ON MULTIPLICATION OF (C, —u)-SUMMABLE SERIES

D. BorwEINT.

[Eztracted from the Journal of the London Mathematical Society, Vol. 33, 1958

The main results proved in this paper are:

THEOREM 1. If A=1, A>p, >0, and the series Xa,, Xb, are
0 0

summable (C, —u) to A, B respectively and both are bounded (C, —2), and
if e, = 5 @,b,_,, then io'.cﬂ ©s swmmable (C, —A4-8) to AB.
0

=
TaEorEM 2. ff p=0, %an is absolutely summable (C, —p) to A
0

and %bn ts summable (C, —p) to B, and if ¢, = )5 a,b,_,, then Xc, s
0 r=0 0

swmmable (C, —u) to AB.

Certain cases of these theorems are known. The cases p=1, 2, ...,
A=pu-+1, §=1 of Theorem 1 and p=1, 2, ... of Theorem 2 are due to
Palmer [6]. The case u =0, A=1 of Theorem 1 is due to Hardy ([2],
230-231), and the case u= 0 of Theorem 2 is Mertens’ classical theorem.

1. Notation and preliminary resulls.

a, (n=0, 1, ...), let {u,} be a sequence of real numbers and
0

Let s, =
 d
let

Il p=

n n—r —
i % s,,(?;’) z (—1)»('nvr)'ur+p.

r=0

t Received 13 January, 1958; read 16 January, 1958.
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Denote the matrix of the linear transformation from {s,} to {s,} by H.
Then H is a Hausdorff matrix which is said to be generated by the
sequence {u,}. We write H(s,) for o,; and if u, 0, we denote by H-!
the Hausdorff matrix generated by {1/u,}.

If o,—+s (finite) we say that Xa, is summable (H) to s and write
0

8,—>s(H), and if, in addition, X|o,—o0, ;| <o we say that the series is
1
absolutely summable () and write s, —s| H| (see Knopp and Lorentz [4]).
If o, = O(1) we say that Xa, is bounded (H) and write s, = O(1) (H).
0

H is said to be reguiar if s, > s(H) whenever s, — s.

Suppose now that K is a Hausdorff matrix generated hy the real
sequence {v,}. Then it is known that HK is a Hausdorff matrix
generated by {uw,v,}, so that HK = KH. This result is proved in [2],
Ch. XT, as are all other standard results about Hausdorff matrices quoted
in this paper.

If s,~—>s (H) whenever s,—s (K) we write H=2K, and if s,—>s|H|
whenever s, —>s| K| we write |H| 2 |K|. If HoK and K2 H we write
H~K, and if |H|2|K| and |K|2|H| we write |H|~|K|.

It is known and easily demonstrated that, when p, £ 0, K= H if and
only if KO- is regular.

We use the notation:
n s
en°‘=( ;td), Atg. = 3 egtta =0 1 gy pedl o)
=0

go thet, for m =10, 1, ..., As, =AN's,—g. —8 (¢ ;=10).
Denote by (C, o, ) the matrix of the linear transformation from
{8,} to {o,} given by

1
eitf

b

O, =

= : 1
0 E'no'zl*} Erﬁsr= gm+ﬁAia (€ﬂ,ﬁ8n} (IG Sl °C+ﬁ = ‘1)'
—| T

<

Then (C, «, 0) (2 > —1) is the Cesaro matrix (C, «) which, in the specified
range only, is the matrix of the Cesiro summability method (O, «). It
has been shown elsewhere (Borwein [1], Theorem 8) that (C, «, B) is the
Hausdorff matrix generated by the sequence {e,f/e3*#}.

Let (C%, «) be the Hausdorff matrix generated by {1/e,*} when
« > —1, and by {e;% when « << —1; so that

(O*: Ot) B (O: Ot) (OC> _ﬁl):

(C%, a) = (C, —a)t= (C, a0, —) (oc < -1).
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The following results are known (see [1], and the references there
given):

(I) (C*, o)~ (H, o) (all real o),
(1) (0,0, B~ (C* «) (B>—1, atp>—1),
(ITT) (C*, a)(C*, B) ~ (C%, a+P) (all real o, B),
(@IV) (C*, a+8)2 (C%, «) (all real a; § > 0).

Here and elsewhere (H, «) is the matrix of the Holder method of order «;

it is the Hausdorff matrix generated by the sequence {(n-1)=%}.
For the purposes of this paper it is convenient to make the following

DerFmviTIONS. The statements

(1) Ea,n 1s summable (C, «) to A,
]

(ii) Ean 1§ bounded (C, o),
0

(i) Sa, is absolutely summable (C, o) to A,
1]

mean respectively

(i)* Ean is summable (C*, o) to A,
0
()% Sa, is bounded (O, ),
B 0

o0
(iii)* Za, is absolutely summable (C*, o) to A;
0
where the starred statements are to be imberpreted in accordance with the
introductory remarks about Hausdorff matrices.

These definitions are the usual ones in the range « > —1. Fora < —1,
the definitions of (i) and (ii) differ from the standard ones given by
Hausdorff. However Hausdorff [3] proved (i) and (ii) (defined in his senge)
to be equivalent respectively to (i)* and (ii)* with (X, «) in place of
(C*, &). In virtue therefore of (I) and I, (below), Hausdorff’s definitions
of (i) and (ii) are equivalent to the above. (See Lyra [5] for the case when
« is a negative integer.)

A definition of (iii) for fractional « << —1 does not appear to have been
given explicitly before; but for integral « << —1 the above definition
coincides with one given by Lyra [5].
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We require the following lemma, of which part (i) is trivial, and
part (ii) is due to Knopp and Lorentz ([4], 12) who effectively obtained it
as a consequence of a more general result. An alternative (direct) proof
of part (ii) is given here.

Levma 1. Let p,, =E indy(t), where x(t) is a real function of bounded

0
variation in [0, 1. Let H be the Hausdorff matrixz generated by the sequence
{pn}, and let o, = H(s,).

() If s, = O(1), then o, = O(1).
(i) If 3|As,| < 0, then 3|Ac,| < .
0 0
Proof. It is familiar and readily verified that

3 n t r —fF\n—r
O'ﬂ—EU(T)S,.SOt (L—tym=dy (£).

1
Consequently, if |s,| <M <o, then |o,| <M j |dx(t)] <oo; and this
0
establishes (i).
Now

(C, ) (o,) =0,+nde, = (C, 1)2H(s,) = H(C, 1)71 (s,)
— H(s,)+H(nAs,).

1 = /n 1
Hence Ag,=— X ( ):rAs,. j tr(l—iTdy(t) (n=1),
n r 0

o & i L r 1 n—r
and so Z |Ac ldx(t)ié]l]Asr[ﬂi(T )Et (1—t)

1 N @© =]
<[ 1o 2 |as 1 3 (27 -ty

Result (ii) follows.
It is known that a necessary and sufficient condition for a Hausdorff
matrix H generated by a real sequence {u,} to be regular is that

1
b= ) (n>0),
0

where x(f) is a real function of bounded variation in [0, 1] such that

x(04) =x(0) and x(1)—x(0)=1.
We therefore have the following corollary of Lemma 1,
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matrices and the former s .

d
Lo . I7 H, K ace vocl Bl WEE g o Rl ),

generated by o sequence with no vanishing terms,
and s, = O(1) (K) whenever s, = O(1) (H)-

have
In consequence of Lemma 2 and results (I) to (IV), we now the

following results:
|Z] e, w|~|H; a| (all real a),
I |C, Bl | 0%, «| (B>—1, atf>—1)
IIII|  |(C* «)(C*, B)| ~=| O%, a-tf] (all real «, B);

|IV| |C*, a+3]2|C¥, «f (allrealo&;3>0);

y hich we lab
and also the corresponding results involving boundedness whi abel

I, IL, III, IV,.

The cases o> —1, B> —1, a-+p>
and |IV| are known (see Knopp and Lore
proved |I| for a=—1, —2, ... and |IV| for «
Various cases of results I, to IV, are also known.

We require two additional lemmas.

_1 of |I1I|, and &> —1 of |T|
ntz [4]). Lyre (5] has
:f—l, —"'2: [ERE 821_

Lemma 3. IfB>a, 8>0, and 3 @y, 18 pounded (O, ) and summable

0
(C, B) to A, then the series is summable (C, a--8) to A.

—1 (see Hardy [2], Theorems 45

- . -
This result is known for the cases « = 7 el e —0y ol

and 70, and the references given on DP- 12
B=ua+2, §=1 (Lyra [5], 559).

7
Proof. Let s,= E.oa,., then

(C*, «)(s,) = O(1) (C; 0):
Further, s,—~A(C#, B), and so, by (111),
(C*%, 0)(s,) >4 (C: B—2)
Hence, by one of the known cases of the lemma,
(C%, a)(s,) 4 (€, 3)
so that, by (III), s,—4 (C"f‘, oa-8).

d let
Lemva 4. Suppose that 0 <o <1, 08 <1, anaie

1 noo4 a8 81
Pl Py Qp=—i= = St T T
n T E,%_“ e n—r Tn—r Yoo n €n Fei)
1 R Ay g
an ;s E en-rxn—r 7
€p  r=0
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1) If x,~&, y,—>n, then P,—§&n.
(ii) If »,=0(1), y,—~>0, then @,—0.

(iii) If x,—§&, y,—>n and I|Ax, | <co, then E,->En.
0

(iv) If z,—~ ¢, y,—>n and DEOJ[Ayﬂ|<oo, then R, — &n.
0

Parts (i) and (ii) are simple consequences of variants of Toeplitz’s
theorem.

Proof of (iii). Note that

1 . 1-m
R, = i z yrA(En r¥p—p)s
n r=0
1—o
Now ﬁf“l’“_—ii”—‘i)—>0 as n->00,
and el-—-a E A(e}’t_—% n—f‘) T mn_>§
r=0
Further
1 & 1—c 1 ﬂ —ex
i Z M ftn ] € =2 | Az, [+ €% | 2,4 ) (x_y=0)
n o =0 € f'—O

< X | Az, |+-sup|2,| < co.
r=0 r=20

Consequently, by Toeplitz’s theorem, R, &n.
Proof of (iv). We now observe that
€& % AYp_y

e —=0 as n-—>o0,
n

and, since y,—>7, that

Also

S [y < £ Ayl <o
=0

€} 1—05
Hence, by Toeplitz’s theorem, B, - &7.

2. Proofs of the main theorems.

Let p=m-a, where m is a non-negative integer and 0 <Ca < 1; and
let

7 n
o= 0, =200, f.="ub . 4. __Zc -—Esb
=0

r=0 =0 r=0 =0
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Then (C, 1)(u,) = —% 2 ot

and, by (IT) and (III), a necessary and sufficient condition for ‘Ecn to be
1

summable (C, —p) to AB, is that

Uy = (C’ _“ru‘_l’ m+2)(oa 1)(“%)

3

should tend to AB.

1 | (R
Now v, = D ogh et ¥ gt ,
n E%_“ = n—r ©r » 1;&@ yr—p
and
1 I 1 m+1

m+2 SR s | 5 m+l-p v 0.1 i
— = € = € €5 v = sy B)s
r1 7 m+2 m+1 m 2p=0 v r—v ( 3 =3 ’ )

Also, it is well known and easily verified that, for all real 6, ¢,
i n
A0+¢( z 2, yn—r) = Z A Ly A# Yp—re
r=0 r=0

Hence (¢f. Palmer [6], 262),

m+1 n
(m+2)v, =2 1 pwn ( 3 privg el tﬂ_,,) X AT
where X, = =5 —— Z AMHL=p (MF1=D o ) ADFe(l )

p=1 5 %0

when m >1 and X, = 0 when m =0, and for any real §,

K
Y,= ﬂ X Al s, ) AP,

€n r={
7
Zn= g I AI(E ) A,

Proof of Theorem 1. Suppose that u, § of the hypotheses are such

that
0<d<l, p=2A-38.

In view of (IV) and Lemma 3, these extra conditions can be imposed with-
out loss in generality.

We now have to show that Ecn is summable (C, —p) to 4B, and,
0

since w > 0, this is equivalent to showing that v, —>A4B.
Since s, >4 (C%, —u), t,— B (C*%, —p), it follows from (II) and (IV)
that, if m =1, p=1,2, ..., m,

AmD(pHr ) > A, APta(e,Pt,) > B.

n
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Consequently, by Lemma 4(i),
X,»mAB (m= 0).

Put =8 in the expression for ¥, to get

B =
L& Av(ehttes, ) AN (G— B+ s M (o)
=0

Y =
LR O

n

d
Note that, by (IL), the second term tends to AB. Further, by (II) an

(IV), since 1—3 <A=d=p,
AL-3(t,— B) = o(er ),

and, by I1,, since s, = O(1) (O, =M
AR(EﬁJrlgoc Sn) — O(E%Aa—a) :

and consequently, by Lemma 4(ii), the first term tends to zero.

Hence Y,—AB, and gimilarly Z,—> AB.
We have thus shown that X YitZy

and the proof is complete.

— (m+2)v,~> (m+2) 4B,

Proof of Theorem 2 As above, it follows from the hypotheses of the
T .

that
PhouRREL S X, —»>mAB.

Ar(egti-2s,)
Let W, = r%TT—
N 6> [0 —ply #>B (C*, —p) and 50, by |II| and (IV),

wn-—%-A, g\A’wn\ < 00, tn"}'B'
0

Tence, by Lemma 4(iii),

Il
v,= L. § dsw, &> 4B
€n r=0

Further, by (IT) and [IV],

o0
_i];EA#(EﬁJb—l—-rxﬁn)_}B, sﬂ—)-A, Eﬂ]iAsn1<oo,

Eﬂ_
so that, by Lemma 4(iv),
g“ Ar(ehts™ tyr) As,~>AB.

n—r

1
Z,=—=
1 €»,]i * =0

Hence v,—~A4B, and the theorem is established.
T
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3. Additional results.

We prove finally that the conclusions in Theorems 1 and 2 cannot be

sharpened (¢f. Palmer [6]), even when the hypotheses on E‘.an are replaced
0

by the more restrictive hypothesis

(a) %an is absolutely sun:_lma,ble (C, —x) for every real «.

Let ay=1, a,=0 (rn>=1). Then %‘an satisfies (a) and, for any
series Ebn,

¢ n
Oy a e

=

i
Hence it is sufficient for our purpose to show that, given any real A, v,

there are series X56,’, £5b,” such that
0 0

(b’) for every & >0, §bn’ is summable (C, —A+38) and is bounded
<"
but not summable (C, —A),

(b™) Ebn” is summable (C, —u) but is neither absolutely summable
0

(C, —u) nor bounded (C, —pu—y) for any y > 0.
Now it is familiar that the series £ (—1)* satisfies (b') with A = 0, and
0

that E (—1)*/log(n+-2) satisfies (b"') with u=0. Consequently, in view
0
of results (III), | III| and III, we can take

b, = A(C#, ).)(% (—1r), b =A(C%, m(%ﬂ(—l)rﬁog(wrz)).

r=0 =

References.

1. D. Borwein, * Theorems on some methods of summability ”, Quart. J. of Math. (to
appear).

2. G. H. Hardy, Divergent Series (Oxford, 1949).

3. F. Hausdorff, “ Die Aquivalens der Holderschen und Cesiroschen Grenzwerte negativer
Ordnung », Math. Zeitschrift, 31 (1930), 186-196.

4. K. Knopp and G. G. Lorentz, ** Beitrige zur absoluten Limitierung *, Archiv. der Math.,
2 (1949), 10-16.

5. G. Lyra, ““ - und H-Summierbarkeit negativer Ordnung >, Math. Zeitschrift, 49 (1944),
538-562,

6. K. O. Palmer, * Eine Verallgemeinerung zweier Sitze von Mertens und Hardy auf
Reihen negativer CO-Summierbarkeitsordnung ”, Archiv. der Math., 2 (1949),
258-266.

St. Salvator’s College,
University of St. Andrews.

Printed by C. F. Hodgson & Son, Ltd. Pakenham Street, London, W.C.1.



