -1$$
, $\sum_{0}^{\infty} a_n = l(A_{\alpha})^*$ if and only if (i) $\rho > 0$, (ii) there is a function $s^*(z, \alpha)$ in $\mathscr A$ such that $s^*(t, \alpha) = s(t, \alpha)$ for $0 < t < \rho$, and (iii) $\lim_{t \to \infty} s^*(t, \alpha) = l$.

(A'). For
$$\alpha > 0$$
, $\sum_{0}^{\infty} a_n = l(A_{\alpha}')$ if and only if $\rho = \infty$ and
$$\lim_{y \to \infty} \alpha \int_{0}^{y} a(t, \alpha) dt = l.$$

(A')*. For $\alpha > 0$, $\sum_{0}^{\infty} a_n = l(A_{\alpha}')^*$ if and only if (i) $\rho > 0$, (ii) there is a function $a^*(z, \alpha)$ in \mathscr{A} such that $a^*(t, \alpha) = a(t, \alpha)$ for $0 < t < \rho$, and (iii) $\lim_{n \to \infty} \int_{0}^{y} a^*(t, \alpha) dt = l$.

We now prove some useful identities. Suppose that $0 < y < \rho$. Then, for $\alpha > -1$,

$$a(y, \alpha) = (1+y)^{-\alpha-1} \left\{ \sum_{n=0}^{\infty} s_n \, \epsilon_n^{\alpha} \left(\frac{y}{1+y} \right)^n - \sum_{n=0}^{\infty} s_n \, \epsilon_{n+1}^{\alpha} \left(\frac{y}{1+y} \right)^{n+1} \right\}$$

$$= s(y, \alpha) - (1+y)^{-\alpha-1} \sum_{n=0}^{\infty} s_n \, \epsilon_n^{\alpha} \, \frac{n+1+\alpha}{n+1} \left(\frac{y}{1+y} \right)^{n+1}$$

$$= s(y, \alpha) \left(1 - \frac{y}{1+y} \right) - \alpha (1+y)^{-\alpha-1} \sum_{n=0}^{\infty} s_n \, \epsilon_n^{\alpha} \int_0^y \left(\frac{t}{1+t} \right)^n \, \frac{dt}{(1+t)^2}$$

$$= (1+y)^{-1} s(y, \alpha) - \alpha (1+y)^{-\alpha-1} \int_0^y (1+t)^{\alpha-1} s(t, \alpha) \, dt; \qquad (1)$$

the inversion being legitimate since $\Sigma |s_n| \epsilon_n^{\alpha} \left(\frac{y}{1+y}\right)^{n+1} < \infty$.

[†] See also Włodarski [6].

It follows that, for $\alpha > -1$,

$$\int_{0}^{y} a(u,\alpha) du = \int_{0}^{y} (1+u)^{-1} s(u,\alpha) du - \alpha \int_{0}^{y} (1+u)^{-\alpha-1} du \int_{0}^{u} (1+t)^{\alpha-1} s(t,\alpha) dt$$

$$= \int_{0}^{y} (1+u)^{-1} s(u,\alpha) du - \alpha \int_{0}^{y} (1+t)^{\alpha-1} s(t,\alpha) dt \int_{t}^{y} (1+u)^{-\alpha-1} du$$

$$= (1+y)^{-\alpha} \int_0^y (1+t)^{\alpha-1} s(t, \alpha) dt.$$
 (2)

Combining (1) and (2) we get

$$s(y, \alpha) = \alpha \int_0^y a(t, \alpha) dt + (1+y) a(y, \alpha) \qquad (\alpha > -1).$$
 (3)

Another useful identity in essence has been established elsewhere ([1], Lemma 2); it is:

$$s(y,\beta) = \frac{\Gamma(\alpha+1)}{\Gamma(\beta+1)\Gamma(\alpha-\beta)} y^{-\alpha} \int_0^y (y-t)^{\alpha-\beta-1} t^{\beta} s(t,\alpha) dt \quad (\alpha > \beta > -1), \quad (4)$$

and the same identity holds with a in place of s.

In view of (3) and (4) we have, for $\alpha > 0$,

$$s(y, \alpha - 1) = \alpha y^{-\alpha} \int_0^y t^{\alpha - 1} s(t, \alpha) dt$$

$$= \alpha^2 y^{-\alpha} \int_0^y t^{\alpha - 1} dt \int_0^t a(u, \alpha) du + \alpha y^{-\alpha} \int_0^y u^{\alpha - 1} (1 + u) a(u, \alpha) du$$

$$= \alpha \int_0^y a(u, \alpha) du + \alpha y^{-\alpha} \int_0^y u^{\alpha - 1} a(u, \alpha) du, \qquad (5)$$

$$= \alpha \int_0^y a(u, \alpha) du + a(y, \alpha - 1). \qquad (6)$$

We require the following results:

(I)* If $\rho > 0$, $\alpha > -1$, then conditions (A)*(ii) and (A')*(ii) are equivalent.

This is a simple consequence of (1) and (3).

(II)*. If $\rho > 0$, $\alpha > \beta > -1$ and condition (A)*(ii) holds, then there is a function $s^*(z, \beta)$ in $\mathscr A$ such that $s^*(t, \beta) = s(t, \beta)$ for $0 < t < \rho$.

This is a consequence of (4) (see the proof of Lemma 5 in [4]).

(III)*. If
$$\alpha > \beta > -1$$
 then $(A_{\beta})^* \supseteq (A_{\alpha})^*$.

In virtue of (II)*, this can be deduced from (4) as in [1] where the "unstarred" version of the result is proved.

(IV)*. If $\alpha > -1$, p is real, and if $s_n \rightarrow l(A_\alpha)^*$ and

$$(n+p)u_n = s_n$$
 $(n = 0, 1, ...),$

then $u_n \to 0(A_\alpha)^*$.

This can be established by slightly modifying the proof given in [1] of the unstarred version of the result.

3. Proof of Theorem 1*.

From now on it is to be assumed that $\alpha > 0$.

(i) Suppose that
$$\sum_{0}^{\infty} a_{n} = l(A_{\alpha})^{*}. \tag{7}$$

Then, in view of (I)*, there are functions $s^*(z, \alpha)$, $a^*(z, \alpha)$ in $\mathscr A$ such that

$$s^*(t, \alpha) = s(t, \alpha), \quad a^*(t, \alpha) = a(t, \alpha) \quad (0 < t < \rho)$$
(8)

and

$$\lim_{t\to\infty} s^*(t, \alpha) = l.$$

Hence, by (2),

$$\alpha \int_{0}^{y} a^{*}(u, \alpha) du = \alpha (1+y)^{-\alpha} \int_{0}^{y} (1+t)^{\alpha-1} s^{*}(t, \alpha) dt \to l \text{ as } y \to \infty;$$

so that

$$\sum_{n=0}^{\infty} a_n = l(A_{\alpha}')^*. \tag{9}$$

Further, by (3),

$$(1+y) a^*(y, \alpha) = s^*(y, \alpha) - \alpha \int_0^y a^*(t, \alpha) dt \to 0 \text{ as } y \to \infty.$$

But, for $0 < y < \rho$,

$$(1+y) a * (y, \alpha) = (1+y)^{-\alpha} \sum_{n=1}^{\infty} \frac{\alpha+n}{\alpha n} n a_n \epsilon_n^{\alpha-1} \left(\frac{y}{1+y}\right)^n + a_0 (1+y)^{-\alpha};$$

and so

$$\frac{\alpha+n}{\alpha n} n a_n \to 0 \quad (A_{\alpha-1})^*.$$

Consequently, by (IV)*,

$$na_n \to 0 \quad (A_{\alpha-1})^*.$$
 (10)

(ii) It remains to prove that (7) is a consequence of (9) and (10). Suppose therefore that (9) and (10) hold. In view of (I)*, it follows from (9) that there are functions $a^*(z, \alpha)$, $s^*(z, \alpha)$ in $\mathscr A$ satisfying (8), and that

$$\lim_{y\to\infty} \alpha \int_0^y a^*(u, \alpha) du = l.$$

Further, reversing the last part of the argument in (i), we find that a consequence of (10) is that

$$\lim_{y\to\infty} (1+y) a^*(y, \alpha) = 0.$$

Hence, by (3),

$$\lim_{y\to\infty} s^*(y,\,\alpha) = l;$$

and (7) follows.

4. Proof of Theorem 2*.

(i) Suppose that
$$\sum_{n=0}^{\infty} a_n = l(A_{\alpha}')^*. \tag{11}$$

Then, in view of (I)* and (II)*, there are functions $a^*(z, \alpha)$, $s^*(z, \alpha-1)$ in $\mathscr A$ such that

$$a^*(t, \alpha) = a(t, \alpha), \quad s^*(t, \alpha - 1) = s(t, \alpha - 1) \quad (0 < t < \rho),$$

and

$$\lim_{u\to\infty} \alpha \int_0^y a^*(u, \alpha) du = l.$$

Consequently, by (5),

$$s^*(y, \alpha - 1) = \alpha \int_0^y a^*(u, \alpha) \, du + \alpha y^{-\alpha} \int_0^y u^{\alpha - 1} \, a^*(u, \alpha) \, du$$
$$= \alpha \int_0^y a^*(u, \alpha) \, du + O(y^{-\alpha}) + O(y^{-1}) \to l \text{ as } y \to \infty;$$

and so

$$\sum_{0}^{\infty} a_n = l(A_{\alpha-1})^*. \tag{12}$$

(ii) It remains to prove that (11) is a consequence of (12). Suppose that (12) holds. Then, in view of (I)* and (6), there are functions $s^*(z, \alpha-1)$, $a^*(z, \alpha-1)$, $a^*(z, \alpha)$ in $\mathscr A$ such that

$$s*(t, \alpha-1) = s(t, \alpha-1), \quad a*(t, \alpha-1) = a(t, \alpha-1),$$

$$a^*(t, \alpha) = a(t, \alpha) \quad (0 < t < \rho).$$

Further

$$\lim_{y\to\infty} s^*(y, \alpha-1) = l;$$

and so, by (1),

$$\alpha^*(y, \alpha - 1) = (1 + y)^{-1} s^*(y, \alpha - 1) + (\alpha - 1)(1 + y)^{-\alpha} \int_0^y (1 + t)^{\alpha - 2} s^*(t, \alpha - 1) dt \to 0 \text{ as } y \to \infty.$$

Hence, by (6),

$$\alpha \int_{0}^{y} a^{*}(u, \alpha) du = s^{*}(y, \alpha - 1) - a^{*}(y, \alpha - 1) \to l \text{ as } y \to \infty;$$

and (11) follows.

We have now proved Theorems 1* and 2*. Since the radii of convergence of the series

$$\sum a_n \epsilon_n^{\alpha} x^n$$
, $\sum s_n \epsilon_n^{\beta} x^n$, $\sum n a_n \epsilon_n^{\gamma} x^n$ ($\alpha > -1$, $\beta > -1$, $\gamma > -1$)

are all equal, we see that Theorem 1 is a consequence of Theorem 1* and Theorem 2 of Theorem 2*.

References.

- D. Borwein, "On a scale of Abel-type methods of summability", Proc. Cambridge Phil. Soc., 53 (1957), 318-322.
- "On methods of summability based on power series", Proc. Royal Soc. Edinburgh, 64 (1957), 342–349.
- "On methods of summability based on integral functions II", Proc. Cambridge Phil. Soc. (to appear).
- "Relations between Borel-type methods of summability", Journal London Math. Soc., 35 (1960), 65-70.
- 5. G. H. Hardy, Divergent Series (Oxford, 1949).
- L. Włodarski, "Propertiés des méthodes continues de limitation du type de Borel", Bull. Acad. Polon. Sci., Cl. III, 4 (1956), 173-175.

St. Salvator's College,

University of St. Andrews.