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The Effect of Boundary Conditions and Mesh Size
on the Accuracy of Finite Difference Solutions of
Two-Point Boundary Problems

By Davip BorwEeIN and ANDREW R. MircrELL, St. Andrews, Scotland?)

1. Introduction

In a recent communication, Fox and MiTcHELL [1]2) showed that in certain
problems, provided the finite difference interval is chosen with sufficient care,
boundary value methods give good results when step-by-step solutions are
unstable. The purpose of the present paper is to examine critically the accuracy
of boundary value techniques based on finite difference methods as applied
to the numerical solution of ordinary differential equations with two-point
boundary conditions.

Fox [2], using the method of matrix inversion, examined this problem in
some detail. In the present paper, matrix methods are not used. Instead, exact
solutions of the finite difference replacement of the chosen differential equation
are obtained and compared with corresponding exact solutions of the differen-
tial equation for a variety of mesh lengths and two-point boundary conditions.

In addition, the accuracy of approximate numerical solutions of the differ-
ence equation is examined. The latter solutions can be obtained either by an
iterative process such as relaxation or by direct methods of solution of the
associated set of simultaneous equations.

2. Conditions for Which the Difference Equation Has No Solution

Consider the differential equation

dzy
dx?

. d
+i = +ky =gl (1)
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over the range 0 < x =< L, with j and % constants and g(x) an arbitrary _func—
tion of x. If the range is divided by N internal nodes, distance h apart, a simple
finite difference replacement of (1) is

“3’r+z+53’r+1+0%=f¢ [7’:-'0,1,2,...,(N—-1)], (2)

where a=1+7h/2, b=kh —2,¢= 1—ih2 fp=neg{r+1) h} anld Vs
Yri1s Vesp are the values of y at x=7h, (r + 1) B, r+2) R resplectwely.
Throughout the paper, the values h = -+ 2[j, for which (2) becomes a first order
equation, are excluded. A solution of (2) is

y0=A+B, (3)

Ypog =AM+ 4 B‘u‘n+1+%. fi# Z(W‘Mf)fnﬁr (0Zn=N),
’ r=0

where A, u are distinct roots of the auxiliary equation a xz_—{—. bx+c=0, and
A B are constants to be determined by the boundary conditions.

’ Tt is convenient at this stage to derive certain relationships involving 4 and
w, which are used throughout the paper. We select

—h (B — A ag)" g (0 g
A= Za = man e 2a :

where A + u = —bjaand A p = c/a. Three cases are (_:onsidered.:
(1) 4, p complex: Put 2 = (c/a)'® &9, p = (c[a)® e, to obtain the result

XS—MS:Zi(TZ-)W sins 0, (4)

where s is a variable.
(2) A, p real (A > 0): Put AMp = €%, to get

2 (i)f’z sinhs§ (A>0,u>0),
g (52)
Hor c\s2 . 7
e (E) sinhie @ (1<=0, p=2 1) .

(3) 4, p real (A < 0): Put — A = ¢*%, to obtain

2 (_i)sf2 sinhs 6 (seven),
ls _ #s — . (5b)
2 (ﬁ.i)sﬁ coshs 6 (s odd) .
a
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Two different types of two-point boundary conditions are considered:
(I) y = 0, Y at x = 0, L. In this case, the solution given by (3) becomes

1 1 . 9 T
y“;'mrg(ﬂ — 47 fn_s
Yner1 = }»N+l—,wN+1 (Aﬂ-"l*!u’an} (6)
1 1 i
+ a Z—MT;O‘(ATJ‘MV) f’n—r:

where 0 < # < N. No solution of (6) exists in general if

AN+1 N+1=O_

—u (7)

Using (4) and (5) with s = N + 1, it is seen after some manipulation that (7) is
satisfied only if 4 and u are imaginary and

pr=2[1—(1- -3: 2 hZ)”z cos—KH—] K=1,2...,N). (8

Mesh lengths for which the difference equation has, in general, no solution are
said to be critical.

(IT) y=0at x=0, and dy/dx +av=F at x= L. The derivative dy/dx +ay=f
at x = L is replaced by the finite difference expression

2y + (b—2a0h) vy, =Rg{(N+1h—-2afh.
The solution given by (3) then becomes
1 H

A—u Z(l:r_.u?) fnf'r: (9)

r=0

1
Yasr =4 (An+1— pntl) 4 —.

where

r=0 a r=0

1 b & ey =t
In—2aBh— G [(EZah)Z(x*M*)fN_,+(1+— Z(zu,ur)f‘\,_l_,
Ai—

b—2aah) (AN — @V ) 4 (a+ o) (A — )
and 0 < » =< N. Solution (9) does not in general exist if
—2aah) P —py¥"* Y+ @t (W —uM)=0. (10)

If 4 and y are imaginary, (10) is satisfied if the mesh length % satisfies the rela-
tionship

=21 (1-Lpp)PesEI=P] (x-1,2..,N, 1)
4 N+ 1
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where {k (4 — R RY) — o)1

tang = = i .
e g o 2 _
2(1 4;2k2)a+2(kk 1)

1f 4 and p are real, then (10) takes the form

[bﬂ (bz,4a6)112]N+1 _2acah+b(l—c)— (B —4ac)'? (12)

BT (- 4ao® T 2acaht+b(l—c) + PP—4a0)’

e b2 >> 4 g c. In order to illustrate the existence of mesh lengths satistying

I
zﬂl’g; consider the case | = 0. If & 42 > 4, (12) can be solved to give
2 sinhy
B g (N+1)’ (13)
where 2 2 A
0= and » = cosh1——,

nd where for a prescribed value of N, there is a value of 0 > 1/(N + 1) cor-

esponding to any value of kY2 4 > 2. If £ < 0, (12) can be solved to give
2 coshv
0= ~GmhZ N+ T (14)
where __p)1s2
6 == (jlﬂ% a.l‘ld VY= Sinh_lL' k; h )

d where for any value of N, there is a negative value of § corresponding to
any value of (—.’;5}1"2 h > 0.

3 Correspondence Between Exact Solutions of the Differential and
' Difference Equations

In the previous section, critical values of the mesh length are given for
which the difference equation has in general no solution. These critical lengths
depend on the coefficients of the difference equation and the boundary conditions
of the problem. Now the range of the problem is given by

I—{N+1h (15)

od 50 corresponding to each critical mesh length there is a critical range of
o oblem given by (15), for which the difference equation, applied at N internal
f}des, has in general no solution. In the present section, the differential equa-
. n is examined for critical ranges, and the latter compared with the values
tlgtaiﬂed in the previous section for the difference equation.

: The differential equation (1) has solution

y = €I [4 (FRE | B m AR | py) (16)
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if 72/4 > k, and

1/2

y = g—iuf [A sin(k - % 512) x+ B cos(k — % jz)llz x] + plx), (17)
if j2/4 <k, where in each case p(x) is a particular integral of (1) and 4, B are
constants to be determined by the boundary conditions.
(I) If y = 0, Y at x = 0, L, the differential equation has no solution in general,
if 72/4 < k, when

K

MRL= T o (K=1,2,..). (18)
=)

Now returning to the difference equation, if (15) is used to eliminate %, (8) can
be solved to give

4k 32 L# iz KT . K I 8k (2F 1/2

_ KI 4k ., KIT 12
= COS Tﬁ {(‘*]’E- o ]_) — SIn T—‘r—l} . (20)

If & > 42/2, a unique solution exists for L for each pair of values of K and N.
This is obtained from (19) with the positive sign. For fixed K, as N tends to
infinity, each value of L tends to the corresponding critical length of the differ-
ential equation given by (18). If £ <C 42/2, it follows that 0 << (4 kfj> — 1) <1
and so from (20), for prescribed K and N, the number of values of L is 0, 1,
or 2 depending on K and N. Provided N is sufficiently large, however, there
are two values of L for each K. The value given by (20) with the positive sign
again tends to the corresponding critical length of the differential equation,
and the other value tends to infinity, as N tends to infinity.

The following table illustrates the manner in which a critical range of the
difference equation approaches the corresponding critical range of the differen-
tial equation as N tends to infinity. For convenience, the values j =0, k=9
are chosen.

Values of Critical Range

1
g 3 7 15 31 5 Kl
1 1-0204 1-0408 1-0458 1:0464 1-0472
1-8856 2-0408 2:0810 2-0915 2-0944
3 2-4636 29632 30963 | 31302 31416
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(IT) If y = 0 at x =0 and dy/dx + a y = f at x = L, the differential equa-
tion has no solution in general when

12 T — —
AUz L (1 1 '%/fa)” (K = Dyl (21)
7
where
e
tang i
T

if 12/4 < k, and no solution in general when

sppnp _ 2a—7— (P — 4 k)2

= s
Zo— 7+ (j2— 4R

(22)

if j2/4 > k. By comparison with (I), it seems probable that a critical range of the
difference equation computed from (11) approaches the corresponding critical
range of the differential equation given by (21) or tends to infinity as NV tends
to infinity. Consider now critical ranges of the difference equation obtained
from (12). Suppose first j2/4 < %, then there are values of & for which (12)
yields no critical ranges for any N. For any other value of «, it seems likely
that there is a corresponding critical range Ly for all sufficiently large V. It
then follows that

Loy = E(J\rkiﬂ (fc - 71‘- ?_2)1,‘2,

and hence Ly tends to infinity as N tends to infinity. If y2/4 > %, however, the
position is more complicated. Again there are values of & for which (12) fails
to vyield a critical range. For any other value of « it seems that for each suffi-
ciently large N, there are two possible critical ranges, one of which tends to the
corresponding critical range of the differential equation given by (22}, and the
other tends to infinity as V tends to infinity.

4, Behaviour of Solutions Near Critical Points

Three examples are now given of corresponding solutions worked out with
ranges which are nearly critical for either the difference or the differential
equation. In all examples, the coefficients of the difference equation are exact,
and the value N = 3 is chosen in order to reduce the computation. The differ-
ential equation in all examples is

dy

S thy=kx (>0, (23)
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which, although simple, is adequate to illustrate some of the results of the
previcus section.
(1) In the first example the boundary conditions are y =0, Y at x =0, L.
The solution of the difference equation is given by (6) with a = 1, where
hop=1— g ki tikeh(1— 4 rn)",
and

fs=(+1)kk (s=0,1,...,N).

Choose Y2 b = 0-765, a value close to the critical value 2 sinz/8 for the case
of three internal nodes, 'and the solution becomes

vy = — 44477 L + 445-02 Y,
yy = —629:10 L + 62960 Y,
Yy = —444.97 L + 44572 Y,

where vy, V3, ¥4 are the values of y at the three internal nodes. The solution
of the differential equation is given by

Y == L .
= sinaiep S0 RU2 x L x|

with 22 . = 3:06, and so at corresponding points,

y,=— 82477 L + 849777V,

y, = —117598 L + 12:2598 Y,

yg=— 84409 L + 9:19097Y .
(2) The boundary conditions of the previous example are retained, but this
time a range is chosen which is close to a critical range of the differential equa-

tion. Choose kY2 L = 3-14, which is close to the critical value m, and the solu-
tion of the differential equation yields

y, = —443-16 L + 44341 Y,
y, = — 62685 L + 62735 Y,
y= —44338 L + 44413 Y.
The solution of the difference equation with k"2 4 = 0-785 gives at correspond-
ing points .
yp= 87352 L — 84852Y,
yy = 122416 L —11-.7416 Y,
v, = 85126 L — 7-7626 Y .

Il



228 Davip BorweiN and ANDREW R. MITCHELL ZAMP

In the above two examples, it should be noted that although the solutions
disagree violently for general Y, there is exact correspondence if ¥ — L.. The
reason for this becomes evident when the solutions of the difference and differ-
ential equations are rearranged for general N to give

Y- L
Yol = “N71 N1 (At — ) + (n + 1) &

and
Ynir = <rrarsin(n 4+ 1) BBk 4 (4 1) &

respectively. Thus in examples (1) and (2), although the_ range (?f the pr(.)blem
may be nearly critical for either the difference or the differential equation, a
fortunate boundary value ¥ may still enable reasonable agreement to be ob-
tained between the exact solutions.

(3) In the final example, the boundary conditions are v = 0 at. = 0 and
dyldx + o« y = at x= L. The solution of the difference equation is given by
Q) witha=1,b=FkFh— 2,

1 T .
Ap=1—g ki L Bh(zrh—1)",
and
f=G6+1 kA (s=01,...,N).

Choose £'?h = 25 and § = 1-5, values which almost satisfy (13) and so this
example is worked out near critical conditions of the difference equation. The
solution of the difference equation for N = 3 is

Y,=— 2175 + 2568,
Y,= 9250 — 10884,
Y, = — 37125 -+ 43688,
Y,= 148550 —17476 8,

where Y, =4y,/L (r=1,...,4). The solution of the differential equation (23) i

B—1+al)

_ in B2 X,
¥= SN2 L | B2 coshl2 I sm X+

and so the corresponding values are
Y= 263023 —0-19179 8,
Y, = —0-61205 + 0-3073 B,
Y= 5-55507 —0-3006 f,
Y,= 251808 -+ 0-17434 8.
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In general, the lack of agreement between the two solutions is even more marked
than in the previous examples. However, the solutions correspond exactly if
A = 85, and so even although the values of 242/ and § are near critical values
for the difference equation, a fortuitous value of f# may still enable reasonable
agreement to be obtained between the exact solutions of the difference and dif-
ferential equations.

5. Errors in Approximate Solutions of Finite Difference Equations

So far, numerical solutions of the difference equation (2) have been obtained
directly from the exact solution (3). In practice, however, an exact solution of
the difference equation is rarely available, and approximate numerical solutions
are obtained either by an iterative process such as relaxation or by direct me-
thods of solution of the associated set of simultaneous equations. The accuracy
of such numerical solutions of (2) is now investigated.

The error equation corresponding to (2) is

&t benteeg=R, [r=01,2 .., (N-1)], (24)

where ¢, &,,,, €,,, are the errors in Yr» ¥ri1r Yrpo Tespectively and R, is the
residual at the ( + 1)-th node. Residuals exist for any approximate numerical
solution of (2), whether it is obtained by an iterative process such as relaxation
or by a direct method. A solution of (24) is

fo=4+B, (25)
1 1 o ;
8n+1:Afi"“+Bu”ﬂ+;'m§(ﬂr—m R,, 0=n<N),

where A, B are constants to be determined by the boundary conditions,
Consider first the case where the value of the function v is given at both
ends of the range. If the boundary values require no rounding off, then

& =¢ty.1=0,
and so (25) yields
N

n Z(,V - ‘u"') RN*"
B e
r=0 -

O=n=N-1).

If A, p are imaginary, it follows from (4) that the coefficients of the residuals
may be large in modulus when either # approximately satisfies (7) or % is near

ZAMP X/15
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the value 2/;. In the following two examples, the errors given by (25) are evalu-
ated for j = 0 and N = 3. ‘

(1) In the first example, £ 2 = 0-765, and the errors at the internal nodes
are respectively

& = —[44573 R, + 629-61 R, + 44502 R,] ,
gy = —[629-61 R, + 890-75 R, + 629:61 Ry},

£ = —[44-502 R, + 629-61 R, + 44573 R,] .

The errors are now examined in relation to the corresponding values of v ob-
tained from the exact solutions of the difference and differential equations in
the previous section, and two distinct cases arise. If Y is approximately equal
to L, the exact solutions are in good agreement, but approximate numerical
solutions of the difference equation are likely to involve substantial errors. On
the other hand, if Y is not nearly equal to L, the exact solutions are in poor
agreement, but the ratio e/y in an approximate numerical solution is likely to
be considerably reduced.

(2) In the second example, £* i = 0-785, and the errors are respectively

gy = —[ 77623 Ry + 11.7418 R, + 84852 R,],
g, = —[11-7418 R, + 16:2475 R, + 11-7418 R,] ,
g3 = —[ 84852 Ry+ 117418 R, + 7-7623 R,] .

These errors are comparatively small, and so the approximate numerical and
exact solutions of the difference equation are likely to be in good agreement
for any boundary value Y.

If 4, u are real, it follows from (5) that the errors given by (26) are unlikely
to be large, provided 4 is not near the value 2/j.

Consider next the case where the values of the function and its derivative

?re given, one at either end of the range. The appropriate error equation, from
(25), is ’
@ (A= p) naa = 3 (= ) Ry, + C (I — o) (27)
r=0
where

-~ N N—1
Za(d—p) Ry—|(b—2aah) (2" — u) Ry_, + (a + o) D r—u Ry,

s 7=0 r=0

(b—2aah) u}w-liuNﬂ) + (@a+o (AN — ) 2

and R, (Q lg ¥ g N) is the residual at the ( + 1)-th node. The magnitudes of
the coefficients in (27) are obtained using (4) if A, u are complex and (5) if 4,
w are real. The coefficients are in general considerably greater in modulus when
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A, w are real, and may differ widely in magnitude, particularly when the range
of the problem is near a critical range of the difference equation, or 4 is near
one or other of the values - 2/f. As an illustration of this unequal ‘weighting’
of the residuals, consider an example where N = 3,7 =0, U2 = 2:5,8 =15,
and the boundary conditions arey = 0at x = 0and y’ + «y =fatx=L. The
values of A, u are —1/4 and 4 respectively and the errors, using (27), are given
by

& = 4R, — 16R, + ©64R, — 256R;,

gg=— 16R, + 68R, — 212R, + 1088R;,

gg= 64R, — 212R, +1092R, — 4368 R;,

6= —256 R, + 1088 R, —4368 R, + 17476 Ry,

where the coefficients are exact. It is clear that the value of R, has a much
greater influence on the errors than the value of Ry, and consequently in any
approximate numerical method of solution of the difference equation, the
emphasis must be placed on reducing R, as much as possible. Unequal ‘weight-
ing’ of the residuals in the expressions for the errors, as illustrated in this
example, may complicate matters considerably as far as direct numerical
methods of solution of the difference equation are concerned, since in such
methods it is difficult to attempt to eliminate residuals in a prescribed order.
In iterative methods such as relaxation, however, a prescribed order of pro-
cedure for eliminating residuals is an advantage. In this particular example, in
which j = 0, the residuals which must be eliminated occur at the nodes near
the end where the derivative is specified. This is likely to be so for general §
provided the mesh length is not near the value —2f;.

6. Concluding Remarks

In the present paper, it is shown that there are several major difficulties
which may confront the computor who is attempting to solve an ordinary dif-
ferential equation with two-point boundary conditions by difference methods.
Although the differential equation examined here is of a particular type, never-
theless, the difficulties described are certain to exist for many other general
types of equation.

In the expressions obtained for the errors in the numerical solution in terms
of the residuals, some of the coefficients are large in modulus while others are
relatively small, when the range of the problem is near a critical range of the
difference equation. This unequal ‘weighting’ makes it essential that the re-
siduals with large coefficients should be reduced as much as possible, a task
which is more easily accomplished by an iterative rather than a direct process.
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Finally, in the solution of initial value problems by difference methods, it
1s known that the chance of serious errors arising in numerical solutions is in-
creased considerably if the differential equation is replaced by a higher order
difference equation (TopD [3], RUTISHAUSER [4], MITCHELL and CRAGGS [5D).
It seems likely that the use of higher order difference replacements will also
produce additional complications in the numerical solution of two-point boun-
ary problems.
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Zusammenfassung

Es werden inhomogene Randwertaufgaben bei einer gewohnlichen linearen Dif-
ferentialgleichung 2. Ordnung mit konstanten Koeffizienten untersucht. Es gibt
dann bekanntlich Ausnahmefille, wo die Linge des Grundintervalls kritisch ist,
das heisst die Randwertaufgabe im allgemeinen keine Lésung besitzt. Auch wenn
die Differentialgleichung durch eine Differenzengleichung approximiert wird, hat
letztere kritische Intervalle, und es zeigt sich, dass in der Nihe eines kritischen
Falles die Losungen der Differential- und der Differenzengleichung erheblich von-
einander abweichen kénnen. Es wird ferner bewiesen, dass bei Verfeinerung der
Maschenldnge die kritischen Intervalle der Differenzengleichung gegen diejenigen
der Differentialgleichung streben oder iiber alle Grenzen wachsen.
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