PRINTED IN GREAT BRITAIN

ON METHODS OF SUMMABILITY BASED ON INTEGRAL FUNCTIONS

By D. BORWEIN

Communicated by A. G. MACKIE

Received 2 May 1958

I. Introduction. Suppose throughout that

$$p_n \geqslant 0$$
,
$$\sum_{r=n}^{\infty} p_r > 0 \quad (n = 0, 1, \dots)$$
$$p(x) = \sum_{n=0}^{\infty} p_n x^n$$

and that

is an integral function. Suppose also that l, s_n (n = 0, 1, ...) are arbitrary complex numbers and denote by $\rho(ps)$ the radius of convergence of the series

$$\sum_{n=0}^{\infty} p_n s_n x^n.$$

If $\rho(ps) = \rho > 0$ and there is a function $p_s^*(z)$ such that

$$p_s^*(x) = \sum_{n=0}^{\infty} p_n s_n x^n \quad (0 \leqslant x < \rho),$$

 $p_s^*(x)$ is analytic for all positive x,

$$p_s^*(x)/p(x) \to l$$
 when $x \to \infty$ (through real values),

we write

$$s_n \rightarrow l(P^*).$$

If $\rho(ps) = \infty$ and $s_n \to l(P^*)$, we write

$$s_n \to l(P)$$
.

This defines the IF (integral function) methods of summability P^* , P. It is known ((5), p. 80) that P is regular, i.e. $s_n \to l(P)$ whenever $s_n \to l$; consequently P^* is also regular.

Suppose in what follows that

$$\mu_n > 0, \quad q_n = p_n/\mu_n \quad (n = 0, 1, ...).$$

Let $\rho(q)$ be the radius of convergence of

$$\sum_{n=0}^{\infty} q_n x^n = q(x),$$

and, whenever $\rho(q) = \infty$, denote the IF methods associated with the sequence $\{q_n\}$ by Q^* , Q. Suppose also that N is an arbitrary non-negative integer.

On methods of summability based on integral functions

The following theorem has been proved elsewhere (Borwein (1)).

THEOREM A. If

$$\mu_n = \int_0^1 t^n d\chi(t) \ge \delta \int_0^1 t^n \left| d\chi(t) \right| > 0 \quad (\delta > 0, n \ge N)$$

where $\chi(t)$ is a real function of bounded variation in [0, 1], then $\rho(q) = \infty$ and $s_n \to l(P)$ whenever $s_n \to l(Q)$.

In this paper two further theorems of the same type are proved and are used in conjunction with Theorem A to obtain inclusion relations between some special IF methods of summability. The first of these theorems is

THEOREM 1. If $\chi(t)$ is a real function of bounded variation in $(0,\infty)$ such that

$$\infty > \int_0^\infty t^n d\chi(t) \ge \delta \int_0^\infty t^n |d\chi(t)| > 0 \quad (\delta > 0, \, n \ge N)$$

and if

$$\mu_n = \int_0^\infty t^n d\chi(t) \quad (n \geqslant N),$$

then $\rho(q) = \infty$.

If, in addition, $s_n \to l(Q)$ and $\rho(ps) = \infty$, then $s_n \to l(P)$.

Before formulating the second theorem we define a class Ω of functions $\phi(z)$ as follows:

 $\phi \in \Omega$ if there are positive numbers Δ , δ and a non-negative integer N such that

 $(\Omega_1) \phi(z)$ is analytic in the region |z| > 0, $-\Delta < \arg z < \Delta$; and, when $\tau \to 0+$, $T \to \infty$, the integrals

$$\int_{\tau}^{1} |\phi(t e^{i\theta})| dt, \quad \int_{1}^{T} |\phi(t e^{i\theta})| dt$$

tend to finite limits uniformly in the interval $-\Delta < \theta < \Delta$;

 $(\Omega_2) \phi(t)$ is real for t > 0 and

$$\infty > \int_0^\infty t^n \phi(t) \, dt \geqslant \delta \int_0^\infty t^n \, |\phi(t)| \, dt > 0 \quad (n \geqslant N).$$

Theorem 2. If $\phi \in \Omega$ and

$$\mu_n = \int_0^\infty t^n \phi(t) \, dt \quad (n \geqslant N),$$

then $\rho(q) = \infty$.

If, in addition, $s_n \to \llbracket l(Q) \text{ and } \rho(ps) > 0$, then $s_n \to l(P^*)$.

2. Proofs of Theorems 1 and 2. Suppose in what follows that

$$p_n = q_n = 0 \quad (0 \leqslant n \leqslant N);$$

it is evident that this leads to no real loss in generality in either theorem.

Let $\chi(t)$, μ_n satisfy the hypotheses of Theorem 1. Then, since

$$\infty > \int_0^\infty t^{N+1} |d\chi(t)| > 0,$$

there is a number a > 0 such that

$$\infty > K = \delta \int_a^\infty |d\chi(t)| > 0,$$

 $p_n \geqslant \delta q_n \int_a^\infty t^n |d\chi(t)| \geqslant K a^n q_n \geqslant 0. \tag{1}$

25

Suppose now that

and so

$$q_s(x) = \sum_{n=0}^{\infty} q_n s_n x^n$$

is an integral function and that $\rho(ps) = \rho > 0$. Then

$$\sum_{n=0}^{\infty} p_n s_n x^n = \sum_{n=0}^{\infty} s_n x^n q_n \int_0^{\infty} t^n d\chi(t) = \int_0^{\infty} q_s(xt) d\chi(t) \quad (0 \leqslant x < \rho); \tag{2}$$

the inversion being legitimate since, for $0 \le x < \rho$,

$$\infty > \delta^{-1} \sum_{n=0}^{\infty} p_n \left| s_n \right| x^n \geqslant \sum_{n=0}^{\infty} \left| s_n \right| x^n q_n \int_0^{\infty} t^n \left| d\chi(t) \right| = \int_0^{\infty} \left| d\chi(t) \right| \sum_{n=0}^{\infty} q_n \left| s_n \right| (xt)^n.$$

Further, taking $s_n = 1$, we get

$$p(x) = \int_0^\infty q(xt) \, d\chi(t) \geqslant \delta \int_0^\infty q(xt) \, |d\chi(t)| \quad (x \geqslant 0). \tag{3}$$

Proof of Theorem 1. Since p(x) is an integral function, it follows from (1) that $\rho(q) = \infty$. We now suppose that $s_n \to l(Q)$ and that $\rho(ps) = \rho = \infty$. In view of (3) we have, for x > w > 0,

$$\begin{split} \left| \frac{1}{p(x)} \int_0^\infty q_s(xt) \, d\chi(t) - l \right| \\ & \leqslant \frac{1}{p(x)} \left| \int_0^{w/x} \{q_s(xt) - lq(xt)\} \, d\chi(t) \right| + \frac{1}{p(x)} \left| \int_{w/x}^\infty \left\{ \frac{q_s(xt)}{q(xt)} - l \right\} q(xt) \, d\chi(t) \right| \\ & \leqslant \frac{1}{p(x)} \int_0^\infty \left| d\chi(t) \right| \sum_{n=0}^\infty q_n(|s_n| + |l|) \, w^n + \delta^{-1} \overline{\operatorname{bd}}_{v \geqslant w} \left| \frac{q_s(v)}{q(v)} - l \right|. \end{split}$$

Since $p(x) \to \infty$ and $q_s(x)/q(x) \to l$ when $x \to \infty$, it follows that

$$\lim_{x\to\infty}\frac{1}{p(x)}\int_0^\infty q_s(xt)\,d\chi(t)=l,$$

and hence, by (2), that $s_n \to l(P)$.

Proof of Theorem 2. In view of conditions (Ω_2) on ϕ , the hypotheses of Theorem 1 are satisfied by $\chi(t) = \int_0^t \phi(u) \, du \quad (t \ge 0),$

and consequently, as above, $\rho(q) = \infty$. Suppose that $s_n \to l(Q)$ and that $\rho(ps) = \rho > 0$. Then, by (2),

 $\sum_{n=0}^{\infty} p_n s_n x^n = \int_0^{\infty} q_s(xt) \, \phi(t) \, dt \quad (0 \leqslant x < \rho).$

Since ϕ satisfies conditions (Ω_1) and $q_s(t)$ is continuous and bounded for t > 0, it is easily seen that, when $\tau \to 0+$, $T \to \infty$, the integrals

$$\int_{-\tau}^{1} q_{s}(t) \, \phi\left(\frac{t}{z}\right) dt, \quad \int_{1}^{T} q_{s}(t) \, \phi\left(\frac{t}{z}\right) dt$$

tend to finite limits uniformly in the region $-\Delta < \arg z < \Delta, C > |z| > 0$, where C is any positive number. Hence, by standard results ((6), §§ 2.84, 2.85), the function

$$p_s^*(z) = \frac{1}{z} \int_0^\infty q_s(t) \, \phi\left(\frac{t}{z}\right) dt$$

is analytic in the region |z| > 0, $-\Delta < \arg z < \Delta$. Also, for x > 0,

$$p_s^*(x) = \int_0^\infty q_s(xt) \, \phi(t) \, dt,$$

and so, as in the proof of Theorem 1.

$$\lim_{x\to\infty} p_s^*(x)/p(x) = l.$$

It follows that $s_n \to l(P^*)$.

3. Lemmas. We first show that

$$\phi(z) = z^{\alpha} e^{-\gamma z^{\beta}} \quad (\alpha > -1, \beta > 0, \gamma > 0)$$

is in the class Ω , it being assumed that for real λ , $z^{\lambda} = |z|^{\lambda} e^{i\lambda\theta}$ where θ is the principal value of arg z.

It is evident that ϕ satisfies conditions (Ω_2) . Also, $\phi(z)$ is analytic in the region |z| > 0, $|\arg z| < \pi/3\beta = \Delta$; and, for t > 0, $-\Delta < \theta < \Delta$,

$$|\phi(t e^{i\theta})| = t^{\alpha} e^{-\gamma t^{\beta} \cos \beta \theta} < t^{\alpha} e^{-\frac{1}{2}\gamma t^{\beta}} = M(t)$$

say. Since $\int_0^\infty M(t) dt < \infty$, we see that ϕ also satisfies conditions (Ω_1) ; and so $\phi \in \Omega$.

Next we prove three lemmas.

LEMMA 1. If $\alpha_r > 0$, $\gamma_r > \beta_r > 0$ (r = 1, 2, ..., k), then

$$\mu_n = \prod_{r=1}^k \frac{\Gamma(\alpha_r n + \beta_r)}{\Gamma(\alpha_r n + \gamma_r)} \quad (n = 0, 1, \dots)$$

satisfies the conditions of Theorem A.

Proof. Let $\alpha > 0$, $\gamma > \beta > 0$; then

$$\lambda_n = \frac{\Gamma(\alpha n + \beta)}{\Gamma(\alpha n + \gamma)} = \frac{1}{\alpha \Gamma(\gamma - \beta)} \int_0^1 t^n t^{(\beta - \alpha)/\alpha} (1 - t^{1/\alpha})^{\gamma - \beta - 1} dt$$

is totally monotone. It follows ((5),§§ $11\cdot8$, $11\cdot9$) that μ_n is totally monotone and hence that it satisfies the conditions of Theorem A.

LEMMA 2. If $\alpha > 0$, $\beta > 0$, $1 > \gamma > 0$, then

$$\mu_n = \frac{\Gamma(\alpha n + \beta)}{\Gamma(\gamma \alpha n + \gamma \beta)} \quad (n = 0, 1, ...)$$

satisfies the conditions of Theorem 1.

Proof. It has been shown by Good (3) that

$$\mu_n = \int_0^\infty t^n \phi(t) \, dt$$

 $\alpha\pi\phi(t) = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{\Gamma(\gamma n+1)\sin\gamma n\pi}{n!} t^{(n+\beta-\alpha)/\alpha},$

the series being convergent for all t > 0. When $t \to 0+$,

$$\alpha\pi\phi(t) \sim \Gamma(\gamma+1)\sin\gamma\pi t^{(1+\beta-\alpha)/\alpha}$$

and Good has proved ((3), p. 150) that, when $t \to \infty$,

$$\phi(t) \sim K t^a e^{-ct^b}$$

where

where

$$K = \{2\pi(1-\gamma)\,\alpha^{1/(1-\gamma)}\}^{-\frac{1}{2}}, \quad a = \frac{1}{2\alpha(1-\gamma)} + \frac{\beta}{\alpha} - 1,$$

$$b = \frac{1}{\alpha(1-\gamma)}, \quad c = (1-\gamma)\gamma^{\gamma/(1-\gamma)}.$$

It follows that $\int_0^\infty t^n |\phi(t)| dt < \infty$ (n = 0, 1, ...), and that there is a number $T \ge 0$ such that $\phi(t) > 0$ for $t \ge T$. Consequently

$$\mu_n = \int_0^\infty t^n \left| \phi(t) \right| dt - \int_0^T t^n \{ \left| \phi(t) \right| - \phi(t) \} dt,$$

and hence, since $T^n/\mu_n \to 0$,

$$\lim_{n\to\infty}\frac{1}{\mu_n}\int_0^\infty t^n\big|\phi(t)\big|dt=1.$$

Therefore

$$\infty > \int_0^\infty t^n \phi(t) \, dt \geqslant \frac{1}{2} \int_0^\infty t^n |\phi(t)| \, dt > 0$$

for all n sufficiently large; and so μ_n satisfies the conditions of Theorem 1 with

$$\chi(t) = \int_0^t \phi(u) \, du.$$

LEMMA 3. If α , β , γ , κ are positive, then

$$\mu_n = \kappa \gamma^{-\alpha n} \Gamma(\alpha n + \beta) \quad (n = 0, 1, ...)$$

satisfies the conditions of Theorem 2.

Proof. In order to establish this lemma we have only to observe that

$$\alpha \mu_n = \kappa \gamma^\beta \!\! \int_0^\infty \!\! t^n t^{(\beta-\alpha)/\alpha} \, e^{-\gamma t^{1/\alpha}} \, dt, \label{eq:delta_n}$$

and that

$$\phi(z) = z^{(\beta - \alpha)/\alpha} e^{-\gamma z^{1/\alpha}}$$

is in the class Ω .

4. Special inclusions. (i) Let

$$p_n^{\alpha} = 1/\Gamma(\alpha n + 1) \quad (\alpha > 0, n = 0, 1, ...),$$

and denote the IF methods of summability associated with the sequence $\{p_n^{\alpha}\}$ by P_{α}^* , P_{α} . P_1 is then the Borel exponential method.

In a recent paper (7) Włodarski stated the following result:

If
$$\alpha = 2^{-k}$$
, $\beta = 2^{-k-h}$ $(k = 0, 1, ...; h = 1, 2, ...)$, and if the series

$$\sum_{n=0}^{\infty} s_n t^{\alpha n} / \Gamma(\alpha n + 1) = w_{\alpha}(t), \sum_{n=0}^{\infty} s_n t^{\beta n} / \Gamma(\beta n + 1) = w_{\beta}(t)$$

are convergent for all t > 0 and

$$\lim_{t\to\infty} \alpha \, e^{-t} w_{\alpha}(t) = l,$$

then

$$\lim_{t\to\infty}\beta\,e^{-t}w_{\beta}(t)=l.$$

Now it is known ((5), pp. 197–8) that, for $\delta > 0$,

$$\lim_{x\to\infty} \delta e^{-x^{1/\delta}} \sum_{n=0}^{\infty} x^n / \Gamma(\delta n + 1) = 1,$$

and so Włodarski's result is equivalent to:

If $\alpha = 2^{-k}$, $\beta = 2^{-k-h}$ (k = 0, 1, ...; h = 1, 2, ...), and if $s_n \to l(P_\alpha)$ and $\sum s_n x^n / \Gamma(\beta n + 1)$ is an integral function, then $s_n \to l(P_\beta)$.

We shall prove the more general result:

I. If $\alpha > \beta > 0$, and if $s_n \to l(P_\alpha)$ and the radius of convergence of $\sum s_n x^n / \Gamma(\beta n + 1)$ is greater than zero, then $s_n \to l(P_{\beta}^*)$.

Proof. Let a, b be integers such that

$$a > b \geqslant 2, \quad b > \beta, \quad \frac{\alpha}{\beta} > \frac{a}{b},$$

and let

$$\gamma = \frac{a\beta}{b\alpha}$$
, $c = a - b$, $m = \frac{n\beta + 1}{b}$ $(n = 0, 1, ...)$.

Then, using Gauss's multiplication theorem ((2), p. 225) for gamma functions, we get

$$\begin{split} \frac{p_n^{\beta}}{p_n^{\alpha}} &= \Gamma(cm+c) \, \frac{\Gamma(\alpha n+1)}{\Gamma(\gamma \alpha n+a/b)} \frac{\Gamma(am)}{\Gamma(bm) \, \Gamma(cm+c)} \\ &= \kappa \lambda^{-cm} \Gamma(cm+c) \, \frac{\Gamma(\alpha n+1)}{\Gamma(\gamma \alpha n+\gamma)} \frac{\Gamma(\gamma \alpha n+\gamma)}{\Gamma(\gamma \alpha n+a/b)} \\ &\qquad \qquad \times \prod_{r=1}^{b-1} \frac{\Gamma(m+r/a)}{\Gamma(m+r/b)} \prod_{s=b}^{a-1} \frac{\Gamma(m+s/a)}{\Gamma(m+1+(s-b)/c)} \\ &= \kappa \lambda^{-cm} \Gamma(cm+c) \, \frac{\Gamma(\alpha n+1)}{\Gamma(\gamma \alpha n+\gamma)} \mu_n, \end{split}$$
 are $\kappa = (2\pi a)^{-\frac{1}{2}b^{\frac{1}{2}}c^{\frac{1}{2}-c}}, \, \lambda = cb^{b/c}a^{-a/c}, \, \text{and, by Lemma 1, } \mu_n \, \text{satisfies the condition} \end{split}$

where $\kappa = (2\pi a)^{-\frac{1}{2}}b^{\frac{1}{2}}c^{\frac{1}{2}-c}$, $\lambda = cb^{b/c}a^{-a/c}$, and, by Lemma 1, μ_n satisfies the conditions of Theorem A.

Now let

$$p_n = \mu_n p_n^{\alpha}, \quad q_n = rac{\Gamma(\alpha n + 1)}{\Gamma(\gamma \alpha n + \gamma)} p_n,$$

so that

$$p_n^{\beta} = \kappa \lambda^{-cm} \Gamma(cm+c) q_n.$$

Suppose that

$$s_n \to l(P_\alpha),$$

and that the radius of convergence of $\sum s_n p_n^{\beta} x^n$ is $\rho > 0$. Then, since $\lim (q_n | p_n^{\beta})^{1/n} = 0$, $\sum s_n q_n x^n$ is an integral function. Also, by Theorem A.

$$s_n \to l(P)$$
.

On methods of summability based on integral functions Consequently, by Lemma 2 and Theorem 1,

$$s_n \to l(Q),$$

and hence, by Lemma 3 and Theorem 2,

$$s_n \to l(P_\beta^*).$$

Remark. The above proof can be basically simplified if we impose the additional condition that α/β be rational. For then we can avoid the use of Lemma 2, and consequently of Good's asymptotic approximation, by putting $a/b = \alpha/\beta$ and $\gamma = 1$.

(ii) For $\alpha > 0$, denote by Q_{α}^* , Q_{α} the IF methods of summability associated with the sequence $\{(n!)^{-\alpha}\}$. It is known that, when $x \to \infty$,

$$\sum_{n=0}^{\infty} (n!)^{-\alpha} x^n \sim (2\pi)^{\frac{1}{2}(1-\alpha)} \alpha^{-\frac{1}{2}} x^{-\frac{1}{2}(1-1/\alpha)} e^{\alpha x^{1/\alpha}}$$

(see Hardy (4), p. 55).

We prove:

II. If $\alpha > \beta > 0$ and $\alpha - \beta$ is an integer, and if $s_n \to l(Q_\alpha)$ and the radius of convergence of $\sum s_n(n!)^{-\beta}x^n$ is greater than zero, then $s_n \to l(Q_\beta^*)$.

Proof. Let $k = \alpha - \beta$. Then

$$\frac{(n!)^{-\beta}}{(n!)^{-\alpha}} = \Gamma(kn+k) \frac{\{\Gamma(n+1)\}^k}{\Gamma(kn+k)} = \mu_n \mu_n',$$

$$\mu_n = \prod_{r=0}^{k-1} \frac{\Gamma(n+1)}{\Gamma(n+1+r/k)},$$

$$\mu_n' = (2\pi)^{\frac{1}{2}(1-k)} k^{k-\frac{1}{2}} k^{kn} \Gamma(kn+k).$$

where

The proof can now be completed (as above in (i)) by first appealing to Lemma 1 and Theorem A and then to Lemma 3 and Theorem 2.

We conclude by considering, in relation to result II, the sequences $\{s_n\}$, $\{t_n\}$, where

$$s_n = (-1)^n n! a^n, \quad t_n = (-1)^n (n!)^2 a^n \quad (a > 0).$$

Following Hardy ((5), p. 80) we find that $s_n \to 0$ (Q_2), but, since $\sum s_n x^n/n!$ is divergent when x > 1/a, the Borel method Q_1 cannot be applied to the sequence $\{s_n\}$. However,

$$e^{-x} \sum_{n=0}^{\infty} s_n x^n / n! = e^{-x} / (1 + ax)$$
 $(0 \le x < 1/a),$

and so, as expected in view of II, $s_n \to 0$ (Q_1^*).

Next, it is easily verified that

$$t_n \to 0 (Q_3), \quad t_n \to 0 (Q_2^*)$$

On the other hand, $\sum t_n x^n/n!$ has zero radius of convergence and so the method Q_1^* cannot be applied to $\{t_n\}$.

I am indebted to the referee for suggesting the present form of the conditions (Ω_1), which are less restrictive than those of my original manuscript.

REFERENCES

- (1) Borwein, D. On methods of summability based on power series. *Proc. Roy. Soc. Edinb.* 64 (1957), 342-49.
- (2) Copson, E. T. Functions of a complex variable (Oxford, 1935).
- (3) Good, I. J. Relations between methods of summation of series. *Proc. Camb. Phil. Soc.* 38 (1942), 144–65.
- (4) HARDY, G. H. Orders of infinity (Cambridge, 1910).
- (5) HARDY, G. H. Divergent series (Oxford, 1949).
- (6) TITCHMARSH, E. C. The theory of functions, 2nd ed. (Oxford, 1939).
- (7) WŁODARSKI, L. Propriétés des méthodes continues de limitation du type de Borel. Bull. Acad. Polon. Sci., Cl. III, 4 (1956), 173–75.

ST SALVATOR'S COLLEGE

University of St Andrews