A SUMMABILITY FACTOR THEOREM

D. BorwEIN*.
[Extracted from the Jouwrnal of the London Mathematical Society, Vol. 25, 1950.]

1. In all that follows f() and #(¢) denote real functions, integrable L
in every finite interval in (1, co)¥.
We write, for £t > 1,

L0 =10 = g5 [, ¢—wrfwydu @>0)
Lf®) =fo®& =)

(1.1)

T

$O(t, x)zﬁ%j (u—t) S pw)du (0<8<1, >1), (1.2)

¢

¢® (t) = lim ¢O(z, x) (0<é<1y,
$O(t) = $(2), (1.3)

HHI(1) = (d/dt)* $®(2) (0C8 << 1, s a positive integer).

At the point { =1, d/df denotes differentiation on the right.
It is clear that, for [ a constant, if 6(u) = ¢(u)—I, for all w > 1, and if,
for a >0 and ¢ =1, ¢“(¢) exists, then

6(1) = (). (1.4)

* Received 18 January, 1950 ; read 19 January, 1950.
t Throughout this paper every integral over a finite range is a Lebesgue integral and

j denotes lim |”, if this limit exists, finite or infinite,
a T—>»0 Ja
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2. The followiﬁg theorem, for A an integer, is due in substance to Hardy*
and, for A not an integer, to Cossart.
THEOREM A. For X =0, if, ¢™(t) s absolutely continuoust, J fleyde
1
ts summable (C, A) [or bounded (C, A)] and

(i) (@)~ [or is o(1)] as t-—>c0,

(ii) f M HAD() | dt < oo,

e ff(t)qs(t) ds i3 eummable (C, A).

The object of this paper is to establish a result which is, in essence, the
converse of Theorem A.

TrEOREM 1. For A0, if &™) is absolutely continuous and
r f(#)p(2)dt is bounded (C) [or summable (C)] whenever r f)dt is sum-
w::wble (C, A) [or bounded (C, A)], then i

(i) thereis an absolutely continuous function yi(t) such that (t) = ¢(t) p.p.
in (1, c0) and (1)1 [or is 0(1)] as t— 0,

(i) f 2| OH0(8) | di < co.

The above theorems are analogues of well known theorems on series
due to Bohr, Hardy, Fekete, Andersen and Bosanquet$.
We shall require the following lemmas.

3. Lemma 1. If () is absolutely continuous and j |’ (2)]| dt = o,
» .

then, for any non-negative integer s, there is a funciion f(t) such that f®(t) is
absolutely continuous, f(1)=f'(1)=...=fE(1)=0,

f ft)dt is convergent and j? f(&) () dt = co.

* G. H. Hardy, Messenger of Math., 40 (1911), 87-91 and 108-112.

t J. Cossar, [1], Journal London Math, Soc., 16 (1941), 56-68, proved the second
version, of which the first is a consequence in virtue of (1.4).

} Where no interval of absolute continuity is speecified, it is to be understood that the
property pertains to every finite interval in (1, ).

§ See L. S. Bosanquet, [1], Journal London Math. Soc., 17 (1942), 166-173 and the
references there given.



304 D. BoRWEIN

Case 1*.  Suppose $(t) to be bounded in (1, ). For b>a>=1 we
denote the upper bound, the lower bound and the variation of ¢(f) in
(@, b) by M(¢; a, b), m(¢; a,b) and V($; a, b), and write

w(p; a,b)=M($; a, b)—m(d; a, b).

Using familiar results we now construct a strictly increasing unbounded

sequence {z,}, such that x; =1 and

8

% 'H)((}S, Y15 LE?.) — 1004 (3 L 1)

r=2

We take m; =1 and, allowing v to assume successively the values
1,2, 3, ..., choose numbers %, , @, 41, .-, T, ,, such that

Y= By Byt = s = Xy — P

and

$ld——z. (3.2)

S 1 v+1
2 w(p; T, @) > Vids v, V+1)aﬁ:5

r=n,+1

We now obtain (3.1) from the second hypothesis and (3. 2).
We write

Mr = M(QS, SB,., xr+1): mr = m{d) » Ly xr+1): wr = 'LU(Q{) 3 Ly Q‘J,.+1),

W,=1+ é w, and M= M(¢|; 1, ).
=1

v

Since ¢(t) is continuous in (1, o), it follows that, corresponding to any
positive integer r, there are separated intervals ¢, and j, in the interior of
(2,, #,41), such that |7.|=]4,| >0 and

$(t) = M,—3w, for t in ¢,
() <m,+3w, for ¢ in j,.
We write p,=|¢,|, q,= (p, W,)!, and define
a(f)=gq, fortini (r=1,2 ..)
=—q, fortingj, (r=1,2 ...),
=0 for other ¢ in (1, o).

It follows that, for #, <x < x4,

z 1
L“‘” | <poty =17

* Of. W. L. C. Sargent, Journal London Math. Soc., 23 (1948), 28-34.
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and hence, since by (3.1) W,—w as r—oo,

j (b=, (3.3)
1
On the other hand

Tyl w,

[ a6t > 0. M,— o) —p.a, O 0) = 4

Ty r

while, for x, <z <.,

[Mawsa|<2p0—257

4 i

5 2 1
Hence, since X = =o0 and —=->0 as r—o0,
r=1 Wr Wr

r a(t) $(t) dt = oo. (3.4)
1

Now let @, = 1 and arrange the boundary points of the sequences of
intervals {i,} and {j,} into a strictly increasing unbounded sequence
dg, O3 =i

It follows from the definitions of a(¢) and {a,} that the relations

p,=alt) for e, <t<a,, (r=12..)

determine constants py, e, fis, ---, of which those with odd suffixes vanish
and those with even suffixes do not.
We now write, for r=2, 3, ...,

AT:I+M(1¢i; a’T’ af+1)’ BT=|FLT|+|M1‘—1|’

. 1
C, = Inin {m, (arﬂ—ar)} s br= a,,—|—c,,

and define
t—a st s+1 b —p\ 1) 51
[O0=pa 1= (52 1= ()T for g <t <o,
(r=23,...),
=a(t) for other t in (1, co).
Clearly f©(t) is absolutely continuous, f(1) = f'(1) = ... =f®(1) =0 and
L w© (br @0 ]
[[1ro—awia=E [ 10-a|2< £ Bo<E F<o 6.5
1 =2 Jar r=2 r=2 T
[lro—aosnia<E 4,Be<E s<o. 3.9
1 r=2 r=3 7
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The result for this case then follows from (3.3), (3.4), (3.5)and (3.6).

Case 2. Suppose ¢(t) to be unbounded in (1, co). Since ¢(¢) is con-
tinuous and unbounded in (1, co), it is plain that there is a sequence
of separated intervals 4,, i,, 3, ..., in (2, c0), such that their boundary
points form a strictly increasing unbounded sequence and

[E@) =" dor tiiniE r=1, 2L
Clearly ¢(¢) is of one sign in each i,.
We riow define
a(t) = (r?|3, ) tsgn {$(&)} for tin¢, (r=1,2,..)
=0 for other £ in (1, o0).

It follows that

L Ia(t)1dt=7§2?,—12 <o (3.7)

and r a(t)(0)ds > 3

1
— = 00. 3.8
1 r 9 ( )

il

The proof from here continues as in Case 1.
0 c 0

Lemma 2%, If S f(&) d(t)dt is bounded (C) whenever j f(t)dt is con-
7.

1
vergent, then $(t) is essentially bounded in (1, o).

Assuming the lemma false, we can obtain a contradiction by using an
adapted version of the argument in Case 2 of Lemma 1, in which the
sequence of intervals is replaced by a sequence of non-null sets of finite
measure.

4, Lemma 3. For A =0, if J’ f) dt is summable (C, A), then
1
ifE)—=0 (C,A+1) as t—co.
This follows from the identity

|| =t = [ =P fdn— s [ -0 du

Lemma 4. For AZ0, p+A>—1, p+g>—1, if (F—u)1f(u) is
integrable L in (1, 1), for all > 1, and f(t) =o(t?) (C, A) as t— 0, then
t1f(t) = o(t?*9) (C, A) as t—>co.

* (f. L. 8. Bosanquet and H. Kestelman, Proc. London Math. Sec., (2), 45 (1939), 90,

"
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This is due to Bosanquet™.
LeMMa 5. For 0<<8 <1, 1< <,

1

WHj(t”u)Hﬂu) du| < max | fy(w)],

1€u<e

where max denotes the essential upper bound.
This is due substantially to M. Riesz{.
Lemma 6. For A>0, if E £ fy(t)dt is convergent, then L f(@)dt is
1 3

summable (C, A) to zero.

For fun@ = [ &P 0

— 2 I +0(1)}—A L P-1{1-+-o(1)} dt

= o(x}).

5. Lumma 7. If $(t) is essentially bounded in (1, ) and, for 0 <8 < 1;
$O(t) is absolutely continuous, then there is an absolutely continuous function

b(t), such that (t) = $(t) p.p- wn (1, o). . .
Suppose that 0 < e<2—1 and 1 <t <. Since ¢(f) is essentially
bounded in (1, o), it follows from (1.3) that

B0 = 490, D)+ gy | - (5.1)

where the final integral is clearly an absolutely continuous function of
¢t in (1, z—%e). Hence _
$O(t, ) is absolutely continuous for ¢ in (1, z—}e). (5.2)
Denoting the essential upper bound of |$(#)| in (1, ©) by M, we deduce
from (5.1) that :
el _
1490, )] < |90+ p—g) &
and thus
$®(t, x) is integrable L in (I, x). (5.3)

* 1,, . Bosanquet, Journal London Math. Soc., 23 (1948), 35-38. The replacement of

O by o presents no difficulty.
t See L. S, Bosanquet, Jowrnal London Math. Soc., 16 (1941), 146-148, for full

references,
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Now by a result used by Cossar*,

—50)= 55 |, (=149 (0, 2) s

Lr—h(u_t)a-lgﬁfa)(u x)r:lu-l-i r (u—0)1 ¢ u, z)du. (5.4)
) ), | P®) Jase B i

In virtue of (5.2) and (5. 3) the latter two integrals in (5.4) are abso-
lutely continuous functions of ¢ in (1, z—e¢) and consequently, on writing

HO= 175 j (u— 12 $O(u, z) du,

it is clear that i(t) is independent of # and has the properties required in
the lemma.

Lemma 8t. If ¢(t)is bounded in (1, o) and absolutely continuous, then,
for Oz g1,

(i) ¢9() exists p.p. in (1, o),

% 1 %
@ pr=g),

@) 55 ) erleomla < 4 w)a

{4 (w)du = $9(t) p.p. in (1, ),

It is well known that, for absolutely continuous (t), (¢, x) exists for
almost all £ in (1, #) and thus (i) follows from (5.1).
Let n denote a positive integer. It is familiar that, for 1 <t < n,

f (u—t) ' () du = — % f’ (u—t)* o rgb’('v)dv

w

— % jj (%—t)—aqg(u) clu+ (n_t)—aqﬁ(??,). (5. 5)

Let z, be the set of ¢ in (1, #) for which either (5.5) is not an equality

or $9(¢) is not defined. Then z— § 2, is null. For ¢ in (1, c0)—
n=2

j (u—1)~* ¢’ (u) du exists for » > ¢ and thus, since ¢(¢) is bounded in (1, o),
[

j (w—1t)" ¢'(u)du is convergent. Consequently, letting n—+co in (5.5),
4

we obtain (ii).

* Equation (8.4) in Cossar’s paper, [1], is valid for the ¢(t) we eonsider.
t Cf. Cossar, [1], Lemma 5,
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To complete the lemma we observe that, in virtue of (ii),

5 t§—1|¢(5)(t |dt\ I‘(l j 5144 Eo (u—t)—sl?g’(u)\du

’ 5—1 3 —_
<t ). 1$ @l [(es@—na=Te) [ 15wl
LEMMA 9*. For 0<8 <1, if $(t) is absolutely continuous,
(1o <o,

and ¢(t) =o(1) as t—>co, then, for t =1,

1 i 5— 8 e
5 |, =t 40 0 du = —gt0.

It follows from Lemma 8 (ii) that

i) |, =0 #0008 = e [, @i | g @

22

1 - e
:WE $'(v) dfuj (u— 1)1 (v—u) du;j &' (v) do.

1

The inversion is justified by the absolute convergence of the final
integral and the result now follows since ¢(¢) = o(1) as ¢—>co.

Lemma 10, For A > 1, s the integer such that s <A <{s+1, § =A—s,

o0 p ]
if HA-D(t) is absolutely continuous, L il gl#‘”(t) dt s convergent and

J P1[gN(t) | dt < oo, then for r=0,1, ..., s—1,
1

(i) 4*()=0(1) as t>c0, (i) S -1 g4 (1) | dt < oo,

e r TR TP e i r (u— 1) SO0 () d (3 1),
') J; Hietr-1) )

Conclusions (i) and (ii) are well knownt.

* (f. Cossar, [1]. Lemma 8.
1 Cosgar, [1], Lemmas 4, 9 and 10.
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TIn consequence now of (i) with # =0 and (ii) with r =1,

ﬁ f (u— 1)1 O () ds = — 1“%35 f (u—t)-2du E $6(w) dv

s f 540 () dv L (w—t)-1du

“‘1“(81+1) L (v—t) $+D(v) dv.

This proves (iii) for r =0 and repetition, if r > 0, yields the complete
result,

6. For the purpose of the following lemma we write, for r>=0,
A>0, 221,

Rz, r) = I‘(Tl—i—l—) E (x—t)y f(t)dt j: (u—tP1ep(u) du

h(z) = h(z, 0),

(6.1)

e S s—ty | f(t) !dtj (w— 1)1 | ()| du. (6.2)

(?‘-I- 1)
Lemma 11, For A >0, s the integer such that s <A <{s+1, @'fj fi)dt
x
is bounded (C, ) and 5 1] (¢) | dt < o0, then
1
h(z)=o0(1) (C, s+1) as z—>o0.
We prove first that, for y =1, r =0,
rH(x, r)de <o and Hy, r+1) <oo. (6.3)
1
This follows since H(x, r) is dominated by
© A= Ty ;
(r+1)5 (@—t)r+ |f(t)|dtL )| du if 0<A<L,

and by

1 i t % ot .
p(ﬂrl)gl(?ﬂ—t) If(t)ldtLuHm(undu ifs
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Now, in virtue of (6.3), we have, for y > 1, r >0,

P(r+1) ﬁh(x, r)dm:f:dx Eqb(u)du L( e

-=5 qu(u duj w—tPt (w—ty £(6)

+f e j pin | =) ety fO@
= Sj $(u)du Y: da L (w— )t (@—t) £(6) dt
+r () du ﬁ ds L (u— P2 (@—ty f(t) dt

¥

— 2 [ [ w—tperso

+F11 5: gl E (u—tp=2 (y— 1 f(0) dt
i r““)fwﬂ(“)du+F(w+1>h(y, r+1). (6.4)
r+1 T

It follows from (6.4) that, for x > 1,

L = Al 2 DO Lo, ki@l B
img LY

It is clear from the hypotheses that, for r =0,

f PG N frapan (8) B
is convergent. Hence, for r=20, 1, ..., s, by Lemma 3,
2 (@) frpra (@) = 0(1) (O, 8+1—?Q) as  x—>00,
and thus, by Lemma 4,
() fpn@)=0ol) (0, s}1—1) a8 &>

Consequently the summation term in (6. 5) is o(2***) as x — 0, and thus,
to complete the lemma, we must prove that k(z, s+1) = o(x5+1) as x— 0.
In view of the second inequality in (6.3), we have, for x =1,

Dot 2y, s1) = | wagan [0 (1-5) (1) @

and therefore, because of the condition on $(2), it is sufficient to prove the
inner integral bounded independently of u and z, for u >z > 2 say.
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We have, for u >z > 2, on integrating s-+1 times by parts,

fro(-2) (-2

x

it ] d\ s+l (1 t)"“l £\ P s+1 x i

== fra0(g) {(-5) T (D) a=Zex, @
where ¢, ¢, ..., ¢;,; are constants and

X, — yrar—s-1 ﬁfsﬂ(t) (1—72_) (R (1"—%)r dt

i u—»r g K (mAt)kfsglle(t) i (1 u%) FH8+1—A (1 N i_) le—r} i (6.7)

U

For u > x> 2, x > > 0, the term in the curled brackets is a decreasing
function of ¢, since, for >t >0, the derivative with respect to ¢ of its
logarithm, (r+s+1—A)(z—u)/(t—x)(f—u)-Ls/(t—u), is negative (except
in the trivial case A =1, 8 = 0, r = 0, when it is indentically zero).

It follows then from (6.7), on applying first the Second Mean Value
Theorem and then Lemma 5 that, for r =0, 1, ..., s-+1, 4 > 2 > 2,

x
(7

x]=a(2)'|[ e—o1pnt]| a<e<a)

<z max | fiq ()]
Ii<z

and thus, by the hypothesis of f(¢), X, is bounded independently of wand =.
The lemma now follows from (6.6).

7. Proof of Theorem 1. First version.

For A =0, the theorem is an immediate consequence of Lemma 1.

Suppose now that A> 0. It follows from the second hypothesis, by
Lemma 2, that ¢(¢) is essentially bounded in (1, c0). Hence, in view of
Lemma 7, since ¢*-1)(¢) is absolutely continuous, there is an absolutely
continuous funetion #(t) such that

P(f) = ¢() p.p. in (1, o). (7.1)

In virtue of Lemma 1, we have
j’ [/ (t) | dt < o0, (7.2)
1

from which (i) follows,
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From (1.4)itis clear that there is no loss in generality in now supposing
that
Y(t)=o0(l) as t—oo. {7.3)
Let s be the integer such that s << A <{s-+1, and write § =A—s.
It follows from (7.1) and (7.2), by Lemma 8 (iii), that

[ #1008 < o0, i
and from (7.1), (7.2) and (7.3), by Lemma 9, that, for ¢ > 1,
%8) _ED (w2~ $O(w) du = —i(0). (7.5)
Now assume that
r P (1) | dt < oo (7.6)
and )
f 1| gOH0(t) | dt = 0. (7.7)
Tt follows from (7.4), (7.5), and (7.6), by Lemma 10 (iii), that
ﬁ) f (u—t 1O () du = (—1)1(t) (E=>1). (7.8)

As a consequence of (7.6) and (7.7) we have

2 g ’ il txa
and hence it follows, by Lemma 1 with ¢(¢) replaced by £ ¢™(¢) and f(¢) by
tg(t), that there is a function g(f), such that

g9(t) is absolutely continuous, g(1)=g¢'(1)=...=¢¥(1)=0, (7.9)
5 tg(¢t)dt is convergent (7.10)
1
and
G0
j g(t) g™ (8) dt = 0. (7.11)
1
We now define, for { >1,
J@) = I,4129%0(). (7.12)
Then it is familiar that, in view of (7.9),
Ja(t) = g(o). (7.13)
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It follows from (7.10) and (7.13), by Lemma 6, that

Smf(t)dt is summable (C, A). (7.14)

1

Consequently, by the second hypothesis,

rf(t)cﬁ(t)dt is bounded (C). (7.15)

b

On the other hand we have, in virtue of (7.13), (7.8) and (7.1),

ot g0 )du= s | #0w) du [ w—ortsya

rza j f(t)cltj u— 1 O () du

X —ls+1jf(t () di— F}A)jf()dtj (Ut M) du (2> 1). (7.16)

It follows from (7.6) and (7.14), by Lemma 11 with ¢(¢) replaced by
#™(t), that the final repeated integral in (7.16) is o(1) (C, s+1) as x—co.
Hence, by (7.11) and (7. 16), in contradiction to (7.15),

j f(t)é(t)dt is not bounded (C).

Therefore the assumption is false, and thus, since ¢(t) satisfies the
hypotheses with A replaced by 8+4r (r=0, 1, ..., 8),

D
if j 1| g64(t) | dt < 00 then j B S0 [dE < 0o (r=0, 1, ..., 8).
1

The result now follows in consequence of (7.4).

Second version*. We note that ¢(¢) in this case satisfies the hypotheses
of the first version. Result (ii) follows and, as before, there is an absolutely
continuous function () and a number I, such that

Q) P(t)=o(t), P(t)—l=o0(1) as t—>co and (ii) 5 — {(t) l}‘dt<co

* cos (

It is familiar that S —ﬁ%t) dt is bounded (C, 0) but not summable

().

1

* Of. L. 8. Bosanquet, Jowrnal London Math. Sec., 20 (1945), 47.

—
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It follows from (i)’ and (ii)’, by the second version of Theorem A with
A=0 and f(¢) =" cos (logt), that

S c_os (log?) {¢(t)—0}di is summable (C, 0).
3
Thus, in view of the second hypothesis of the theorem,
j Mdt is summable (O),
AL
which is only possible when [ = 0.
This completes the proof of the theorem.
In conclusion, I should like to record my sincere thanks to Dr. L. S.

Bosanquet for his helpful suggestions and criticisms.

University College,
London.
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