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ON MOMENT CONSTANT METHODS OF SUMMABILITY
D. BorwEeINt.

1. I'ntroduction.

Suppose that y(z) is a real non-decreasing and bounded function in
the range 0 < < X < o0, that x(y) < lim x(z) when 0 <y < X, and that
z->X—

x
0<pn:$1£§1_50 thdy(t) <o (m=0,1,..).

Let I, a, (n =0, 1, ...) be arbitrary complex numbers, let

ay, M(x)= § x""/‘un,

0 n=0

b4

8, =

=
I

and denote the radius of convergence of the power series by R.
Associated with the sequence of moment constants {u,} are methods
of summability (J,)*, (J,), (J,)* (J,') defined as follows:

If 3 85, 2", = S(2) is an analytic function in a neighbourhood of the
n=>0

origin admitting, in a region containing the real open interval (0, R), an
analytic continuation S*(z) such that

Lim S*(x)/M(x) =1,
z->R—

we write Ba, = I(J,)* or s,~I(J,)*. We omit the stars when §(z) is
0
analytic in the region |z| < RB. (See [5], §4.12.)
If Xa,z"[u, = A(z) is an analytic function in a neighbourhood of the
0

origin admitting, in a region containing the interval (0, X), an analytic
continuation 4% (z) such that

lim FA*(t) dy(t) =1,
z->X— )0

we write Xa, =I(J,')¥ or s,—I(J,)*. We omit the stars when A(z)
0

is analytic in the region |2| < X.

It is known ([5], §4.13) that the method (/') is regular, i.e. s, > 1(J ")
whenever s, —1; and it follows that (J o )% is regular. It is also known
(see [2], Theorem 1) that (J ¥ and (J,) are regular if and only if
lim M(z)= cc.

—>R—

This note is concerned with relations linking certain of the “ unprimed *
and “ primed  J-methods.

t Received 18 February, 1959; read 19 February, 1959.
[Joup~ar Lonpox MaTH, Soo. 35 (1960), 71-77]
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Given summability methods P, @ we say that P includes ¢ and write
P2@ if s,—1(P) whenever s,—1(Q). If P2 and Q2P we say that
P and @ are equivalent and write P ~ Q).

Borel-type methods. Denote by (B, «, B)*, (B, f), (B« p)¥,
(B’, «, B) the J-methods based on the function
x(m):m—ljmt(ﬂ—mﬁwe—‘wdt (=08 00 = &< X = o0).
0

In this case p,=T(en+8), ER=co and it is known (see [3]) that
M (x) ~ 20-Ble g2 gg ¢ > 0.  Note that (B, 1, 1), (B, 1, 1) are respect-
ively the Borel exponential and the Borel integral methods, and that
(B, 1, 1)* i the method (B*) defined in [5], p. 192.

The above definitions of Borel-type methods are equivalent to ones
appearing in [4]1 where the following results are proved:

(a)%. OZO}an:E(B, o, B)* if and only if Ean:l(B’, « B)* and
G 0
a,—>0(B, a, B)*.
()%, (B, «, B-+-1)% o~ (B, a, B)*.

Also proved there are the versions of these results obtained by deleting
the stars.

Our primary object is to obtain similar results for the following
methods.

Abel-type methods. Denote by (4,)*, (4,), (4,')*, (4,) the J-methods
based on the function

@)= —(1—x) (>0, 0<e<X=1).
Then iy 1/ ("1), B=1 ME)=a—s.

We extend the definitions of (4,)%, (4,) to the range —1 <« <0 by
taking p, to be 1 / (n-j;oc) in this range. These two methods are then

regular for all « > —1 (see [1], Theorem 1). The method (4,) is the
ordinary Abel method and it is easily verified that it is equivalent to (4,’).

The theorems established in this note are:

TrrorEM 1%. For o> 0, Za, =U(A4,)* if and only if Ea, = I{4 )
amd na,—0(4, ¥,

TaroreM 2%. For a>0, (4,)*~(4,4)*;

and Theorems 1 and 2 which denote these results with the stars omitted.

t See also Wiodarski [6].
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2. Preliminary results.
Let

e,ﬁ:(nj@_m), al(t, o) = (l—J—t)‘“_l Z ay, €, (1+t>n (o0 > —1),

let p,(2) be the upper bound of real values of ¢ for which the series is con-
vergent, and define s(t, &), p,(«) similarly. It is evident that, if & > —1,
B> —1, then p,(x) = p,(B) = p say.

We shall say that a function f(z) is in class 7 if it is analytic in a
region containing the real open interval (0, co).

The following results are easily verified.

(A). Foroa>—1, Ean =I(4,) i and only if p = o0 and lim s(y, o) = L.
0

Y0
(A, For u>—1, Sa, = l(A)* if and only if (i) p> 0, (ii) there is
0

a function s%(z, o) in & such that s¥(I, ) =s(t, «) for 0<t<<p, and
(iii) Hm s*(¢, a) =1.

-0

(A"). For a>0, %.g}anz WA, if and only if p =0 and
0

]jmacg.ya(t, ) BT,
0

Y-

(A')%. For a0, Sa, = l(A,)* if and only if (i) p> 0, (i) there is a
0
function a*(z, a) in & such that a*(t, a)=oa(t, «) for 0<i<p, and
(iii) ]J'mura*(t, =1
4]

Y30

We now prove some useful identities. Suppose that 0 <y <p. Then,
for o> —1,

= _1f = o y . § o -—-——y &
a(y, «) = (14-y) ]\?Eo'snen (1+y> —’n:osn E“Jrl(l y) }

+
& a1 3 o Ptlta
_S(ya Ot)*-—(l‘l—y) lnéosn €n n—é—l (1+y)

= 8(y, @) (1— —y—) —a(lfg)2 ﬂE Sp€ “j

1+y ) _1+_t)2

— (1) sy, @) —o(1-+) | (LHttalt, @) 1)

y )n+1
< o0,
1-{—y

version being legitimate since X|s,| Gna(
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It follows that, for o« > —1,
jya(u o) du = Jy 1 = 4 ;
4ot =1 (1+u)"ts(u, «) du—ocjo (1+u)=>1du jo (14-t)Ls(t, o) dt
v
:L (1)1 (u, a)dun_aﬁ(ut)a—ls(t, oc)dtj‘y (L-u)~o1gy
3
¥
= (1-}-y)—= L (14-£)*Ls(t, o) dt. (2)
Combining (1) and (2) we get
Y
s, ) =a"al, Dt (g)aly, ) (x> —1), 3)

Another useful identity in ess i
ey v ence has been esﬁabhshefl 'glsewhere ([1],

__ Tty v
W B = FEr eV [ 0= st @ @ p>—1) (@)

and the.same identity holds with @ in place of s.
In view of (3) and (4) we have, for o > 0,

sy, a—1) = ocy—ajyta—ls(t’ o) di
0
S Oc2y—az Jyta—l dt r a(u d s v
’ e o) du—+-oy jo w1 4-u) a(u, &) du

Y
= ogjﬂ a(w, o) du--o —“ru““ia(u, o) das, (5)

0

- ocLa(u, o) dutaly, a—1). (6)

We require the following results:

O* If p>0, a>—1, th » i i
eanivalevi en conditions (AY*(ii) and (A')*(ii) are

This is a simple consequence of (1) and (8).

(IT)*, If p>0 a> B> —1 and conditio #(i1) holds, the ere

. ; 3 o (A)*(ii) hold i

i8 a function s¥(z, B) in o such that s*¥(t, B) =s(t, B) f(or) 0 <t}/tp e
E] = .

This is a consequence of (4) (see the proof of Lemma 5 in [4])
(ID*. If a>B> —1 then (Ag)*2(4,)*.

In virtue of (II)*, this can be deduced fi i
) ; S rom (4 i
unstarred ” version of the result is proved. FE Mlhere g
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AV)*. If a > —1, p is real, and if s,—1(4,)* and

(n+p)u, =8y (n=0,1,..),

then w,—0(4,)*.

This can be established by slightly modifying the proof given in [1]
of the unstarred version of the result.

3. Proof of Theorem 1%,

From now on it ig to be assumed that « > 0.

Oy = (A o)*. (7)

= 18

(i) Swuppose that

Then, in view of (1)¥, there are functions s*(z, ), 6*(z, «) in &7 such that

s(t, @) =s(t, @), a*(t, 0)=a(, ) (0<t<p) (8)
and lim s*(¢, a) = 1.
=0

Hence, by (2),
ocra*(u, o) du = oc(l+y)“°‘jy(1+t)“—1s*(t, a)dt—1 as y—>0;
0 )

so that % a, = UA,")*. 9)
0

Further, by (3),
(1+y)a*(y, o) = s*(y, oc)—ocgya*(t, a)dt—>0 as y-—>oo.
0

But, for 0 <<y < p,

(143)a*(y, «) = (1+9)~ 2 %1”%” ei‘l(liy)nJr%(Hy)‘“;

7n=1

and so %na??,»() 7 O
Consequently, by (IV)*,

n, >0 (d,_)%.
(ii) It remains to prove that (7) is a consequence of (9) and (10).

Suppose therefore that (9) and (10) hold. Tn view of (I)¥, it follows from
(9) that there are functions a*(z, o), s*(2, «) in .7 satisfying (8), and that

(10)

lim mjya*(u, o) du =1.
0

Yy
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Further, reversing the last part of the argument in (i), we find that g
consequence of (10) is that

iini (I+y)a*(y, ) =0.
Hence, by (3),
lim s*(y, ) =1;

Y00

and (7) follows.

4. Proof of Theorem 2%,

(i) Suppose that

o M8

@, =1(4,')*. (11)

'.I‘hen, in view of (I)* and (II)*, there are functions a*(z, «), s%*(z, a—1)
in & such that

At @) =alt, @), sH(E a—1)=s(t, a—1) (0<t<p),
and lim ozjya,*(u, o) dy == 1.
Y0 0

Consequently, by (5),

o Yy v
8%y, a—1) = ocJ'Oa*(u, o) duﬁ—my‘“y wto* (u, o)du
0
Y
= ozjﬂ a*(u, o) du+0(y—)+O(y=1)—1 as Y—>00;

and so a, = 1(A,_,)*. (12)

o 8

(if) Tt remains to prove that (11) is a consequence of (12). Suppose
that (12) holds. Then, in view of (I)* and (6), there are functions
s¥(z, a—1), a¥(z, a—1), a*(z, «) in o such that

s%(t, a—1) =s(t, a—1), a*(t, a—1)=a(t, «—1),

a*(t, o) = a(t, a) (0<t<p).
Further lim s*(y, a—1) =1;

Y-

and so, by (1),
a*(y, a—1) = (14-y)2 s*(y, a—1)

-1—(oc—1)(1—i—y)—“J:(l—f—t)“—28*(t, a—1)dt—>0 as y—o0,
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Hence, by (6),
v
rxj a*(u, o) du = s*(y, a—1)—a*(y, a—1) > as y—>o0;
0

and (11) follows.
We have now proved Theorems 1* and 2%. Since the radii of con-

vergence of the series
Za, ez, Zs,efx", Zna,era® (a>—1,8>—1, y>—1)

are all equal, we see that Theorem 1 is a consequence of Theorem 1* and
Theorem 2 of Theorem 2%.
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