ON MOMENT CONSTANT METHODS OF SUMMABILITY ## D. Borweint. ## 1. Introduction. Suppose that $\chi(x)$ is a real non-decreasing and bounded function in the range $0 \le x < X \le \infty$, that $\chi(y) < \lim_{x \to X^-} \chi(x)$ when $0 \le y < X$, and that $$0 < \mu_n = \lim_{x \to X_-} \int_0^x t^n d\chi(t) < \infty \quad (n = 0, 1, ...).$$ Let $l, a_n \ (n = 0, 1, ...)$ be arbitrary complex numbers, let $$s_n = \sum_{r=0}^n a_r$$, $M(x) = \sum_{n=0}^\infty x^n/\mu_n$, and denote the radius of convergence of the power series by R. Associated with the sequence of moment constants $\{\mu_n\}$ are methods of summability $(J_{\chi})^*$, (J_{χ}) , $(J_{\chi}')^*$, (J_{χ}') defined as follows: If $\sum_{n=0}^{\infty} s_n z^n / \mu_n = S(z)$ is an analytic function in a neighbourhood of the origin admitting, in a region containing the real open interval (0, R), an analytic continuation $S^*(z)$ such that $$\lim_{x \to R^-} S^*(x)/M(x) = l,$$ we write $\sum_{0}^{\infty} a_n = l(J_{\chi})^*$ or $s_n \to l(J_{\chi})^*$. We omit the stars when S(z) is analytic in the region |z| < R. (See [5], §4.12.) If $\sum_{n=0}^{\infty} a_n z^n / \mu_n = A(z)$ is an analytic function in a neighbourhood of the origin admitting, in a region containing the interval (0, X), an analytic continuation $A^*(z)$ such that $$\lim_{x\to X^{-}}\int_{0}^{x}A^{*}(t)\,d\chi(t)=l,$$ we write $\sum_{n=0}^{\infty} a_n = l(J_{\chi}')^*$ or $s_n \to l(J_{\chi}')^*$. We omit the stars when A(z) is analytic in the region |z| < X. It is known ([5], §4.13) that the method (J_{χ}') is regular, i.e. $s_n \to l(J_{\chi}')$ whenever $s_n \to l$; and it follows that $(J_{\chi}')^*$ is regular. It is also known (see [2], Theorem 1) that $(J_{\chi})^*$ and (J_{χ}) are regular if and only if $\lim_{x\to R} M(x) = \infty$. This note is concerned with relations linking certain of the "unprimed" and "primed" J-methods. [†] Received 18 February, 1959; read 19 February, 1959. [JOUPVAL LONDON MATH, Soc. 35 (1960), 71-77] Given summability methods P, Q we say that P includes Q and write $P \supseteq Q$ if $s_n \to l(P)$ whenever $s_n \to l(Q)$. If $P \supseteq Q$ and $Q \supseteq P$ we say that P and Q are equivalent and write $P \simeq Q$. Borel-type methods. Denote by $(B, \alpha, \beta)^*$, (B, α, β) , $(B', \alpha, \beta)^*$, (B', α, β) the J-methods based on the function $$\chi(x) = \alpha^{-1} \int_0^x t^{(\beta-\alpha)/\alpha} e^{-t^{1/\alpha}} dt \qquad (\alpha > 0, \ \beta > 0 \ ; \ \ 0 \leqslant x < X = \infty).$$ In this case $\mu_n = \Gamma(\alpha n + \beta)$, $R = \infty$ and it is known (see [3]) that $\alpha M(x) \sim x^{(1-\beta)\alpha} e^{x^{1/\alpha}}$ as $x \to \infty$. Note that (B, 1, 1), (B', 1, 1) are respectively the Borel exponential and the Borel integral methods, and that $(B, 1, 1)^*$ is the method (B^*) defined in [5], p. 192. The above definitions of Borel-type methods are equivalent to ones appearing in [4]† where the following results are proved: (a)*. $$\sum_{0}^{\infty} a_n = l(B, \alpha, \beta)$$ * if and only if $\sum_{0}^{\infty} a_n = l(B', \alpha, \beta)$ * and $a_n \to 0(B, \alpha, \beta)$ *. (b)*. $$(B, \alpha, \beta+1)* \simeq (B', \alpha, \beta)*$$. Also proved there are the versions of these results obtained by deleting the stars. Our primary object is to obtain similar results for the following methods. Abel-type methods. Denote by $(A_{\alpha})^*$, (A_{α}) , $(A_{\alpha}')^*$, (A_{α}') the J-methods based on the function $$\chi(x) = -(1-x)^{\alpha}$$ $(\alpha > 0, 0 \le x < X = 1).$ Then $$\mu_n = 1 / \binom{n+\alpha}{n}, \quad R = 1, \quad M(x) = (1-x)^{-\alpha-1}.$$ We extend the definitions of $(A_{\alpha})^*$, (A_{α}) to the range $-1 < \alpha \le 0$ by taking μ_n to be $1 / \binom{n+\alpha}{n}$ in this range. These two methods are then regular for all $\alpha > -1$ (see [1], Theorem 1). The method (A_0) is the ordinary Abel method and it is easily verified that it is equivalent to (A_1') . The theorems established in this note are: THEOREM 1*. For $\alpha > 0$, $\sum_{n=0}^{\infty} a_n = l(A_{\alpha})^*$ if and only if $\sum_{n=0}^{\infty} a_n = l(A_{\alpha}')^*$ and $na_n \to 0$ $(A_{\alpha-1})^*$; THEOREM 2*. For $\alpha > 0$, $(A_{\alpha}')^* \simeq (A_{\alpha-1})^*$; and Theorems 1 and 2 which denote these results with the stars omitted. 2. Preliminary results. Let $$\epsilon_n^{\alpha} = \binom{n+\alpha}{n}, \quad a(t, \alpha) = (1+t)^{-\alpha-1} \sum_{n=0}^{\infty} a_n \, \epsilon_n^{\alpha} \left(\frac{t}{1+t}\right)^n \ (\alpha > -1),$$ let $\rho_a(\alpha)$ be the upper bound of real values of t for which the series is convergent, and define $s(t, \alpha)$, $\rho_s(\alpha)$ similarly. It is evident that, if $\alpha > -1$, $\beta > -1$, then $\rho_a(\alpha) = \rho_s(\beta) = \rho$ say. We shall say that a function f(z) is in class $\mathscr A$ if it is analytic in a region containing the real open interval $(0, \infty)$. The following results are easily verified. (A). For $$\alpha > -1$$, $\sum\limits_{0}^{\infty} a_n = l(A_{\alpha})$ if and only if $\rho = \infty$ and $\lim\limits_{y \to \infty} s(y, \alpha) = l$. (A)*. For $$\alpha > -1$$, $\sum_{0}^{\infty} a_n = l(A_{\alpha})^*$ if and only if (i) $\rho > 0$, (ii) there is a function $s^*(z, \alpha)$ in $\mathscr A$ such that $s^*(t, \alpha) = s(t, \alpha)$ for $0 < t < \rho$, and (iii) $\lim_{t \to \infty} s^*(t, \alpha) = l$. (A'). For $$\alpha > 0$$, $\sum_{0}^{\infty} a_n = l(A_{\alpha}')$ if and only if $\rho = \infty$ and $$\lim_{y \to \infty} \alpha \int_{0}^{y} a(t, \alpha) dt = l.$$ (A')*. For $\alpha > 0$, $\sum_{0}^{\infty} a_n = l(A_{\alpha}')^*$ if and only if (i) $\rho > 0$, (ii) there is a function $a^*(z, \alpha)$ in \mathscr{A} such that $a^*(t, \alpha) = a(t, \alpha)$ for $0 < t < \rho$, and (iii) $\lim_{n \to \infty} \int_{0}^{y} a^*(t, \alpha) dt = l$. We now prove some useful identities. Suppose that $0 < y < \rho$. Then, for $\alpha > -1$, $$a(y, \alpha) = (1+y)^{-\alpha-1} \left\{ \sum_{n=0}^{\infty} s_n \, \epsilon_n^{\alpha} \left(\frac{y}{1+y} \right)^n - \sum_{n=0}^{\infty} s_n \, \epsilon_{n+1}^{\alpha} \left(\frac{y}{1+y} \right)^{n+1} \right\}$$ $$= s(y, \alpha) - (1+y)^{-\alpha-1} \sum_{n=0}^{\infty} s_n \, \epsilon_n^{\alpha} \, \frac{n+1+\alpha}{n+1} \left(\frac{y}{1+y} \right)^{n+1}$$ $$= s(y, \alpha) \left(1 - \frac{y}{1+y} \right) - \alpha (1+y)^{-\alpha-1} \sum_{n=0}^{\infty} s_n \, \epsilon_n^{\alpha} \int_0^y \left(\frac{t}{1+t} \right)^n \, \frac{dt}{(1+t)^2}$$ $$= (1+y)^{-1} s(y, \alpha) - \alpha (1+y)^{-\alpha-1} \int_0^y (1+t)^{\alpha-1} s(t, \alpha) \, dt; \qquad (1)$$ the inversion being legitimate since $\Sigma |s_n| \epsilon_n^{\alpha} \left(\frac{y}{1+y}\right)^{n+1} < \infty$. [†] See also Włodarski [6]. It follows that, for $\alpha > -1$, $$\int_{0}^{y} a(u,\alpha) du = \int_{0}^{y} (1+u)^{-1} s(u,\alpha) du - \alpha \int_{0}^{y} (1+u)^{-\alpha-1} du \int_{0}^{u} (1+t)^{\alpha-1} s(t,\alpha) dt$$ $$= \int_{0}^{y} (1+u)^{-1} s(u,\alpha) du - \alpha \int_{0}^{y} (1+t)^{\alpha-1} s(t,\alpha) dt \int_{t}^{y} (1+u)^{-\alpha-1} du$$ $$= (1+y)^{-\alpha} \int_0^y (1+t)^{\alpha-1} s(t, \alpha) dt.$$ (2) Combining (1) and (2) we get $$s(y, \alpha) = \alpha \int_0^y a(t, \alpha) dt + (1+y) a(y, \alpha) \qquad (\alpha > -1).$$ (3) Another useful identity in essence has been established elsewhere ([1], Lemma 2); it is: $$s(y,\beta) = \frac{\Gamma(\alpha+1)}{\Gamma(\beta+1)\Gamma(\alpha-\beta)} y^{-\alpha} \int_0^y (y-t)^{\alpha-\beta-1} t^{\beta} s(t,\alpha) dt \quad (\alpha > \beta > -1), \quad (4)$$ and the same identity holds with a in place of s. In view of (3) and (4) we have, for $\alpha > 0$, $$s(y, \alpha - 1) = \alpha y^{-\alpha} \int_0^y t^{\alpha - 1} s(t, \alpha) dt$$ $$= \alpha^2 y^{-\alpha} \int_0^y t^{\alpha - 1} dt \int_0^t a(u, \alpha) du + \alpha y^{-\alpha} \int_0^y u^{\alpha - 1} (1 + u) a(u, \alpha) du$$ $$= \alpha \int_0^y a(u, \alpha) du + \alpha y^{-\alpha} \int_0^y u^{\alpha - 1} a(u, \alpha) du, \qquad (5)$$ $$= \alpha \int_0^y a(u, \alpha) du + a(y, \alpha - 1). \qquad (6)$$ We require the following results: (I)* If $\rho > 0$, $\alpha > -1$, then conditions (A)*(ii) and (A')*(ii) are equivalent. This is a simple consequence of (1) and (3). (II)*. If $\rho > 0$, $\alpha > \beta > -1$ and condition (A)*(ii) holds, then there is a function $s^*(z, \beta)$ in $\mathscr A$ such that $s^*(t, \beta) = s(t, \beta)$ for $0 < t < \rho$. This is a consequence of (4) (see the proof of Lemma 5 in [4]). (III)*. If $$\alpha > \beta > -1$$ then $(A_{\beta})^* \supseteq (A_{\alpha})^*$. In virtue of (II)*, this can be deduced from (4) as in [1] where the "unstarred" version of the result is proved. (IV)*. If $\alpha > -1$, p is real, and if $s_n \rightarrow l(A_\alpha)^*$ and $$(n+p)u_n = s_n$$ $(n = 0, 1, ...),$ then $u_n \to 0(A_\alpha)^*$. This can be established by slightly modifying the proof given in [1] of the unstarred version of the result. 3. Proof of Theorem 1*. From now on it is to be assumed that $\alpha > 0$. (i) Suppose that $$\sum_{0}^{\infty} a_{n} = l(A_{\alpha})^{*}. \tag{7}$$ Then, in view of (I)*, there are functions $s^*(z, \alpha)$, $a^*(z, \alpha)$ in $\mathscr A$ such that $$s^*(t, \alpha) = s(t, \alpha), \quad a^*(t, \alpha) = a(t, \alpha) \quad (0 < t < \rho)$$ (8) and $$\lim_{t\to\infty} s^*(t, \alpha) = l.$$ Hence, by (2), $$\alpha \int_{0}^{y} a^{*}(u, \alpha) du = \alpha (1+y)^{-\alpha} \int_{0}^{y} (1+t)^{\alpha-1} s^{*}(t, \alpha) dt \to l \text{ as } y \to \infty;$$ so that $$\sum_{n=0}^{\infty} a_n = l(A_{\alpha}')^*. \tag{9}$$ Further, by (3), $$(1+y) a^*(y, \alpha) = s^*(y, \alpha) - \alpha \int_0^y a^*(t, \alpha) dt \to 0 \text{ as } y \to \infty.$$ But, for $0 < y < \rho$, $$(1+y) a * (y, \alpha) = (1+y)^{-\alpha} \sum_{n=1}^{\infty} \frac{\alpha+n}{\alpha n} n a_n \epsilon_n^{\alpha-1} \left(\frac{y}{1+y}\right)^n + a_0 (1+y)^{-\alpha};$$ and so $$\frac{\alpha+n}{\alpha n} n a_n \to 0 \quad (A_{\alpha-1})^*.$$ Consequently, by (IV)*, $$na_n \to 0 \quad (A_{\alpha-1})^*.$$ (10) (ii) It remains to prove that (7) is a consequence of (9) and (10). Suppose therefore that (9) and (10) hold. In view of (I)*, it follows from (9) that there are functions $a^*(z, \alpha)$, $s^*(z, \alpha)$ in $\mathscr A$ satisfying (8), and that $$\lim_{y\to\infty} \alpha \int_0^y a^*(u, \alpha) du = l.$$ Further, reversing the last part of the argument in (i), we find that a consequence of (10) is that $$\lim_{y\to\infty} (1+y) a^*(y, \alpha) = 0.$$ Hence, by (3), $$\lim_{y\to\infty} s^*(y,\,\alpha) = l;$$ and (7) follows. 4. Proof of Theorem 2*. (i) Suppose that $$\sum_{n=0}^{\infty} a_n = l(A_{\alpha}')^*. \tag{11}$$ Then, in view of (I)* and (II)*, there are functions $a^*(z, \alpha)$, $s^*(z, \alpha-1)$ in $\mathscr A$ such that $$a^*(t, \alpha) = a(t, \alpha), \quad s^*(t, \alpha - 1) = s(t, \alpha - 1) \quad (0 < t < \rho),$$ and $$\lim_{u\to\infty} \alpha \int_0^y a^*(u, \alpha) du = l.$$ Consequently, by (5), $$s^*(y, \alpha - 1) = \alpha \int_0^y a^*(u, \alpha) \, du + \alpha y^{-\alpha} \int_0^y u^{\alpha - 1} \, a^*(u, \alpha) \, du$$ $$= \alpha \int_0^y a^*(u, \alpha) \, du + O(y^{-\alpha}) + O(y^{-1}) \to l \text{ as } y \to \infty;$$ and so $$\sum_{0}^{\infty} a_n = l(A_{\alpha-1})^*. \tag{12}$$ (ii) It remains to prove that (11) is a consequence of (12). Suppose that (12) holds. Then, in view of (I)* and (6), there are functions $s^*(z, \alpha-1)$, $a^*(z, \alpha-1)$, $a^*(z, \alpha)$ in $\mathscr A$ such that $$s*(t, \alpha-1) = s(t, \alpha-1), \quad a*(t, \alpha-1) = a(t, \alpha-1),$$ $$a^*(t, \alpha) = a(t, \alpha) \quad (0 < t < \rho).$$ Further $$\lim_{y\to\infty} s^*(y, \alpha-1) = l;$$ and so, by (1), $$\alpha^*(y, \alpha - 1) = (1 + y)^{-1} s^*(y, \alpha - 1) + (\alpha - 1)(1 + y)^{-\alpha} \int_0^y (1 + t)^{\alpha - 2} s^*(t, \alpha - 1) dt \to 0 \text{ as } y \to \infty.$$ Hence, by (6), $$\alpha \int_{0}^{y} a^{*}(u, \alpha) du = s^{*}(y, \alpha - 1) - a^{*}(y, \alpha - 1) \to l \text{ as } y \to \infty;$$ and (11) follows. We have now proved Theorems 1* and 2*. Since the radii of convergence of the series $$\sum a_n \epsilon_n^{\alpha} x^n$$, $\sum s_n \epsilon_n^{\beta} x^n$, $\sum n a_n \epsilon_n^{\gamma} x^n$ ($\alpha > -1$, $\beta > -1$, $\gamma > -1$) are all equal, we see that Theorem 1 is a consequence of Theorem 1* and Theorem 2 of Theorem 2*. ## References. - D. Borwein, "On a scale of Abel-type methods of summability", Proc. Cambridge Phil. Soc., 53 (1957), 318-322. - "On methods of summability based on power series", Proc. Royal Soc. Edinburgh, 64 (1957), 342–349. - "On methods of summability based on integral functions II", Proc. Cambridge Phil. Soc. (to appear). - "Relations between Borel-type methods of summability", Journal London Math. Soc., 35 (1960), 65-70. - 5. G. H. Hardy, Divergent Series (Oxford, 1949). - L. Włodarski, "Propertiés des méthodes continues de limitation du type de Borel", Bull. Acad. Polon. Sci., Cl. III, 4 (1956), 173-175. St. Salvator's College, University of St. Andrews.