RELATIONS BETWEEN BOREL-TYPE METHODS OF SUMMABILITY

D. Borweint.

1. Introduction.

Suppose throughout that l, a_n (n = 0, 1, ...) are arbitrary complex numbers, that $\alpha > 0$ and β is real, and that N is a non-negative integer greater than $-\beta/\alpha$. Let

$$s_n = \sum_{\nu=0}^n a_{\nu}, \quad s_{-1} = 0; \quad a(x) = \sum_{n=N}^\infty \frac{a_n \, x^{\alpha n + \beta - 1}}{\Gamma(\alpha n + \beta)}, \quad s(x) = \sum_{n=N}^\infty \frac{s_n \, x^{\alpha n + \beta - 1}}{\Gamma(\alpha n + \beta)},$$

and let $r_a = R_a^{1/\alpha}$, $r_s = R_s^{1/\alpha}$ where R_a , R_s are the radii of convergence of the series $\sum a_n z^n / \Gamma(\alpha n + \beta)$, $\sum s_n z^n / \Gamma(\alpha n + \beta)$.

A function f(z) will be said to be in class $\mathscr A$ if it is analytic in a region containing the half-line z = x > 0.

We shall be concerned with regular methods of summability $(B, \alpha, \beta)^*$, (B, α, β) , $(B', \alpha, \beta)^*$, (B', α, β) defined as follows (cf. [2] and [4]).

B. If (i) $r_s > 0$, (ii) there is a function $s^*(z)$ in $\mathscr A$ such that $s^*(x) = s(x)$ for $0 < x < r_s$, and (iii) $\lim_{x \to \infty} \alpha e^{-x} s^*(x) = l$, we write

$$\sum_{0}^{\infty} a_{n} = l(B, \alpha, \beta)^{*} \quad \text{or} \quad s_{n} \to l(B, \alpha, \beta)^{*}.$$

We omit the stars when $r_s = \infty$; in this case condition B(ii) is automatically satisfied.

B'. If (i) $r_a > 0$, (ii) there is a function a*(z) in $\mathscr A$ such that a*(x) = a(x) for $0 < x < r_a$, and (iii) $\lim_{x \to \infty} \int_0^x e^{-t} a*(t) dt + s_{N-1} = l$, we write

$$\sum_{0}^{\infty} a_{n} = l(B', \alpha, \beta)^{*}.$$

We omit the star when $r_a = \infty$.

(B, 1, 1) and (B', 1, 1) are respectively the Borel exponential and the Borel integral methods; and (B', 1, 1)* is the method (B^*) defined in [5], p. 192.

The principal theorems established in this note are:

THEOREM 1*. $\sum_{0}^{\infty} a_n = l(B, \alpha, \beta)^*$ if and only if $\sum_{0}^{\infty} a_n = l(B', \alpha, \beta)^*$ and $a_n \to 0(B, \alpha, \beta)^*$;

[†] Received 29 December, 1958; read 15 January, 1959.

[JOURNAL LONDON MATH. Soc. 35 (1960), 65-70]

THEOREM 2*. $\sum_{0}^{\infty} a_{n} = l(B, \alpha, \beta+1) * if and only if \sum_{0}^{\infty} a_{n} = l(B', \alpha, \beta) *;$

and Theorems 1 and 2 which denote these results with the stars omitted.

The cases $\alpha = \beta = 1$ of Theorems 1 and 2 are standard results ([5], Theorems 123 and 126). The case $\beta = 1$ of Theorem 1 is also known [2]. Other known results are:

(I) If
$$\lambda > \alpha$$
, $\sum_{n=0}^{\infty} a_n = l(B, \lambda, \mu)$ and $r_s > 0$, then $\sum_{n=0}^{\infty} a_n = l(B, \alpha, \beta)^*$;

(II)* If
$$\beta > \mu$$
 and $\sum_{n=0}^{\infty} a_n = l(B, \alpha, \mu)^*$, then $\sum_{n=0}^{\infty} a_n = l(B, \alpha, \beta)^*$;

and (II) which denotes result (II)* with the stars omitted. Proofs of these appear in [1]; the definitions there given of (B, α, β) *, (B, α, β) are equivalent to the above.

Replace r_s by r_a in (I), B by B' in (I), (II)*, (II), and label the propositions so obtained (I'), (II')*, (II'). That these propositions are true emerges from Theorem 2*, Theorem 2, and Lemma 4 (below) which states that $r_a = r_s$. Result (II') and the case $r_a = \infty$, $\mu = \beta$ of (I') are due to Good [4].

Since it is clear that the actual choice of N in definitions B and B' is immaterial, we shall assume in all that follows that

$$\alpha N + \beta \geqslant 1$$
;

so that, whenever $r_a > 0$, $r_s > 0$, the functions a(x) and s(x) are continuous in an interval $[0, \epsilon]$. We shall also assume, evidently without loss in generality, that

$$a_0 = a_1 = \dots = a_{N-1} = 0. (1)$$

Given a function f(x) which is continuous for $0 \le x \le c$, we write

$$f_0(x)=f(x), \quad f_\delta(x)=\frac{1}{\Gamma(\delta)}\int_0^x (x-t)^{\delta-1}f(t)\,dt \quad (0\leqslant x\leqslant c,\ \delta>0).$$

This notation will also be used with other letters in place of f.

2. Preliminary results.

LEMMA 1. Let f(x) be continuous for $x \ge 0$ and let $\delta > 0$.

(i) If
$$\lim_{x\to\infty} e^{-x} f(x) = l$$
, then $\lim_{x\to\infty} e^{-x} f_{\delta}(x) = l$.

(ii) If
$$\lim_{t\to\infty} \int_0^x e^{-t} f(t) dt = l$$
, then $\lim_{t\to\infty} \int_0^x e^{-t} f_{\delta}(t) dt = l$.

A proof of this lemma is given in [2].

LEMMA 2. If $\delta > 0$ and $r_s > 0$, then

$$s_{\delta}(x) = \sum_{n=N}^{\infty} \frac{s_n x^{\alpha n + \beta + \delta - 1}}{\Gamma(\alpha n + \beta + \delta)} \quad (0 < x < r_s).$$

The proof of this lemma is immediate.

LEMMA 3. If $\gamma > 0$, $\delta > 0$ and f(z), g(z) are bounded analytic functions in the sector $0 < |z| < c < \infty$, $|\arg z| < \Delta \leq \pi$, then there is a function h(z), analytic in the sector, such that

$$h(x) = \int_{0}^{x} (x-t)^{\gamma-1} t^{\delta-1} f(t) g(x-t) dt \quad (0 < x < c).$$

Proof. Denote the sector in question by D and, for $z \in D$, let

$$\phi(z) = \int_0^1 (1-u)^{\gamma-1} u^{\delta-1} f(zu) g(z-zu) du,$$

$$\phi(z, n) = \int_{1/n}^{(n-1)/n} (1-u)^{\gamma-1} u^{\delta-1} f(zu) g(z-zu) du \quad (n = 3, 4, \ldots).$$

Then, by a standard result ([3], p. 108), $\phi(z, n)$ is an analytic function of z in D. Further, by hypothesis, there is a positive constant M such that, for $z \in D$,

$$|\phi(z)-\phi(z,n)| \leqslant M \int_0^{1/n} \{(1-u)^{\gamma-1}u^{\delta-1}+u^{\gamma-1}(1-u)^{\delta-1}\} du;$$

and so, when $n \to \infty$, $\phi(z, n) \to \phi(z)$ uniformly in D. Hence $\phi(z)$ is analytic in D. But, for 0 < x < c,

$$x^{\gamma+\delta-1}\phi(x) = \int_0^x (x-t)^{\gamma-1} t^{\delta-1} f(t) g(x-t) dt;$$

so that $h(z) = z^{\gamma+\delta-1}\phi(z)$ has the required properties, provided $z^{\gamma+\delta-1}$ is taken to be $|z|^{\gamma+\delta-1}e^{i\theta(\gamma+\delta-1)}$ where θ is the principal value of arg z.

LEMMA 4. $r_a = r_s$.

Proof. Having assumed that $s_{N-1} = 0$, we find that

$$\sum_{n=N}^{\infty} \frac{a_n z^n}{\Gamma(\alpha n + \beta)} = \sum_{n=N}^{\infty} \frac{s_n z^n}{\Gamma(\alpha n + \beta)} - \sum_{n=N}^{\infty} \frac{s_n z^{n+1}}{\Gamma(\alpha n + \alpha + \beta)}$$
(2)

whenever both series on the right-hand side are convergent. Since $\lim_{n\to\infty} {\{\Gamma(\alpha n+\alpha+\beta)/\Gamma(\alpha n+\beta)\}^{1/n}} = 1$, the two series on the right have the same radius of convergence, namely R_s ; and so

$$R_a \geqslant R_s$$
.

Suppose now that $R_a > 0$ and let γ , δ be any numbers such that $R_a > \gamma > \delta > 0$. Then there is a positive integer m > N such that, for n > m,

$$|a_n| < \gamma^{-n} \Gamma(\alpha n + \beta) < \gamma^{-n-1} \Gamma(\alpha n + \alpha + \beta)$$

69

Hence, for n > m,

$$|s_n| < \sum_{\nu=0}^m |a_{\nu}| + n\gamma^{-n} \Gamma(\alpha n + \beta);$$

and so, for all sufficiently large n,

$$|s_n| < \delta^{-n} \Gamma(\alpha n + \beta).$$

It follows that $R_s \geqslant \delta$ and consequently that

$$R_s \geqslant R_a$$
.

The required result is thus established.

From now on we shall denote the common value of r_a and r_s by r.

LEMMA 5. If r > 0, then conditions B(ii) and B'(ii) are equivalent.

Proof. In view of (1), (2) and Lemma 2,

$$a(x) = s(x) - s_{\alpha}(x) \quad (0 < x < r).$$
 (3)

Further, it is easily verified that $\lim_{n\to\infty} s_{\alpha n}(x) = 0$ (0 < x < r), and so (cf. [2]),

$$s(x) = \sum_{n=0}^{\infty} \left\{ s_{\alpha n}(x) - s_{\alpha n + \alpha}(x) \right\} = a(x) + \sum_{n=1}^{\infty} a_{\alpha n}(x)$$

$$= a(x) + \sum_{n=1}^{\infty} \frac{1}{\Gamma(\alpha n)} \int_{0}^{x} t^{\alpha n - 1} a(x - t) dt$$

$$= a(x) + \int_{0}^{x} a(x - t) \psi(t) dt \quad (0 < x < r), \tag{4}$$

where $\psi(t) = \sum_{n=1}^{\infty} \frac{t^{\alpha n-1}}{\Gamma(\alpha n)}$.

Assume first B'(ii). Then, given c > 0, there is a $\Delta > 0$ such that $a^*(z)$ and $z^{1-\alpha}\psi(z)$ are analytic and bounded in the sector 0 < |z| < c, $|\arg z| < \Delta$. Consequently, by Lemma 3, there is a function $\phi(z)$ in $\mathscr A$ such that

$$\phi(x) = \int_0^x a^*(x-t) \, \psi(t) \, dt \quad (x > 0);$$

whence, by (4), condition B(ii) is satisfied by

$$s^*(z) = a^*(z) + \phi(z).$$

Now assume B(ii). Applying Lemma 3 as above, we find that there is a function $\theta(z)$ in $\mathscr A$ such that

$$\theta(x) = s_{\alpha}^*(x) \quad (x > 0).$$

Hence, by (3), condition B'(ii) is satisfied by

$$a^*(z) = s^*(z) - \theta(z).$$

This completes the proof of the lemma. It is evident that the above argument also yields a proof of:

LEMMA 6. If r > 0 and conditions (1), B(ii) and B'(ii) hold, then, for all x > 0, $a^*(x) = s^*(x) - s_-(x)$.

3. Proofs of the principal results.

Theorem 1 can be deduced from (3) as in [2]; and, in virtue of Lemmas 5 and 6, the same basic argument can be used to establish Theorem 1*.

Proof of Theorem 2*. (i) Suppose first that

$$\sum_{n=0}^{\infty} a_n = l(B', \alpha, \beta)^*. \tag{5}$$

Then, in view of Lemma 5, there are functions $a^*(z)$, $s^*(z)$ in $\mathscr A$ such that $a^*(x) = a(x)$, $s^*(x) = s(x)$ (0 < x < r); also, since (1) is assumed to hold,

$$\lim_{x \to \infty} \int_0^x e^{-t} a^*(t) dt = l. \tag{6}$$

Let

$$\delta = k\alpha > 4 \tag{7}$$

where k is an integer. Then, by Lemmas 5 and 6,

$$\sum_{n=0}^{k-1} a_{\alpha n}^*(x) = s^*(x) - s_{\delta}^*(x) \qquad (x > 0). \tag{8}$$

Arguing as in [2], pp. 132-133, we can now deduce from (6), (7) and (8) that

$$\lim_{x\to\infty}\alpha e^{-x}s_{\delta}^*(x)=l;$$

whence, by Lemma 1(i),

$$\lim_{x \to \infty} \alpha e^{-x} s_{\delta+1}^*(x) = l. \tag{9}$$

Further,

$$\int_{0}^{x} e^{-t} a^{*}(t) dt = -e^{-x} a_{1}^{*}(x) + \int_{0}^{x} e^{-t} a_{1}^{*}(t) dt \quad (x > 0);$$
 (10)

so that, by Lemma 1(ii) and (6),

$$\lim_{x \to \infty} e^{-x} a_1^*(x) = 0. \tag{11}$$

It follows from (8) and (11), by Lemma 1(i), that

$$\lim_{x \to \infty} \alpha e^{-x} \{ s_1^*(x) - s_{\delta+1}^*(x) \} = 0 ;$$

so that, by (9),

$$\lim_{x \to \infty} \alpha e^{-x} s_1^*(x) = l. \tag{12}$$

In addition, by Lemma 3, there is a function $\sigma(z)$ in $\mathscr A$ such that $\sigma(x) = s_1^*(x)$ for all x > 0. Since

$$\sigma(x) = s_1(x) = \sum_{n=N}^{\infty} \frac{s_n \, x^{\alpha n + \beta}}{\Gamma(\alpha n + \beta + 1)} \qquad (0 < x < r),$$

it follows from (12) that

$$\sum_{0}^{\infty} a_n = l(B, \alpha, \beta + 1)^*. \tag{13}$$

(ii) It remains to prove that (5) is a consequence of (13). Suppose therefore that (13) holds. Then, in view of Lemma 5, there is a function $\gamma(z)$ in \mathcal{A} such that

$$\gamma(x) = a_1(x) = \sum_{n=N}^{\infty} \frac{a_n x^{\alpha n + \beta}}{\Gamma(\alpha n + \beta + 1)} \qquad (0 < x < r).$$

Let $a^*(z) = \gamma'(z)$. Then $a(x) = a^*(x)$ for 0 < x < r and $\gamma(x) = \alpha_1^*(x)$ for all x > 0. Applying now Theorem 1, we find that (11) holds and that

$$\lim_{x \to \infty} \int_0^x e^{-t} a_1^*(t) dt = l. \tag{14}$$

Hence, by (10), (11) and (14),

$$\lim_{x\to\infty}\int_0^x e^{-t}a^*(t)\,dt=l;$$

and (5) follows.

This completes the proof of Theorem 2*. Since the series

$$\textstyle\sum\limits_{n=N}^{\infty}\frac{a_n\,z^n}{\Gamma(\alpha n+\beta)}\,,\quad \sum\limits_{n=N}^{\infty}\frac{s_n\,z^n}{\Gamma(\alpha n+\beta+1)}$$

have the same radius of convergence, namely $R_a = R_s$, Theorem 2 is an immediate consequence of Theorem 2*.

References.

- 1. D. Borwein, "On methods of summability based on integral functions II", Proc. Cambridge Phil. Soc. (to appear).
- 2. ——, "On Borel-type methods of summability", Mathematika, 5 (1958), 128-133.

3. E. T. Copson, Functions of a Complex Variable (Oxford, 1935).

- 4. I. J. Good, "Relations between methods of summation of series", Proc. Cambridge Phil. Soc., 38 (1942), 144-165.
- 5. G. H. Hardy, Divergent Series (Oxford, 1949).
 - St. Salvator's College, University of St. Andrews.