D. BORWEIN*.

[Extracted from the Journal of the London Mathematical Society, Vol. 25, 1950.]

1. In all that follows f(t) and $\phi(t)$ denote real functions, integrable L in every finite interval in $(1, \infty)$ †.

We write, for $t \ge 1$,

$$I_{a}f(t) = f_{a}(t) = \frac{1}{\Gamma(a)} \int_{1}^{t} (t-u)^{a-1} f(u) du \quad (a > 0),$$

$$I_{0}f(t) = f_{0}(t) = f(t),$$
(1.1)

$$\phi^{(\delta)}(t,x) = \frac{1}{\Gamma(1-\delta)} \frac{d}{dt} \int_{t}^{x} (u-t)^{-\delta} \phi(u) du \quad (0 < \delta < 1, \ x > t), \qquad (1.2)$$

$$\phi^{(\delta)}(t) = \lim_{x \to \infty} \phi^{(\delta)}(t, x) \qquad (0 < \delta < 1),$$

$$\phi^{(0)}(t) = \phi(t),$$

$$\phi^{(\delta+s)}(t) = (d/dt)^s \phi^{(\delta)}(t) \quad (0 \le \delta < 1, s \text{ a positive integer}).$$

$$(1.3)$$

At the point t=1, d/dt denotes differentiation on the right.

It is clear that, for l a constant, if $\theta(u) = \phi(u) - l$, for all $u \ge 1$, and if, for a > 0 and $t \ge 1$, $\phi^{(a)}(t)$ exists, then

$$\theta^{(\alpha)}(t) = \phi^{(\alpha)}(t). \tag{1.4}$$

A SUMMABILITY FACTOR THEOREM.

303

2. The following theorem, for λ an integer, is due in substance to Hardy* and, for λ not an integer, to Cossar†.

Theorem A. For $\lambda \geqslant 0$, if, $\phi^{(\lambda)}(t)$ is absolutely continuous;, $\int_{1}^{\infty} f(t) dt$ is summable (C, λ) [or bounded (C, λ)] and

(i)
$$\phi(t) \rightarrow l$$
 [or is $o(1)$] as $t \rightarrow \infty$,

(ii)
$$\int_{1}^{\infty} t^{\lambda} |\phi^{(\lambda+1)}(t)| dt < \infty,$$

then

$$\int_{1}^{\infty} f(t) \, \phi(t) \, dt \text{ is summable } (C, \lambda).$$

The object of this paper is to establish a result which is, in essence, the converse of Theorem A.

Theorem 1. For $\lambda \geqslant 0$, if $\phi^{(\lambda)}(t)$ is absolutely continuous and $\int_{1}^{\infty} f(t) \phi(t) dt$ is bounded (C) [or summable (C)] whenever $\int_{1}^{\infty} f(t) dt$ is summable (C, λ) [or bounded (C, λ)], then

(i) there is an absolutely continuous function $\psi(t)$ such that $\psi(t) = \phi(t)$ p.p. in $(1, \infty)$ and $\psi(t) \to l$ [or is o(1)] as $t \to \infty$,

(ii)
$$\int_{1}^{\infty} t^{\lambda} |\phi^{(\lambda+1)}(t)| dt < \infty.$$

The above theorems are analogues of well known theorems on series due to Bohr, Hardy, Fekete, Andersen and Bosanquet§.

We shall require the following lemmas.

3. Lemma 1. If $\phi(t)$ is absolutely continuous and $\int_1^{\infty} |\phi'(t)| dt = \infty$, then, for any non-negative integer s, there is a function f(t) such that $f^{(s)}(t)$ is absolutely continuous, $f(1) = f'(1) = \dots = f^{(s)}(1) = 0$,

$$\int_{1}^{\infty} f(t) dt$$
 is convergent and $\int_{1}^{\infty} f(t) \phi(t) dt = \infty$.

^{*} Received 18 January, 1950; read 19 January, 1950.

[†] Throughout this paper every integral over a finite range is a Lebesgue integral and \int_a^∞ denotes $\lim_{x\to\infty}\int_a^x$, if this limit exists, finite or infinite.

^{*} G. H. Hardy, Messenger of Math., 40 (1911), 87-91 and 108-112.

[†] J. Cossar, [1], Journal London Math. Soc., 16 (1941), 56-68, proved the second version, of which the first is a consequence in virtue of (1.4).

[‡] Where no interval of absolute continuity is specified, it is to be understood that the property pertains to every finite interval in $(1, \infty)$.

[§] See L. S. Bosanquet, [1], Journal London Math. Soc., 17 (1942), 166-173 and the references there given.

Case 1*. Suppose $\phi(t)$ to be bounded in $(1, \infty)$. For $b > a \ge 1$ we denote the upper bound, the lower bound and the variation of $\phi(t)$ in (a, b) by $M(\phi; a, b)$, $m(\phi; a, b)$ and $V(\phi; a, b)$, and write

$$w(\phi; a, b) = M(\phi; a, b) - m(\phi; a, b).$$

Using familiar results we now construct a strictly increasing unbounded sequence $\{x_r\}$, such that $x_1 = 1$ and

$$\sum_{r=2}^{\infty} w(\phi; x_{r-1}, x_r) = \infty.$$
 (3.1)

We take $n_1 = 1$ and, allowing ν to assume successively the values 1, 2, 3, ..., choose numbers $x_{n_{\nu}}, x_{n_{\nu}+1}, \ldots, x_{n_{\nu}+1}$ such that

$$v = x_{n_{\nu}} < x_{n_{\nu}+1} < \dots < x_{n_{\nu+1}} = \nu + 1$$

and

$$\sum_{r=n_{\nu}+1}^{n_{\nu+1}} w(\phi; x_{r-1}, x_r) > V(\phi; \nu, \nu+1) - \frac{1}{\nu^2} = \int_{\nu}^{\nu+1} |\phi'(t)| dt - \frac{1}{\nu^2}. \quad (3.2)$$

We now obtain (3.1) from the second hypothesis and (3.2). We write

$$egin{aligned} M_r &= M(\phi\,;\;x_r,\,x_{r+1}), \quad m_r = m(\phi\,;\;x_r,\,x_{r+1}), \quad w_r = w(\phi\,;\;x_r,\,x_{r+1}), \ W_r &= 1 + \sum\limits_{\nu=1}^r w_
u \quad ext{and} \quad M = M(|\phi|\,;\;1,\,\infty). \end{aligned}$$

Since $\phi(t)$ is continuous in $(1, \infty)$, it follows that, corresponding to any positive integer r, there are separated intervals i_r and j_r in the interior of (x_r, x_{r+1}) , such that $|i_r| = |j_r| > 0$ and

$$\begin{split} \phi(t) \geqslant M_r - \tfrac{1}{4} w_r & \text{ for } t \text{ in } i_r, \\ \phi(t) \leqslant m_r + \tfrac{1}{4} w_r & \text{ for } t \text{ in } j_r. \end{split}$$

We write $p_r = |i_r|$, $q_r = (p_r W_r)^{-1}$, and define

$$\begin{split} a(t) &= q_r \quad \text{for } t \text{ in } i_r \quad (r=1,\,2,\,\ldots), \\ &= -q_r \text{ for } t \text{ in } j_r \quad (r=1,\,2,\,\ldots), \\ &= 0 \quad \text{for other } t \text{ in } (1,\,\infty). \end{split}$$

It follows that, for $x_r \leqslant x < x_{r+1}$,

$$\left| \int_{1}^{x} a(t) \, dt \, \right| \leqslant p_{r} q_{r} = \frac{1}{W_{r}},$$

and hence, since by (3.1) $W_r \to \infty$ as $r \to \infty$,

$$\int_{1}^{\infty} a(t) dt = 0. {(3.3)}$$

On the other hand

$$\int_{x_r}^{x_{r+1}} a(t) \, \phi(t) \, dt \geqslant p_r q_r (M_r - \frac{1}{4} w_r) - p_r q_r (m_r + \frac{1}{4} w_r) = \frac{1}{2} \, \frac{w_r}{W_r},$$

while, for $x_r \leqslant x < x_{r+1}$,

$$\left| \int_{x}^{x_{r+1}} a(t) \, \phi(t) \, dt \, \right| \leqslant 2M p_r q_r = 2 \, \frac{M}{W_r}.$$

Hence, since $\sum_{r=1}^{\infty} \frac{w_r}{W_r} = \infty$ and $\frac{1}{W_r} \to 0$ as $r \to \infty$,

$$\int_{1}^{\infty} a(t) \, \phi(t) \, dt = \infty. \tag{3.4}$$

Now let $a_1=1$ and arrange the boundary points of the sequences of intervals $\{i_r\}$ and $\{j_r\}$ into a strictly increasing unbounded sequence $a_2,\ a_3,\ \dots$

It follows from the definitions of a(t) and $\{a_r\}$ that the relations

$$\mu_r = a(t)$$
 for $a_r < t < a_{r+1}$ $(r = 1, 2, ...)$

determine constants μ_1 , μ_2 , μ_3 , ..., of which those with odd suffixes vanish and those with even suffixes do not.

We now write, for r = 2, 3, ...,

$$\begin{split} A_r &= 1 + M(|\phi|; \ a_r, \, a_{r+1}), \quad B_r = |\mu_r| + |\mu_{r-1}|, \\ c_r &= \min\left\{\frac{1}{r^2 A_r B_r}, \ (a_{r+1} - a_r)\right\}, \quad b_r = a_r + c_r, \end{split}$$

and define

$$f(t) = \mu_{r-1} \left\{ 1 - \left(\frac{t - a_r}{c_r} \right)^{s+1} \right\}^{s+1} + \mu_r \left\{ 1 - \left(\frac{b_r - t}{c_r} \right)^{s+1} \right\}^{s+1} \quad \text{for } a_r \leqslant t \leqslant b_r$$

$$= a(t) \quad \text{for other } t \text{ in } (1, \infty).$$

Clearly $f^{(s)}(t)$ is absolutely continuous, $f(1) = f'(1) = \dots = f^{(s)}(1) = 0$ and

$$\int_{1}^{\infty} |f(t)-a(t)| dt = \sum_{r=2}^{\infty} \int_{a_r}^{b_r} |f(t)-a(t)| dt \leqslant \sum_{r=2}^{\infty} B_r c_r \leqslant \sum_{r=2}^{\infty} \frac{1}{r^2} < \infty, \quad (3.5)$$

$$\int_{1}^{\infty} |f(t)-a(t)| |\phi(t)| dt \leqslant \sum_{r=2}^{\infty} A_r B_r c_r \leqslant \sum_{r=2}^{\infty} \frac{1}{r^2} < \infty.$$
 (3.6)

^{*} Cf. W. L. C. Sargent, Journal London Math. Soc., 23 (1948), 28-34.

The result for this case then follows from (3.3), (3.4), (3.5) and (3.6).

Case 2. Suppose $\phi(t)$ to be unbounded in $(1, \infty)$. Since $\phi(t)$ is continuous and unbounded in $(1, \infty)$, it is plain that there is a sequence of separated intervals $i_1, i_2, i_3, ...,$ in $(2, \infty)$, such that their boundary points form a strictly increasing unbounded sequence and

$$|\phi(t)| > r$$
 for t in i_r $(r = 1, 2, ...)$.

Clearly $\phi(t)$ is of one sign in each i_r .

We now define

$$a(t) = (r^2|i_r|)^{-1} \operatorname{sgn} \{\phi(t)\}$$
 for t in i_r $(r = 1, 2, ...)$,
= 0 for other t in $(1, \infty)$.

It follows that

$$\int_{1}^{\infty} |a(t)| dt = \sum_{r=2}^{\infty} \frac{1}{r^{2}} < \infty$$
 (3.7)

and

$$\int_{1}^{\infty} a(t) \phi(t) dt \geqslant \sum_{r=1}^{\infty} \frac{1}{r} = \infty.$$
 (3.8)

The proof from here continues as in Case 1.

Lemma 2*. If $\int_{1}^{\infty} f(t) \phi(t) dt$ is bounded (C) whenever $\int_{1}^{\infty} f(t) dt$ is convergent, then $\phi(t)$ is essentially bounded in $(1, \infty)$.

Assuming the lemma false, we can obtain a contradiction by using an adapted version of the argument in Case 2 of Lemma 1, in which the sequence of intervals is replaced by a sequence of non-null sets of finite measure.

4. Lemma 3. For
$$\lambda \geqslant 0$$
, if $\int_{1}^{\infty} f(t) dt$ is summable (C, λ) , then $tf(t) \rightarrow 0$ $(C, \lambda+1)$ as $t \rightarrow \infty$.

This follows from the identity

$$\frac{1}{t^{\lambda+1}} \int_{1}^{t} (t-u)^{\lambda} u f(u) \, du = \frac{1}{t^{\lambda}} \int_{1}^{t} (t-u)^{\lambda} f(u) \, du - \frac{1}{t^{\lambda+1}} \int_{1}^{t} (t-u)^{\lambda+1} f(u) \, du.$$

Lemma 4. For $\lambda \geqslant 0$, $p+\lambda > -1$, p+q > -1, if $(t-u)^{\lambda-1}f(u)$ is integrable L in (1, t), for all t > 1, and $f(t) = o(t^p)$ (C, λ) as $t \to \infty$, then $t^q f(t) = o(t^{p+q})$ (C, λ) as $t \to \infty$.

This is due to Bosanquet*.

LEMMA 5. For $0 < \delta \leqslant 1$, $1 < x \leqslant t$,

$$\left| \frac{1}{\Gamma(\delta)} \right| \int_1^x (t-u)^{\delta-1} f(u) \, du \, \left| \leqslant \max_{1 \leqslant u \leqslant x} |f_{\delta}(u)|,$$

where max denotes the essential upper bound.

This is due substantially to M. Riesz†.

Lemma 6. For $\lambda > 0$, if $\int_1^\infty t^{-\lambda} f_{\lambda}(t) dt$ is convergent, then $\int_1^\infty f(t) dt$ is summable (C, λ) to zero.

For
$$f_{\lambda+1}(x) = \int_1^x t^{\lambda} \cdot t^{-\lambda} f_{\lambda}(t) dt$$
$$= x^{\lambda} \{l + o(1)\} - \lambda \int_1^x t^{\lambda-1} \{l + o(1)\} dt$$
$$= o(x^{\lambda}).$$

5. Lemma 7. If $\phi(t)$ is essentially bounded in $(1, \infty)$ and, for $0 < \delta < 1$, $\phi^{(\delta)}(t)$ is absolutely continuous, then there is an absolutely continuous function $\psi(t)$, such that $\psi(t) = \phi(t)$ p.p. in $(1, \infty)$.

Suppose that $0 < \epsilon < x-1$ and $1 \le t < x$. Since $\phi(t)$ is essentially bounded in $(1, \infty)$, it follows from (1.3) that

$$\phi^{(\delta)}(t) = \phi^{(\delta)}(t, x) + \frac{\delta}{\Gamma(1-\delta)} \int_{x}^{\infty} (u-t)^{-\delta-1} \phi(u) du, \qquad (5.1)$$

where the final integral is clearly an absolutely continuous function of t in $(1, x-\frac{1}{2}\epsilon)$. Hence

 $\phi^{(\delta)}(t,x)$ is absolutely continuous for t in $(1,x-\frac{1}{2}\epsilon)$. (5.2)

Denoting the essential upper bound of $|\phi(t)|$ in $(1, \infty)$ by M, we deduce from (5.1) that

$$|\phi^{(\delta)}(t,x)| \leqslant |\phi^{(\delta)}(t)| + \frac{M}{\Gamma(1-\delta)} (x-t)^{-\delta}$$

and thus

$$\phi^{(\delta)}(t, x)$$
 is integrable L in $(1, x)$. (5.3)

^{*} Cf. L. S. Bosanquet and H. Kestelman, Proc. London Math. Soc., (2), 45 (1939), 90.

^{*} L. S. Bosanquet, Journal London Math. Soc., 23 (1948), 35-38. The replacement of O by o presents no difficulty.

[†] See L. S. Bosanquet, Journal London Math. Soc., 16 (1941), 146-148, for full references.

Now by a result used by Cossar*,

$$-\phi(t) \equiv \frac{1}{\Gamma(\delta)} \int_{t}^{x} (u-t)^{\delta-1} \phi^{(\delta)}(u, x) du$$

$$= \frac{1}{\Gamma(\delta)} \int_{t}^{x-\frac{1}{2}\epsilon} (u-t)^{\delta-1} \phi^{(\delta)}(u, x) du + \frac{1}{\Gamma(\delta)} \int_{x-\frac{1}{2}\epsilon}^{x} (u-t)^{\delta-1} \phi^{(\delta)}(u, x) du. \quad (5.4)$$

In virtue of (5.2) and (5.3) the latter two integrals in (5.4) are absolutely continuous functions of t in $(1, x-\epsilon)$ and consequently, on writing

$$\psi(t) = -rac{1}{\Gamma(\delta)}\int_t^x (u-t)^{\delta-1} \phi^{(\delta)}(u, x) du,$$

it is clear that $\psi(t)$ is independent of x and has the properties required in the lemma.

LEMMA 8†. If $\phi(t)$ is bounded in $(1, \infty)$ and absolutely continuous, then, for $0 < \delta < 1$,

(i) $\phi^{(\delta)}(t)$ exists p.p. in $(1, \infty)$,

(ii)
$$\frac{1}{\Gamma(1-\delta)} \int_{t}^{\infty} (u-t)^{-\delta} \phi'(u) du = \phi^{(\delta)}(t) \text{ p.p. in } (1, \infty),$$

(iii)
$$\frac{1}{\Gamma(\delta)} \int_{1}^{\infty} t^{\delta-1} |\phi^{(\delta)}(t)| dt \leqslant \int_{1}^{\infty} |\phi'(t)| dt.$$

It is well known that, for absolutely continuous $\phi(t)$, $\phi^{(\delta)}(t, x)$ exists for almost all t in (1, x) and thus (i) follows from (5, 1).

Let n denote a positive integer. It is familiar that, for $1 \le t < n$,

$$\int_{t}^{n} (u-t)^{-\delta} \phi'(u) du = -\frac{d}{dt} \int_{t}^{n} (u-t)^{-\delta} du \int_{u}^{n} \phi'(v) dv$$

$$= \frac{d}{dt} \int_{t}^{n} (u-t)^{-\delta} \phi(u) du + (n-t)^{-\delta} \phi(n). \quad (5.5)$$

Let z_n be the set of t in (1, n) for which either (5.5) is not an equality or $\phi^{(\delta)}(t)$ is not defined. Then $z = \sum_{n=2}^{\infty} z_n$ is null. For t in $(1, \infty) - z$, $\int_{t}^{n} (u-t)^{-\delta} \phi'(u) du \text{ exists for } n > t \text{ and thus, since } \phi(t) \text{ is bounded in } (1, \infty),$ $\int_{t}^{\infty} (u-t)^{-\delta} \phi'(u) du \text{ is convergent.} \quad \text{Consequently, letting } n \to \infty \text{ in } (5.5),$ we obtain (ii).

To complete the lemma we observe that, in virtue of (ii),

$$\begin{split} \int_1^\infty t^{\delta-1} |\phi^{(\delta)}(t)| dt &\leqslant \frac{1}{\Gamma(1-\delta)} \int_1^\infty t^{\delta-1} dt \int_t^\infty (u-t)^{-\delta} |\phi'(u)| du \\ &\leqslant \frac{1}{\Gamma(1-\delta)} \int_1^\infty |\phi'(u)| du \int_0^u t^{\delta-1} (u-t)^{-\delta} dt = \Gamma(\delta) \int_1^\infty |\phi'(u)| du. \end{split}$$

Lemma 9*. For $0 < \delta < 1$, if $\phi(t)$ is absolutely continuous,

$$\int_{1}^{\infty} |\phi'(t)| dt < \infty,$$

and $\phi(t) = o(1)$ as $t \to \infty$, then, for $t \ge 1$,

$$\frac{1}{\Gamma(\delta)} \int_t^{\infty} (u-t)^{\delta-1} \phi^{(\delta)}(u) du = -\phi(t).$$

It follows from Lemma 8 (ii) that

$$\begin{split} \frac{1}{\Gamma(\delta)} \int_t^\infty (u-t)^{\delta-1} \phi^{(\delta)}(u) \, du &= \frac{1}{\Gamma(\delta)} \frac{1}{\Gamma(1-\delta)} \int_t^\infty (u-t)^{\delta-1} \, du \int_u^\infty (v-u)^{-\delta} \phi'(v) \, dv \\ &= \frac{1}{\Gamma(\delta)} \frac{1}{\Gamma(1-\delta)} \int_t^\infty \phi'(v) \, dv \int_t^v (u-t)^{\delta-1} \, (v-u)^{-\delta} \, du = \int_t^\infty \phi'(v) \, dv. \end{split}$$

The inversion is justified by the absolute convergence of the final integral and the result now follows since $\phi(t) = o(1)$ as $t \to \infty$.

Lemma 10. For $\lambda > 1$, s the integer such that $s < \lambda \leqslant s+1$, $\delta = \lambda - s$, if $\phi^{(\lambda-1)}(t)$ is absolutely continuous, $\int_1^\infty t^{\delta-1} \phi^{(\delta)}(t) dt$ is convergent and $\int_1^\infty t^{\lambda-1} |\phi^{(\lambda)}(t)| dt < \infty$, then for r = 0, 1, ..., s-1,

(i)
$$\phi^{(\delta+r)}(t) = o(1)$$
 as $t \to \infty$, (ii) $\int_1^\infty t^{\delta+r-1} |\phi^{(\delta+r)}(t)| dt < \infty$,

$$(iii) \ \frac{1}{\Gamma(\delta)} \int_t^{\infty} (u-t)^{\delta-1} \phi^{(\delta)}(u) \, du = \frac{(-1)^{r+1}}{\Gamma(\delta+r+1)} \int_t^{\infty} (u-t)^{\delta+r} \phi^{(\delta+r+1)}(u) \, du \ (t \geqslant 1).$$

Conclusions (i) and (ii) are well known†.

^{*} Equation (8.4) in Cossar's paper, [1], is valid for the $\phi(t)$ we consider.

[†] Cf. Cossar, [1], Lemma 5.

^{*} Cf. Cossar, [1]. Lemma 8.

[†] Cossar, [1], Lemmas 4, 9 and 10.

In consequence now of (i) with r = 0 and (ii) with r = 1,

$$\begin{split} \frac{1}{\Gamma(\delta)} \int_t^\infty (u-t)^{\delta-1} \phi^{(\delta)}(u) \, du &= -\frac{1}{\Gamma(\delta)} \int_t^\infty (u-t)^{\delta-1} \, du \int_u^\infty \phi^{(\delta+1)}(v) \, dv \\ &= -\frac{1}{\Gamma(\delta)} \int_t^\infty \phi^{(\delta+1)}(v) \, dv \int_t^v (u-t)^{\delta-1} \, du \\ &= -\frac{1}{\Gamma(\delta+1)} \int_t^\infty (v-t)^\delta \phi^{(\delta+1)}(v) \, dv. \end{split}$$

This proves (iii) for r = 0 and repetition, if r > 0, yields the complete result.

6. For the purpose of the following lemma we write, for $r \ge 0$, $\lambda > 0$, $x \ge 1$,

$$h(x,r) = \frac{1}{\Gamma(r+1)} \int_{1}^{x} (x-t)^{r} f(t) dt \int_{x}^{\infty} (u-t)^{\lambda-1} \phi(u) du,$$

$$h(x) = h(x,0),$$
(6.1)

$$H(x,r) = \frac{1}{\Gamma(r+1)} \int_{1}^{x} (x-t)^{r} |f(t)| dt \int_{x}^{\infty} (u-t)^{\lambda-1} |\phi(u)| du.$$
 (6.2)

Lemma 11. For $\lambda > 0$, s the integer such that $s < \lambda \leqslant s+1$, if $\int_1^{\infty} f(t) dt$ is bounded (C, λ) and $\int_1^{\infty} t^{\lambda-1} |\phi(t)| dt < \infty$, then

$$h(x) = o(1) (C, s+1)$$
 as $x \to \infty$.

We prove first that, for $y \ge 1$, $r \ge 0$,

$$\int_{1}^{y} H(x, r) dx < \infty \quad \text{and} \quad H(y, r+1) < \infty.$$
 (6.3)

This follows since H(x, r) is dominated by

$$\frac{x^{1-\lambda}}{\Gamma(r+1)} \int_1^x (x-t)^{r+\lambda-1} |f(t)| dt \int_x^\infty u^{\lambda-1} |\phi(u)| du \quad \text{if} \quad 0 < \lambda < 1,$$

and by

$$\frac{1}{\Gamma(r+1)} \int_{1}^{x} (x-t)^{r} |f(t)| dt \int_{x}^{\infty} u^{\lambda-1} |\phi(u)| du \quad \text{if} \quad \lambda \geqslant 1.$$

Now, in virtue of (6.3), we have, for $y \ge 1$, $r \ge 0$,

$$\Gamma(r+1) \int_{1}^{y} h(x, r) dx = \int_{1}^{y} dx \int_{x}^{\infty} \phi(u) du \int_{1}^{x} (u-t)^{\lambda-1} (x-t)^{r} f(t) dt$$

$$= \int_{1}^{y} dx \int_{x}^{y} \phi(u) du \int_{1}^{x} (u-t)^{\lambda-1} (x-t)^{r} f(t) dt$$

$$+ \int_{1}^{y} dx \int_{y}^{\infty} \phi(u) du \int_{1}^{x} (u-t)^{\lambda-1} (x-t)^{r} f(t) dt$$

$$= \int_{1}^{y} \phi(u) du \int_{1}^{u} dx \int_{1}^{x} (u-t)^{\lambda-1} (x-t)^{r} f(t) dt$$

$$+ \int_{y}^{\infty} \phi(u) du \int_{1}^{y} dx \int_{1}^{x} (u-t)^{\lambda-1} (x-t)^{r} f(t) dt$$

$$= \frac{1}{r+1} \int_{1}^{y} \phi(u) du \int_{1}^{u} (u-t)^{\lambda+r} f(t) dt$$

$$+ \frac{1}{r+1} \int_{y}^{\infty} \phi(u) du \int_{1}^{y} (u-t)^{\lambda-1} (y-t)^{r+1} f(t) dt$$

$$= \frac{\Gamma(\lambda+r+1)}{r+1} \int_{1}^{y} \phi(u) f_{\lambda+r+1}(u) du + \Gamma(r+1) h(y, r+1). \tag{6.4}$$

It follows from (6.4) that, for $x \ge 1$,

$$I_{s+1}h(x) = h(x, s+1) + \sum_{r=0}^{s} \frac{\Gamma(\lambda + r + 1)}{(r+1)!} I_{s+1-r} \{\phi(x) f_{\lambda + r + 1}(x)\}.$$
 (6.5)

It is clear from the hypotheses that, for $r \geqslant 0$,

$$\int_{1}^{\infty} t^{\lambda - 1} \, \phi(t) \, t^{-\lambda - r} f_{\lambda + r + 1}(t) \, dt$$

is convergent. Hence, for r = 0, 1, ..., s, by Lemma 3,

$$x^{-r}\phi(x)f_{\lambda+r+1}(x) = o(1) \ (C, s+1-r)$$
 as $x \to \infty$,

and thus, by Lemma 4,

$$\phi(x) f_{\lambda+r+1}(x) = o(x^r) (C, s+1-r) \text{ as } x \to \infty.$$

Consequently the summation term in (6.5) is $o(x^{s+1})$ as $x \to \infty$, and thus, to complete the lemma, we must prove that $h(x, s+1) = o(x^{s+1})$ as $x \to \infty$. In view of the second inequality in (6.3), we have, for $x \ge 1$,

$$\Gamma(s+2) \, x^{-s-1} \, h(x, \, s+1) = \int_x^\infty u^{\lambda-1} \, \phi(u) \, du \, \int_1^x \! f(t) \Big(1 - \frac{t}{u}\Big)^{\lambda-1} \, \Big(1 - \frac{t}{x}\Big)^{s+1} \, dt$$

and therefore, because of the condition on $\phi(t)$, it is sufficient to prove the inner integral bounded independently of u and x, for u > x > 2 say.

313

We have, for u > x > 2, on integrating s+1 times by parts,

$$\begin{split} &\int_{1}^{x} f(t) \left(1 - \frac{t}{u}\right)^{\lambda - 1} \left(1 - \frac{t}{x}\right)^{s + 1} dt \\ &= (-1)^{s + 1} \int_{1}^{x} f_{s + 1}(t) \left(\frac{d}{dt}\right)^{s + 1} \left\{ \left(1 - \frac{t}{u}\right)^{\lambda - 1} \left(1 - \frac{t}{x}\right)^{s + 1} \right\} dt = \sum_{r = 0}^{s + 1} c_{r} X_{r}, \quad (6.6) \end{split}$$

where $c_0, c_1, ..., c_{s+1}$ are constants and

$$\begin{split} X_r &= u^{-r} x^{r-s-1} \int_1^x f_{s+1}(t) \left(1 - \frac{t}{u}\right)^{\lambda - r - 1} \left(1 - \frac{t}{x}\right)^r dt \\ &= u^{-r} x^{r - \lambda} \int_1^x (x - t)^{\lambda - s - 1} f_{s+1}(t) \left\{ \left(1 - \frac{t}{x}\right)^{r + s + 1 - \lambda} \left(1 - \frac{t}{u}\right)^{\lambda - 1 - r} \right\} dt. \quad (6.7) \end{split}$$

For u > x > 2, $x \ge t \ge 0$, the term in the curled brackets is a decreasing function of t, since, for $x > t \ge 0$, the derivative with respect to t of its logarithm, $(r+s+1-\lambda)(x-u)/(t-x)(t-u)+s/(t-u)$, is negative (except in the trivial case $\lambda = 1$, s = 0, r = 0, when it is indentically zero).

It follows then from (6.7), on applying first the Second Mean Value Theorem and then Lemma 5 that, for r = 0, 1, ..., s+1, u > x > 2,

$$\begin{split} |X_r| &= x^{-\lambda} \left(\frac{x}{u}\right)^r \left| \int_1^{\xi} (x-t)^{\lambda-s-1} f_{s+1}(t) \, dt \right| \quad (1 < \xi < x) \\ &\leqslant x^{-\lambda} \max_{1 \le t \le x} |f_{\lambda+1}(t)| \end{split}$$

and thus, by the hypothesis of f(t), X_r is bounded independently of u and x. The lemma now follows from (6.6).

7. Proof of Theorem 1. First version.

For $\lambda = 0$, the theorem is an immediate consequence of Lemma 1.

Suppose now that $\lambda > 0$. It follows from the second hypothesis, by Lemma 2, that $\phi(t)$ is essentially bounded in $(1, \infty)$. Hence, in view of Lemma 7, since $\phi^{(\lambda-[\lambda])}(t)$ is absolutely continuous, there is an absolutely continuous function $\psi(t)$ such that

$$\psi(t) = \phi(t) \text{ p.p. in } (1, \infty).$$
 (7.1)

In virtue of Lemma 1, we have

$$\int_{1}^{\infty} |\psi'(t)| dt < \infty, \tag{7.2}$$

from which (i) follows,

From (1.4) it is clear that there is no loss in generality in now supposing that

$$\psi(t) = o(1) \quad \text{as} \quad t \to \infty. \tag{7.3}$$

Let s be the integer such that $s < \lambda \le s+1$, and write $\delta = \lambda - s$. It follows from (7.1) and (7.2), by Lemma 8 (iii), that

$$\int_{1}^{\infty} t^{\delta-1} |\phi^{(\delta)}(t)| dt < \infty, \tag{7.4}$$

and from (7.1), (7.2) and (7.3), by Lemma 9, that, for $t \ge 1$,

$$\frac{1}{\Gamma(\delta)} \int_{t}^{\infty} (u - t)^{\delta - 1} \phi^{(\delta)}(u) du = -\psi(t). \tag{7.5}$$

Now assume that

$$\int_{1}^{\infty} t^{\lambda - 1} |\phi^{(\lambda)}(t)| dt < \infty \tag{7.6}$$

and

$$\int_{1}^{\infty} t^{\lambda} \left| \phi^{(\lambda+1)}(t) \right| dt = \infty. \tag{7.7}$$

It follows from (7.4), (7.5), and (7.6), by Lemma 10 (iii), that

$$\frac{1}{\Gamma(\lambda)} \int_{t}^{\infty} (u-t)^{\lambda-1} \phi^{(\lambda)}(u) du = (-1)^{s+1} \psi(t) \quad (t \geqslant 1). \tag{7.8}$$

As a consequence of (7.6) and (7.7) we have

$$\int_{1}^{\infty} \left| \frac{d}{dt} \left\{ t^{\lambda} \phi^{(\lambda)}(t) \right\} \right| dt = \infty ;$$

and hence it follows, by Lemma 1 with $\phi(t)$ replaced by $t^{\lambda} \phi^{(\lambda)}(t)$ and f(t) by $t^{-\lambda} g(t)$, that there is a function g(t), such that

 $g^{(s)}(t)$ is absolutely continuous, $g(1) = g'(1) \stackrel{\cdot}{=} \dots = g^{(s)}(1) = 0$, (7.9)

$$\int_{1}^{\infty} t^{-\lambda} g(t) dt \text{ is convergent}$$
 (7.10)

and

$$\int_{1}^{\infty} g(t) \, \phi^{(\lambda)}(t) \, dt = \infty. \tag{7.11}$$

We now define, for $t \geqslant 1$,

$$f(t) = I_{s+1-\lambda} g^{(s+1)}(t). \tag{7.12}$$

Then it is familiar that, in view of (7.9),

$$f_{\lambda}(t) = g(t). \tag{7.13}$$

It follows from (7.10) and (7.13), by Lemma 6, that

$$\int_{1}^{\infty} f(t) dt \text{ is summable } (C, \lambda). \tag{7.14}$$

Consequently, by the second hypothesis,

$$\int_{1}^{\infty} f(t) \, \phi(t) \, dt \text{ is bounded } (C). \tag{7.15}$$

On the other hand we have, in virtue of (7.13), (7.8) and (7.1),

$$\begin{split} &\int_{1}^{x} g(u) \, \phi^{(\lambda)}(u) \, du = \frac{1}{\Gamma(\lambda)} \int_{1}^{x} \phi^{(\lambda)}(u) \, du \, \int_{1}^{u} (u-t)^{\lambda-1} f(t) \, dt \\ &= \frac{1}{\Gamma(\lambda)} \int_{1}^{x} f(t) \, dt \, \int_{t}^{x} (u-t)^{\lambda-1} \phi^{(\lambda)}(u) \, du \\ &= (-1)^{s+1} \int_{1}^{x} f(t) \, \phi(t) \, dt - \frac{1}{\Gamma(\lambda)} \int_{1}^{x} f(t) \, dt \, \int_{x}^{\infty} (u-t)^{\lambda-1} \phi^{(\lambda)}(u) \, du \quad (x > 1). \quad (7.16) \end{split}$$

It follows from (7.6) and (7.14), by Lemma 11 with $\phi(t)$ replaced by $\phi^{(\lambda)}(t)$, that the final repeated integral in (7.16) is o(1) (C, s+1) as $x \to \infty$. Hence, by (7.11) and (7.16), in contradiction to (7.15),

$$\int_{1}^{\infty} f(t) \, \phi(t) \, dt \text{ is not bounded } (C).$$

Therefore the assumption is false, and thus, since $\phi(t)$ satisfies the hypotheses with λ replaced by $\delta+r$ (r=0, 1, ..., s),

$$if \int_{1}^{\infty} t^{\delta+r-1} |\phi^{(\delta+r)}(t)| \, dt < \infty \ then \int_{1}^{\infty} t^{\delta+r} |\phi^{(\delta+r+1)}(t)| \, dt < \infty \ (r=0, \ 1, \ ..., \ s).$$

The result now follows in consequence of (7.4).

Second version*. We note that $\phi(t)$ in this case satisfies the hypotheses of the first version. Result (ii) follows and, as before, there is an absolutely continuous function $\psi(t)$ and a number l, such that

(i)'
$$\psi(t) \equiv \phi(t)$$
, $\psi(t) - l = o(1)$ as $t \to \infty$ and (ii)' $\int_1^\infty \left| \frac{d}{dt} \left\{ \psi(t) - l \right\} \right| dt < \infty$.

It is familiar that $\int_1^\infty \frac{\cos(\log t)}{t} dt$ is bounded (C, 0) but not summable (C).

It follows from (i)' and (ii)', by the second version of Theorem A with $\lambda = 0$ and $f(t) = t^{-1} \cos(\log t)$, that

$$\int_{1}^{\infty} \frac{\cos(\log t)}{t} \left\{ \phi(t) - l \right\} dt \text{ is summable } (C, 0).$$

Thus, in view of the second hypothesis of the theorem,

$$\int_{1}^{\infty} \frac{l \cos(\log t)}{t} dt \text{ is summable } (C),$$

which is only possible when l=0.

This completes the proof of the theorem.

In conclusion, I should like to record my sincere thanks to Dr. L. S. Bosanquet for his helpful suggestions and criticisms.

University College, London.

^{*} Cf. L. S. Bosanquet, Journal London Math. Soc., 20 (1945), 47.