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1. Introduction

Agnew (1) has defined a binary transformation 7'(a), with « real, as one

which takes the sequence {s;}, =0, 1, ..., into the sequence {s,(1, «)} where
1 as, for ¢=0,
allsoy= os;+(1—a)s;, for i=1,2, ... .

An r-fold application of T'(«) yields the transformation 77(x) which takes
{s;} into {s,(r, &)} where, in general, if 5,(0, «)=s, and s,(r, «)=0 for negative
integral n then, for all n and [0,
Sn(l+1, OC) =“8n(l= OC) +(1 "'a)'snfl(l’ 0")-
It easily follows by induction that
k=0

S i3 (,:) (L= ) s, xlls ), (i)

with the convention that 0°=1.
Putting I=0, ¢=1/x—1, (x#0), we obtain

w =@t 5 () e (i
and
salny ) =g+ 3 (}z) g""s;. (i)

If s,(r, «) tends to a finite limit s as » tends to infinity then {s;} is said to be
summable T7(x) to s. If s,(n, ) tends to a finite limit s as n tends to infinity
then {s;} may be said to be summable 7 (x) to s. From (iii) and Hardy (2),
equation (8.3.4), it follows that summability 7 (x) is equivalent to Ruler
summability (#, ¢). It should also be noted that summability 7%wx) is
equivalent to convergence.

We shall use the notation P=@ to mean that any sequence summable
(P) to s is necessarily summable (@) to s, and P<@ to mean that both P=-Q
and Q=-P.

2. Relations between 7"(x) and T ()

Knopp (5) has shown that for 0 <a <1 convergence to s implies summability
(B, 1fa—1) to s, i.e. that T%«)=T"(a); and from a general result on com-
* pounded matrices Agnew (1) has deduced that T"(a)=-T"(x) for r20, 0<a<1.
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= W n fi idered
i ili Hutton (3) who first considere
of this result was familiar to . 0 first :
'fhhe fc]!“’b’"??)t>L ro%cess early in the nineteenth century without giving rigorous
e oyl 1Y 3

proofs. The following proof is more direct than Agnew’s.

Theorem. For =0,
(i) Tre)=>T(x) for any o5
(ii) Tr{o)=T" (o) if and only if 0<o< 15

Proof. (i) is trivial. &
mable
le—1>0 and suppose that {8, ) is sun; e

ii ) . Let g=1, ;
T (l)l)tf Zﬂic;g;gymg the (B, q) process, which is known (see e.g. (2), g
to (ge regu'lar for g0, to the sequence s,(r, &), Spialls o)y Spyalls &) oo

converges to s, We get that
i ¥ —00.
1 X qr 8 (T, #)—8 B8 B
gl & e (k) r

] "
In virtue of identity (i) with r, I and n replaced by, 7 and n-+r respectively, 1
n

is summable T {«) t0 8. : 5
fouol::;i:;?;{snifmsn=(l——2/oc)“ then the T () transform of {s,} 18 {(—1) e

d for a>1, {sa} I8 summable T9(e) and so qummable T*(x), but is not sum-
and 10 s 1°n

mable T («). : 3 form is {(1—a)"}-
: ... then its T (x) transio
If {s,} is the sequence 1 =050, d 5o summable T7(x), to 0; but the

is summable T%a), an .
o evziyis ’siig}rr:able T7=(0) to 1 and is not summable 7% (x) for any a.<0.
gequence

The condition 0<a <1 is therefore necessary.

3. Norlund means, etc.

The following results will be used later :

lex
+£0) are fixed real or comp
bota's theorem. (6). If @y, t, - a(ay
471;:?30 then, in order that should tend lo U(@y+ay+--+3x) whenever
N 3
2, tends to e

%a;%.kj ﬁz@jg t—al: jkxn—i—ak:ck-_—o should lie within the wnit cw;ile. SR
A 1 ,

i IST 5r%uﬂd means. Suppose that p,#0, Bp= PotPyt- - +Pa WhETE Py

and that Pﬂ%O for n> M.
N

For ng<M let &= k§0 Pkl Pnt

) P
and for nz=M let i,= IED D158/ P
s,} is summable by the Néorlund method (N, Px)
sn'to infinity. In (2), Hardy imposes the further
but this is too restrictive for our purposes.

We shall say that sequence {
to s if t, tends to s as 7 tend
condition p, =0 (and takes M =0),

1. it s mecessary and sufficient that all roots
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It follows from formula (ii) that for w30 the 7'7(a) transformation is a
Norlund transformation with

y 7
M=y o {(Tb) PmP:I/oc—l, for 0<n<r,

y DPn

0 for n>r,
P,=(1+p)ifnzr,

and > Pt =(1+px)r.
n=0

It is also known (2, p. 109) that the Cesiro mean (C, r) with r>0 can be
expressed as a Norlund mean (&, p,) with

L r—1
M=0,p,= (”” 1) ~ 2 if >0,

r—1 I'(r)
ahc Po=1, p,=0(n=1,2, ...) if r=0.
] nr
F BO: n = —x) T el
or r ﬂé‘o pat=(1—x)""and P oD

The following simple extensions of Hardy’s theorems 16, 17, 19 and 21
can be established by using the methods of his proofs and (in the case of
theorem 17) a result due to Jurkat and Peyerimhoff (%, lemma 1).

Theorem 16. The Nirlund method (N, p,) is regular, i.e. the convergence
of a sequence to a finite limit tmplies its summability (N, p,) to the same limit,
if and only if there is a constant H independent of n such that

n
2 |p, | <H|P,| fornzM
r=0

‘mdiﬂn/Pn—*O @8 N—>Co.

Theorem 17. Any fwo reqular Norlund methods (N, p,), (N, g,) are
consistent ; i.e. if a sequence is summable (N, p,) to s and (N, g,) to | then s=t.

Theorem 19. If (N, p,) and (N, gq,) are regular and p(z)= X p,a",
glx)= X gz, q(x)/plx)= 2 k,a", then in order that summability (N, p,) of a
sequence, should imply its summability (N, q,) it is necessary and sufficient that

Z | koyP, | <H|Qy| for nzM,
r=0

where H ts independent of n, and that k,[Q,—0.

Theorem 21. A wnecessary condilion that two regular Nérlund methods
(N, p,) and (N, q,) be equivalent is that X | k, | and 2|1, | be finite, where
2 L= p(x)/q().

Corollary. Regular Nirlund methods (N, p,) and (N, ¢,,) cannot be equivalent
if p(x) and g(x) are rational and one of them has a zero, inside or on the unit
circle, which is not a zero of the other.
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In the case of the T7(x) process p(z) has a zero at x= —1/p=af(@—1) if
a£0; while 77(0)<T7(1), and for T7(1) p(x) has no zero. It follows from
the corollary that ifa <}, f<} and a# B then T () and T'%(B) cannot be equivalent

for any o, B, 7, 8.

4. Relation of T"(x) to the Cesaro and Abel processes
If (N, p,) is taken as the (C, s) process with s>0, and (N, g,,) as T"(at), then

k(z)=(1+pz)(1—2)% |kl P,~nsI'(s+1)

and Q,=«"" for nzr.

By theorem 19 it follows that, for §>0, summability (C, s) cannot imply
summability T7(«). In the reverse direction we have the following results :

a>}. By Kubota’s theorem a sequence which is T(x) summable to s
converges to s if and only if | (x— 1)/a| <1, ie. if and only if >3, Since the
Tr(a) transform is the T'(«) transform of the T™(«) transform it follows that
(O, 0)T"() for u>3.

a=4. Taking (N, p,) and (N, ¢,) as 7r(1) and (C, r) respectively we get
k(x)=(1—2?%~" so that

r—1
0 when n is odd.

[(“/Q‘H" 1) when = is even,
s

For large n, k,=0(n""), k,/Qn=0(1/n)=0(1), and
{| k| Pat..t]| bnl P}/@,=0(m"[n7)=0(1),
so that T7(3)=(C, ).

The result is  best possible ” in the sense that, for any integer v there is
a sequence which is summable T7(}) but which is not summable (C, r—8) for any
§>0. This is shown by considering the example §,=(—1)"n"[log n, the case
r—1 of which is due to Silverman and Szasz (7). Since s,zo(®n™?), 8>0,
the sequence {s,} is not summable (C, r—8).

If, however, s,=(—1)*f(n) where f(n) is a polynomial of degree m then
s,(1, })=(—1)"4{ fln) = fn—1)}=(—1)"g(n), where g(n) is a polynomial of
degree m—1. Hence

8y(7, %) = O(rnm—r)‘

Putting f(n)=n"+* (s a non-negative integer) gives
5 (1 (7) = Byree=0n)
k=0 k
from which it easily follows, on using the identity k=n— (n—k), that

2 (-1 (Z) ki(n— k) =0(n").

k=0
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Further, for n—2>r>1, r>%>0, we have

logn log (1—k/n)) -1
log (n—k) {1+ W}

li

5 (—1)¢ {log(l—k/n)
=0

log n } €+O{(n log n)="}

8
k k\2 kyr !
LHA 4y () 4, (E) +0(n~7)
where the A’s are bounded functions of n independent of k. It follows that if

L=(-1y2 £ (-1p (k) (n— k)" flog (n—F)

Il

then I,logn=0(1), so that I,-0. But I, is s,(r, }) for the sequ

fi= 1)"“"/1(13? n} ; hence this sequence is summable T"(%; to 0. by -

Othc:: :Wé;;e Gocic1 ; ;)eihzlls s;;z;:nzlgnrll:g ﬂ ’")(oai)] Iis trivially et}uiva,lent to convergence.
: ) , the sequence {s,} where s,=(1— 1

IZF; ;fu:tr?gizle T(x) to 0 and so is also summable T’”(oc]i to 0, but .Z(‘sﬂzyolll;s

on ergence | o'c/'(a— 1) | <1 so that {s,} is not Abel summable. Hence
a <3, «#0, summability T (o) does not imply Abel summability.

5. Ternary transformations

We may define 7'(x, 8) to be
: 3 the tern i i
St e SAE s s ary transformation which takes {s,}
8, =8y, 8] =us; +Ps, and
8, =08, +Bsp 1+ (1—a—P)s, o (n=2, 3, ...).

g,( folloivs immedia.‘.cely. that T'(x, 1—a) is equivalent to T'(x), and that the
i, B) transformation is a Norlund transformation (N, Pn) With M =2, py=a
n=pp=1-a—B, p,=0n>3), P,=1(n>2), px) :m+ﬁ:v+(l—ac—,83x2? ;

6. lzeiation ong(rx, B) to the (C, 0) and Abel processes
al aes ﬁﬁ())::x Iq;fxg—l-ls— ocSw ,f), and divide the (o, 8) plane into three disjoint
; 1> Sg, 85 be respectively the sets of poi i
(1) f(x) has no zeros in the region | z |;317, Rl
EQ) f(x) has at least one zero in the region |z |>1
3) f(x) has two zeros, one lyi i ’
5 ying on the circl = i
U S cle | z |=1 and the other in the
(@) It is trivially evident that T(0
: , 0)<=(C,0). Hence, by K :
T(x, B)<(C, 0) if and only if (a, B)eS,. : e
~ ,521)z ;f (e, )9)'98’2, there is a number s such that | s |>1 and f(s)=0. Hence
ik as radius of convergence | 1/s|<1, and so the sequence {s”} is not
summable. On the other hand if s,=s" then s =s""%f(s)=0 so that
- -

{s"} is summable 7'(«, B) to 0. Th i
is : ; us summability T i
mability by Abel’s method for (x, B)eS,. ki
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imit the
i for (x, B)eSs, we delimi
i ioating the behaviour of T'(x, B) & e
B;forg' mv?%g atué%nt:eesz is the complement of S;US; it 18 sufficien
sets 8, &, and Op. 1
‘ : i t >3 0
conzl’%er O;ﬂg % :él;i ﬁf'ow that S, consists of the point (0, 0), the part B>4 of
e set S
i e d the region 2a+B>1, B<%. % e
the lf: ¢ “easoi]?fngeen that (0, B)eS; if and only if g=0 ;)r 5‘8 <>12
r i i >1, <3
prove that when «#0, («, B)eS, if and (())I;l}r(;i; 21?:;5 s l<1.2 -
i 8 &y, . _ e
s thlat]io—t—];; exi)ust 1be 2positive, for othe;rmse f(x) wouldHei\;e
i f(li: i f'(n_th)e_ range —l<wz<1 and another outside this range.
one real zero 1 :
. Since
& h 1<zz,=—1+(1—B)e<]l, s0 that 0<(1—pB)fa<2
Further, — 1Ly =
itive and so 2¢+B>1. il
ﬁ<(%.’.)mSmuStlosb: gzsjl—ﬁ>1 B<3%. Then a>0 and, asla,blc:t;, > boﬂll :ems
oo, iF th ) 1, both must lie in | 2 :
i os of f(x) are not real, . L iy
e 11f :)22 Zr{flrust li(ie in the range _1<z<1 and, since f( )
are real,
so must the other.
' i ly if
:(Ijglg(zEt‘B?:S and f(x) has non-real zeros and x, if and only
1 3 3

tyg=1= —1-+(1—B)fa, 4a> (B+2)%

1
- ivalent to 2a-+f=1, a>z. s if and only if
Whlﬁ?) wsﬁff;:}rm 1, («, B)eS, and f(z) has real zeros if and only

f(=1)=1-28=0, | 1 —p)fa—1|<1,

WI l(,‘,![ 18 6(!|l|vaiel| (0] B—_lz,oz>l|. Y
Iiell & S GonS’bSts ()f the Pa/rt 0(.>% OJ ﬂbe lbne 2'3 +‘8 — 1 afnd thﬂe pw.'t o= )
C 3

of the line B=4%.

7. Relation of T(x, f) to the Cesaro process in Sy

; il
(i) The segment o>} of the line B=1.
Here

1—2a m)
atpot(1—a—plat=a(l +2) (H %

the Cesaro
h 19 take (N, p,) to be the T'(x, B) process and (N, qn)
In theorem (N, Pn
(C, s) process. Then

k(x)_—-l/{a(l-—x) —1(1—2?) (1— 2“2;1 w)}

20—1 20—1 ac)g—l—...}.
=l et YA bar et ) {1+ et ( -
o

oL

If s= ]-: theﬂ

or0
1 ([20—1\" 2&—1)"'2+...+ (22—1)1 }
kn=a{(—_2?) +( 20, o

B

for Matematik, 2, (1952) 361.374.

See also T. A. A. Broadbent : An early method for summation of series, Mathematical
Gazette, 156 (1930), 5-11.

methods, University of Gincinnatti Report No. 11

(1917), 222.224.

Mathematics, 45 (1944), 347-357.
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Hence k,=0(1) if «>1 and | By | ~2n if a=%}  Also, @,=n-+1. All the
conditions of theorem 19 are satisfied if o«>%.  Hence for o> +T(x, 3)=(0, 1),
but there exists a sequence summable 1'(1, 1) which is not summable (O, 1),

If s=2 and ¢=} then k(x) =4(1—22)-2 and the conditions of theorem 19
are easily seen to hold, so that 7'(}, BH=(C, 2).

(i) The segment o>} of the line 2 +B=1,

With (N, p,) and (¥, qx) as the T'(a, B) and (C, 8) processes

k(z)=1/ {«(l—x)s (1+ l‘z“xﬂa)}

respectively,

o

=
= }C{l—«x)‘s(l-—ym)*l (1— ;'3,)

=(1—xz)-s 2.:0 {ay™+by=n)zn
where y={2¢—1 +iy/(4x—1)}/2¢ and a, b are constants. If s=1, then

L
ko= X' (ay"+by-1)=0(1)
=0
since y#1 or —1 and |y |=1. It follows that (o, B)=(C, 1) when w> 1,
200+F=1.
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