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RELATIONS BETWEEN BOREL-TYPE METHODS OF
SUMMABILITY

D. BorwxINT.

1. Introduction.

Suppose throughout that I, a, (n=0, 1, ...) are arbitrary complex
numbers, that o > 0 and 8 is real, and that N is a non-negative integer
groater than —fB/«. Let

n ® g goentf-1 ) 8y pontf~1

P a0 0= R ety = 2 Tarsy
and let 7, = RY* r = RVU* where R,, R, are the radii of convergence of
the series X a, 2"/’ (an+p), 28, 2" (an-+p).

A function f(z) will be said to be in class & if it is analytic in a region
containing the half-line z =z > 0.

We shall be concerned with regular methods of summability (B, «, )%,
(B, «, B), (B, «, B)*, (B, u, B) defined as follows (¢f. [2] and [4]).

B. If (i) 7, > 0, (ii) there is a function §%(2) in & such that s%(z) = s()
for 0 <@ <r, and (i) lim ae®s%(x) =1, we write

200

Gy =1U(B, o, B)* or s,—I(B,«, B)*.

e p8

We omit the stars when r, = oo ; in this case condition B(ii) is automatically
satisfied.,

B. If (i) r,>0, (ii) there is a function a*(z) in & such that

a*(z) = a(z) for 0 <z <r,, and (iii) lim Jx eta*(t)di+sy_, =1, we write
x>0 JO

a, =1(B', «, B)*.

o 8

We omit the star when ¥y =00,

(B, 1,1) and (B, 1, 1) are respectively the Borel exponential and the
Borel integral methods; and (B, 1, 1)* is the method (B%) defined in
(5], p. 192.

The principal theorems established in this note are:

THnoREM 1%, 3 0, = U(B, «, )* if and only if % a, — B a, )*
o 0
and a,->0(B, u, f)*;

1 Received 29 December, 1958; read 15 January, 1959.
[JourNAL LoNpon Mars, Soc. 35 (1960), 65-70]
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TrmorEm 2*. I a,=UB, a, B-|-1)*ifanclonlyif§l: a, =B, , B)*;
0

and Theorems 1 and 2 which denote these results with the stars omitted.

The cases « =8 =1 of Theorems 1 and 2 are standard results ([5],
Theorems 123 and 126). The case 8 =1 of Theorem 1 is also known [2].
Other known results are:

@) IfA>a 2a,=UB, A p) and r,> 0, then = a,=U(B, a, )*;
0 0

(D)% If B> p and S a, = U(B, «, p)*, then ann= UB, o, B)¥;
0

and (II) which denotes result (IT)* with the stars omitted. Proofs of these
appear in [1]; the definitions there given of (B, «, B)¥, (B, «, B) are
equivalent to the above.

Replace r, by 7, in (I), B by B' in (I), (II)% (IT), and label the
propositions so obtained (I'), (II')*, (II'). That these propositions are
true emerges from Theorem 2%, Theorem 2, and Lemma 4 (below) which
states that », — »,. Result (IT') and the case r, = o, p=f of (I') are due
to Good [4].

Since it is clear that the actual choice of N in definitions B and B’ is
immaterial, we shall assume in all that follows that

aN+B2>=1;

go that, whenever r, > 0, 7, > 0, the functions a(x) and s(x) are continuous
in an interval [0, ¢]. We shall also assume, evidently without loss in
generality, that

Q=04 = ... =0y =0. (1)

Given a function f(z) which is continuous for 0 <z < ¢, we write

fole)=J@), i) =gy | @—tPTOE 0 <z <o, 5>0)

This notation will also be used with other letters in place of f.

2. Preliminary results.
Lemma 1. Let f(x) be continuous for =0 and let 8> 0.
(i) If lim e=f(x)=1, then lim e=*fy(x) =1
Gl i ]imre-‘f(t) di=1, then lim re-‘fs(t)dtzl.
%) 0 x—>% J0

A proof of this lemma is given in [2].
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Lemma 2. If 6> 0 and r,> 0, then

' E 8, 2 HA+I-1
W= 2 Tt gr0)

The proof of this lemma is immediate.
Lemma 3. Ify >0, 8> 0 and f(z), g(2) are bounded analytic functions

in the sector 0 <|z| <e¢<<oo, |argz| <A <, then there is o function h(z),
analytic in the sector, such that

O<z<r,).

x
Mw) = @—ty e ge—na (0 <z <o),
Proof. Denote the sector in question by D and, for ze D, let

$(2) = j 1 (L— )2 w2 f (2t} g (e — 220) d,

(n—Din

#(z, n) :j (A—u)rLud=Lf(zu)g(z—2zu)du (n=3, 4, ...).

1/n

T%len, by a standard result ([3], p. 108), ¢(2, n) is an analytic function of
zin D. Further, by hypothesis, there is a positive constant M such that,
for zeD,

[$(2)—d(z, n) <Mﬁm{(1—%&)”‘1u8‘1+u7‘1(1ku)5-1}du;

and so, when n— o, ¢(2, n)—>¢(z) uniformly in D. Hence ¢(z) is analytio
in D. But, for 0 <z <e,

ar -1 (x) = 5: (x—t)— 101 f(t) g(x—t) dt ;

so that A(z)=2rt-1¢(z) has the required properties, provided zv+s-1
is taken to be |z|r+9-1¢¥»+-1 where  is the principal value of arg z.

LEvMmaA 4. 7, =7

'y

Proof. Having assumed that sy_, =0, we find that

@ T 0 M [ee]
G, % 8, % 8, 21

z = 3 e ot e

oy Ten B =y Tlant B) 2y Tlantath) &
W'henever both series on the right-hand side are convergent. Since
iﬂl {I(en+a+B)/T (an+pB)}'» = 1, the two series on the right have the

same radius of convergence, namely R,; and so
R, =R,

Suppose now that B,>0 and let y, 8 be any numbers such that

£,>y>8>0. Then there is a positive integer m > N such that, for
"> m,

|| <y D(an+B) <y~ 1T(an+a+p).
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Hence, for n >m,
5al < £ [, [+ny- T (an-+);
and so, for all sufficiently large n,
|8, < 8" I'(an—+p).
It follows that R, >8 and consequently that
R,>=R,.

The required result is thus established.
From now on we shall denote the common value of 7, and r, by 7.

Lemma 6. If r> 0, then conditions B(ii) and B'(ii) are equivalent.
Proof. In view of (1), (2) and Lemma 2,
a(@) = s(x)—s,(x) (0<z<r). (3)

Further, it is easily verified that lim s,, (x) = 0 (0 <2 <{r), and so (c¢f. [2]),

=0

$@) = B (san @) —tansal)} = 0@+ £ 0,0(0)

Ll B rt“““la(m—t)dt

a=1l'(anm) }o
— a(@)+ J:a(w—t)a,b(t)dt 0 <z<7), 4)
©  fan—1
where (t) =n§1 Tn)"

Assume first B'(ii). Then, given ¢ > 0, there is a A > 0 such that a*(z)
and z1~*3i(z) are analytic and bounded in the sector 0 <C|z| <e¢, |argz| <A,
Consequently, by Lemma 3, there is a function ¢(2) in o7 such that

#@)= | are—0u0@ @>0);
whence, by (4), condition B(ii) is satisfied by
s%(2) = a* (2)+-o(z).

Now assume B(ii). Applying Lemma 3 as above, we find that there
is a function 6(z) in &7 such that

b@)=s¥(@) (x> 0).
Hence, by (3), condition B'(ii) is satisfied by
a*(z) = s¥(2)—0(2).
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This completes the proof of the lemma. It is evident that the above
argument also yields a proof of :

Lemma 6. If r> 0 and conditions (1), B(ii) and B'(ii) hold, then, for
all x>0, a*(x) = s¥(x)—s, (2).

3. Proofs of the principal results.
Theorem 1 can be deduced from (3) asin [2]; and, in virtue of Lemmas 5
and 6, the same basic argument can be used to establish Theorem 1%,

Proof of Theorem 2%. (i) Suppose first that
3 4, =UB, a, B)*. (5)
0 e

Then, in view of Lemma 5, there are functions a*(z), s*(z) in o/ such that
a*(x) = a(x), s*(x) =s(x) (0 <z <r); also, since (1) is assumed to hold,

1imj”e4a*(t)d,t =7 (6)

T—0J 0

Let §=rka>4 (7)

where [ is an integer. Then, by Lemmas 5 and 6,

5 a2 (z) = s*(@)—s¥(@) (x> 0). (8)

n=0

Arguing as in [2], pp. 132-133, we can now deduce from (6), (7) and (8)

that
lim ore== s ()= 1;
x>0

whence, by Lemma, 1(i),

lim ge—= 5§, (%) = 1. (9)

X0

Further,
Ewe—‘w*(t) dt = —e""waf‘(x)—}_re—ta{k(t)dt (x>0); (10)
0 . 0

so that, by Lemma 1(ii) and (6),
lim e~*af (x) = 0. (11)

L0

It follows from (8) and (11), by Lemma 1(i), that
lim e~ {53 (&) —s%,, (@)} = 0;
so that, by (9),
limwe~—= s (x) = 1. (12)

-0
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In addition, by Lemma 3, there is a function o(z) in o such that
o(z) =s¥(x) for all 2> 0. Since

8,, ¥

G(;E)*——&l(x) =WENW (0 <ﬂ7<?"),
it follows from (12) that
% 6, =UB, a, B+ 1)*. (13)
0

(ii) It remains to prove that (8) is a consequence of (13). Suppose
therefore that (13) holds. Then, in view of Lemma 5, there is a funetion
y(2) in &7 such that
n i ] a, pontp
A= 2 e

Let a*(2) =+'(z). Then a(x) =a*(z) for 0 <z <r and y(®) = a¥(x)
for all x > 0. Applying now Theorem 1, we find that (11) holds and that

(0<x<r).

Jimre-faf(:) de =1, (14)
0

-0

Hence, by (10), (11) and (14),

lim | e~ta*(t) dt — I
Z—-w J 0

and (5) follows.
This completes the proof of Theorem 2% Since the series

E a, 2" °2° Sy 2
n=n Den+pB)’ . ZyT(antB+1)

have the same radius of convergence, namely B, = R,, Theorem 2 is an
immediate consequence of Theorem 2%,
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