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I Introduction. Suppose throughout that

P20, Y¥p,>0 (n=0,1,...)

and that plx) = g Pp ™

n=0

is an integral function. Suppose also that [, s, (n = 0,1, ...) are arbitrary complex
numbers and denote by p(ps) the radius of convergence of the series

[s2]
E pnsnmn'
n=0
If p(ps) = p > 0 and there is a function p¥(z) such that
p;k(x) = Eop'nsnxn (0<x< P),
=

p¥(x) is analytic for all positive «,

pe(x)/p(x) >1 when & — co (through real values),
we write 8, = L(P*).
If p(ps) = co and s,, — [ (P*), we write

8, = L(P).
This defines the IF (integral function) methods of summability P*, P. It is known
((5), p. 80) that P is regular, i.e. s, > I (P) whenever s, — I; consequently P* is also
regular.
Suppose in what follows that
Bon > 0, 4, = pn//’”n (’J’b =0,1, )

Let p(g) be the radius of convergence of

@

3 gua" = g(z),

n=

and, whenever p(q) = o0, denote the IF methods associated with the sequence {g,} by
@*, Q. Suppose also that IV is an arbitrary non-negative integer.
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The following theorem has been proved elsewhere (Borwein (1)).
TeEOREM A, If

1 3
I =f trdy(t) = 6[ " |dx(t)| >0 (6>0,n>DN)
0 0

where x(t) s a real function of bounded variation in [0, 1], then p(q) = oo and s, — L (P)
whenever s, — 1 (Q).

In this paper two further theorems of the same type are proved and are used in
conjunction with Theorem A to obtain inclusion relations between some special IF
methods of summability. The first of these theorems is

TrrOREM 1. If x(f) is a real function of bounded variation in (0,c0) such that

] >jmt”dx(t) = afwtﬂdx(t)[ >0 (6>0,n2=DN)
0 0

Gl e f “mdy(d) (n = N),
0
then p{q) = co.

If, in addition, s, — L (@) and p(ps) = o0, then s, — L (P).

Before formulating the second theorem we define a class Q of functions ¢(z) as
follows:

¢ € Q if there are positive numbers A, & and a non-negative integer N such that

(€2,) P(2) is analytic inthe region |z| > 0, — A < argz < A;and, whent — 0+, T — o0,
the integrals

1 - T .
f I$(¢ )| di, f |p(e e db
T 1

tend to finite limits uniformly in the interval — A < 6 < A;
(Q,) G(t) is real fort > 0 and

5 >'[wt”¢(t)dt - afmt“|¢(t)|dt S s
0 0

THEOREM 2. If peQ and

= o0 03> W),
then p(q) = co. :
If, in addition, s, > 1 (Q) and p(ps) > 0, then s, — L (P*).
2. Proofs of Theorems 1 and 2. Suppose in what follows that
Prn=9=0 (0<n<N)

it is evident that this leads to no real loss in generality in either theorem.
Let y(t), u,, satisfy the hypotheses of Theorem 1. Then, since

o
00 >f N+ dx(t)| > 0,
0
there is a number a > 0 such that

w>K= 6‘fw[dx(t)| >0,
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and so Pp = 6qnf t»|dx(t)| = Kag, = 0. (1)
@
Suppose now that qs(x) = Xognsnas”
n=
is an integral function and that p(ps) = p > 0. Then
3 pussan = S oo, raxt) = [ e ©<z<ps @
n=0 n=0 0 0
the inversion being legitimate since, for 0 < z < p,

0 > 81 5 py[sa] 2" > X [sn] W”qnfo t|dx()| =f0 |ax(®)] X gn [8a] ()"
0 n=0 n=

n=

Further, taking s, = 1, we get
p(z) = f " g(at) dx(t) > 6f°°q(xt) dx(®)] (@ > 0). (3)
0 [1]

Proof of Theorem 1. Since p(x) is an integral function, it follows from (1) that
p(g) = co. We now suppose that s, — () and that p(ps) = p = 0. In view of (3) we
have, forxz > w > 0,

‘ ﬁ J:qs(xt) dy(t)—1 l

1 w/x L i ngt) —1 d
S 2@ j o)~ la(an) a0 1 @) f wis {q(xt) }g(xt) i
1 - @ 7 —1 3= M —_ lL
QMJ‘U |dx(t)|n§0Q'n(|8n| +1l|)w i 1]3;110 q(v) l

Since p(x) - o0 and g (x)/q(x) — | when & — 00, it follows that
1 =]
lim — xt) dy(t) =1,
i p(w)fo gs(t) dX(t)
and hence, by (2), that s, — [ (P).

Proof of Theorem 2. In view of conditions () on ¢, the hypotheses of Theorem 1 are

satisfied by "
X = [pau @3>0,

and consequently, as above, p(g) = co. Suppose that s, —{(Q) and that p(ps) = p > 0.

Then, by (2), i .
[Faensma ©<z<p.

2 P 2=

n=0

Since ¢ satisfies conditions (£;) and g,(#) is continuous and bounded for ¢ > 0, it is
easily seen that, when 7 — 0+, T — oo, the integrals

[aos()a [ aws()e
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tend to finite limits uniformly in the region —A < argz < A, ¢ > |z| > 0, where C is

o C(yn+1)sinynm
=Y (—1)rHl oy —
any positive number. Hence, by standard results ((6), §§ 2-84, 2-85), the function rhEle 2zl ,E( 1) n ! : =
1= ¢ the series being convergent for all £ > 0. When ¢ - 0+,
p¥(z) = ;fo (1) ¢ (5) di

armg(t) ~ D(y + 1) sin yrr f0+8-la,

is analytic in the region || > 0, —A < argz < A. Also, for z > 0, and Good has proved ((3), p. 150) that, when ¢ — o,

¥ () mJ mgs(xt) o(t) dt, é(t) ~ Kio e—ct?
0
1 I
and so, as in the proof of Theorem 1, where K = {2n(1—y)a0}4, q= 2a(1—7) T~k
lim p¥(x)/p(x) = I. ’
x_’_is( )/p(x) ¥ B L 1 , C= (1—y)yria-n,
It follows that s, — I (P*). a(l=7y)
3. Lemmas. We first show that It follows that f cx,t”’}gé(t)] dt <oo(n=0,1,...), and that there is a number 7 > 0
0
$z) =2%¢ (@> —1,4>0,y>0) - such that ¢(f) > 0for¢ > 7. Consequently

is in the class Q, it being assumed that forreal A, 2 = |z|* €29 where 6 is the principal ® T
value of arg z. P =f0 t|p(t)] dt_fo ] p()| — p(E)} dt,

It is evident that ¢ satisfies conditions (£2,). Also, $(z) is analytic in the region . "
[z >0, |argz| <@/38 = A;and, fort> 0, —A < 6 < A, and hence, since 7/u,, - 0, -

" l¢(t em)[ = fo e—yrﬁcosﬁa < t* e—%ytﬂ = M(t) nlfﬂ/; " t”[gﬁ(t)[dt =1
say. Sincef M(t)dt < oo, we see that ¢ also satisfies conditions (Q,); and so peld © ®
0 Therefore ] >J PGt dt = %f t|g(t)| dt > 0
Next we prove three lemmas. 0 0
Lemma 1. If 2, > 0,7, > 5, > 0(r = 1,2, ooy k), then for all n sufficiently large; and so p, satisfies the conditions of Theorem 1 with
5k D(oen+p,) f ‘
= = (p=01,... ) = u) du.
luﬂ, 7-1;-[1 P(GC,.W'i"}’r) ( ) X( ) 0¢( )

satisfies the conditions of Theorem A. Lemma 3. If a, 8, y, k are positive, then

Proof. Let a > 0,y > f > 0; then Uy = ky™ " T(an+pF) (n=0,1,...)

e F(an+p) o 1 It”tf p-sdle(1 — gilnyy—-1 satisfies the conditions of Theorem 2.
" Tlen+y) al(y=p5)Jo

Proof. In order to establish this lemma we have only to observe that
is totally monotone. It follows ((5),§§ 11-8, 11-9) that z,, is totally monotone and hence

that it satisfies the conditions of Theorem A. ap, = Ky f wtnt(ﬂ—'a}la =1

Lemma 2. Ifa >0, f>0, 1>v9>0,then ¢

and that B(2) = - gyatic
B Ff;iﬁiﬁ,)ﬁ) (2 =0,1,...) is in the class Q.

satisfies the conditions of Theorem 1. 4. Special inclusions. (i) Let

Proof. Tt has been shown by Good (3) that pr=1T@n+1) (x>0,nr=0,1,...),

_ f wtn (1) di and denote the IF methods of summability associated with the sequence {p2} by
i 0 P, F,. P isthen the Borel exponential method.
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In a recent paper (7) Wlodarski stated the following result:
Ifa=2"% g=2"%h (E=0,1,...;h=1,2,...), and if the series

S, st Tom+1) = w,ft), 3 8,0/ T(Bn+1) = wy)
n=0 n=0

are convergent for all t > 0 and
lim e~ () =1,

t—>w

then lim £ e~fw,(t) = 1.

i—
Now it is known ((5), pp. 197-8) that, for § > 0,
lim 8¢~ 3 anT(Bn+1) = 1,
T—>w© n=0

and so Wlodarski’s result is equivalent to:

Ifao=2% 8 =2"knh(k=0,1,..;h=12,..),andifs, > (P,)and Zs, a"/T'(fn+1)
18 an integral function, then s, — 1 (Fy).

We shall prove the more general result:

I Ifa > 8 > 0, and if s,, = L(P,) and the radius of convergence of Zs, x™/I'(fn+1) is
greater than zero, then s, — I (P}).

Proof. Let a, b be integers such that
& 4
@i>1b 2,500 > 8, E,>E,

af m=n[)’+1

== =qg— =010 ):
and let Y =g = b, 2 (n=0,1,...)
Then, using Gauss’s multiplication theorem ((2), p. 225) for gamma functions, we get
A r 1 I
E% = (cm +¢) o+ 1) )

I'(yan +a/b) I'(bm) I'(cm + ¢)
MNan+1) DI(yoan+vy)
D(yon +v) L(yan +a/b)
=1 T (m +rfa) 2=l Dim+s/a)
* XL Ton +r/8) J, T+ 1+ (s 0]

n

= kA~"(em +c)

T'(an+1)
T(yan-+7)"™
where k = (27a)~tbict—, A = cb¥ca—2/c, and, by Lemma 1, x, satisfies the conditions of
Theorem A.

A kA= (cm +¢)

Now lot = 5 _ Dlen+1)
oW 1€ Pn = PpnPns 9n = F(’}’Oﬁ%—i—’y)‘pw
so that f = kA-mT(em +¢) q,,.
Suppose that s, = L(P,),

and that the radius of convergence of Zs, pfa™ is p > 0. Then, since lim (g,,/p2)/" = 0,
¥s, g, is an integral function. Also, by Theorem A,

8, = L(P).
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Consequently, by Lemma 2 and Theorem 1,
8p > H(@),

and hence, by Lemma 3 and Theorem 2,
8, = L(P%).

Remark. The above proof can be basically simplified if we impose the additional
condition that o/f be rational. For then we can avoid the use of Lemma 2, and
consequently of Good’s asymptotic approximation, by putting ¢/b = a/f and y = 1.

(ii) Fora > 0, denote by @¥, @, the IF methods of summability associated with the
sequence {(n!)~%}. It is known that, when a — co,

() =32™ ~ (2m)30-2lg—dy—H0-1la) guzt/x
0

ﬁMs

(see Hardy (4), p. 55).

We prove:

II. If o > B > Oand o — fis an integer, and if s, — 1 (Q,) and the radius of convergence
of s, (nl)=Px™ is greater tham zero, then s, — 1 (Q%).

Proof. Let k = a— f. Then

(n)~# _ L+ _
()=~ [(kn + k) Tn+k) Mo Py
k=1 T(n+1)

h = e
s bn = T+ 1+rk)’

oy, = (2m)B-REE-2fkn D (fn 4 k).

The proof can now be completed (as above in (i)) by first appealing to Lemma 1 and
Theorem A and then to Lemma 3 and Theorem 2.

We conclude by considering, in relation to result II, the sequences {s,}, {t,}, where

s, =(—1ralar, t, = (—1)"(n)2a (a>0).

T

Following Hardy ((5), p. 80) we find that s, — 0(@,), but, since Zs,a”/n! is divergent
when x > 1/a, the Borel method @, cannot be applied to the sequence {s,}. However,

[+o]
e 3 s,annl = e F/(1+ax) (0<z<lla),
n=0

and so, as expected in view of IT, s, — 0 (@F).
Next, it is easily verified that

On the other hand, %¢,2"/n! has zero radius of convergence and so the method @f
cannot be applied to {t,}.

I am indebted to the referee for suggesting the present form of the conditions (£;),
which are less restrictive than those of my original manuscript.
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