D. Borwein†.

[Extracted from the Journal of the London Mathematical Society, Vol. 33, 1958

The main results proved in this paper are:

THEOREM 1. If $\lambda \geqslant 1$, $\lambda > \mu$, $\delta > 0$, and the series $\sum_{0}^{\infty} a_n$, $\sum_{0}^{\infty} b_n$ are summable $(C, -\mu)$ to A, B respectively and both are bounded $(C, -\lambda)$, and if $c_n = \sum_{r=0}^{n} a_r b_{n-r}$, then $\sum_{0}^{\infty} c_n$ is summable $(C, -\lambda + \delta)$ to AB.

Theorem 2. If $\mu \geqslant 0$, $\sum\limits_{0}^{\infty} a_n$ is absolutely summable $(C, -\mu)$ to A and $\sum\limits_{0}^{\infty} b_n$ is summable $(C, -\mu)$ to B, and if $c_n = \sum\limits_{r=0}^{n} a_r b_{n-r}$, then $\sum\limits_{0}^{\infty} c_n$ is summable $(C, -\mu)$ to AB.

Certain cases of these theorems are known. The cases $\mu=1, 2, ..., \lambda=\mu+1$, $\delta=1$ of Theorem 1 and $\mu=1, 2, ...$ of Theorem 2 are due to Palmer [6]. The case $\mu=0$, $\lambda=1$ of Theorem 1 is due to Hardy ([2], 230-231), and the case $\mu=0$ of Theorem 2 is Mertens' classical theorem.

1. Notation and preliminary results.

Let $s_n = \sum_{r=0}^n a_r$ (n = 0, 1, ...), let $\{\mu_n\}$ be a sequence of real numbers and let

$$\sigma_n = \sum_{r=0}^n s_r \binom{n}{r} \sum_{\nu=0}^{n-r} (-1)^{\nu} \binom{n-r}{\nu} \mu_{r+\nu}.$$

[†] Received 13 January, 1958; read 16 January, 1958.

On multiplication of $(C, -\mu)$ summable series.

443

Denote the matrix of the linear transformation from $\{s_n\}$ to $\{\sigma_n\}$ by H. Then H is a Hausdorff matrix which is said to be generated by the sequence $\{\mu_n\}$. We write $H(s_n)$ for σ_n ; and if $\mu_n \neq 0$, we denote by H^{-1} the Hausdorff matrix generated by $\{1/\mu_n\}$.

If $\sigma_n \to s$ (finite) we say that $\sum\limits_0^\infty a_n$ is summable (H) to s and write $s_n \to s(H)$, and if, in addition, $\sum\limits_1^\infty |\sigma_n - \sigma_{n-1}| < \infty$ we say that the series is absolutely summable (H) and write $s_n \to s|H|$ (see Knopp and Lorentz [4]). If $\sigma_n = O(1)$ we say that $\sum\limits_0^\infty a_n$ is bounded (H) and write $s_n = O(1)$ (H). H is said to be regular if $s_n \to s(H)$ whenever $s_n \to s$.

Suppose now that K is a Hausdorff matrix generated by the real sequence $\{\nu_n\}$. Then it is known that HK is a Hausdorff matrix generated by $\{\mu_n \nu_n\}$, so that HK = KH. This result is proved in [2], Ch. XI, as are all other standard results about Hausdorff matrices quoted in this paper.

If $s_n \to s$ (H) whenever $s_n \to s$ (K) we write $H \supseteq K$, and if $s_n \to s |H|$ whenever $s_n \to s |K|$ we write $|H| \supseteq |K|$. If $H \supseteq K$ and $K \supseteq H$ we write $H \simeq K$, and if $|H| \supseteq |K|$ and $|K| \supseteq |H|$ we write $|H| \simeq |K|$.

It is known and easily demonstrated that, when $\mu_n \neq 0$, $K \supseteq H$ if and only if KH^{-1} is regular.

We use the notation:

$$\epsilon_n^{\alpha} = \binom{n+\alpha}{n}, \quad \Delta^{\alpha} s_n = \sum_{r=0}^n \epsilon_{n-r}^{-\alpha-1} s_r \quad (n=0, 1, ...; \text{ any real } \alpha);$$

so that, for $n=0, 1, ..., \Delta s_n = \Delta^1 s_n = s_n - s_{n-1} \ (s_{-1}=0).$

Denote by (C, α, β) the matrix of the linear transformation from $\{s_n\}$ to $\{\sigma_n\}$ given by

$$\sigma_n = \frac{1}{\epsilon_n^{\alpha+\beta}} \sum_{r=0}^n \epsilon_{n-r}^{\alpha-1} \ \epsilon_r^{\beta} s_r = \frac{1}{\epsilon_n^{\alpha+\beta}} \Delta^{-\alpha} \left(\epsilon_n^{\beta} s_n \right) \quad (\beta > -1, \ \alpha+\beta > -1).$$

Then $(C, \alpha, 0)$ $(\alpha > -1)$ is the Cesàro matrix (C, α) which, in the specified range only, is the matrix of the Cesàro summability method (C, α) . It has been shown elsewhere (Borwein [1], Theorem 8) that (C, α, β) is the Hausdorff matrix generated by the sequence $\{\epsilon_n^{\beta}/\epsilon_n^{\alpha+\beta}\}$.

Let (C^*, α) be the Hausdorff matrix generated by $\{1/\epsilon_n^{\alpha}\}$ when $\alpha > -1$, and by $\{\epsilon_n^{-\alpha}\}$ when $\alpha \leqslant -1$; so that

$$(C^*, \alpha) = (C, \alpha) \quad (\alpha > -1),$$

$$(C^*, \alpha) = (C, -\alpha)^{-1} = (C, \alpha, -\alpha) \quad (\alpha \leqslant -1).$$

The following results are known (see [1], and the references there given):

- (I) $(C^*, \alpha) \simeq (H, \alpha)$ (all real α),
- (II) $(C, \alpha, \beta) \simeq (C^*, \alpha) \quad (\beta > -1, \alpha + \beta > -1),$
- (III) $(C^*, \alpha)(C^*, \beta) \simeq (C^*, \alpha + \beta)$ (all real α, β),
- (IV) $(C^*, \alpha + \delta) \supseteq (C^*, \alpha)$ (all real α ; $\delta > 0$).

Here and elsewhere (H, α) is the matrix of the Hölder method of order α ; it is the Hausdorff matrix generated by the sequence $\{(n+1)^{-\alpha}\}$.

For the purposes of this paper it is convenient to make the following

Definitions. The statements

- (i) $\sum_{n=0}^{\infty} a_n$ is summable (C, α) to A,
- (ii) $\sum_{n=0}^{\infty} a_n$ is bounded (C, α) ,
- (iii) $\sum_{n=0}^{\infty} a_n$ is absolutely summable (C, α) to A,

mean respectively

- (i)* $\sum_{n=0}^{\infty} a_n$ is summable (C*, α) to A,
- (ii)* $\sum_{0}^{\infty} a_n$ is bounded (C*, \alpha),
- (iii)* $\sum_{n=0}^{\infty} a_n$ is absolutely summable (C*, α) to A;

where the starred statements are to be interpreted in accordance with the introductory remarks about Hausdorff matrices.

These definitions are the usual ones in the range $\alpha > -1$. For $\alpha \leqslant -1$, the definitions of (i) and (ii) differ from the standard ones given by Hausdorff. However Hausdorff [3] proved (i) and (ii) (defined in his sense) to be equivalent respectively to (i)* and (ii)* with (H, α) in place of (C^*, α) . In virtue therefore of (I) and I_0 (below), Hausdorff's definitions of (i) and (ii) are equivalent to the above. (See Lyra [5] for the case when α is a negative integer.)

A definition of (iii) for fractional $\alpha < -1$ does not appear to have been given explicitly before; but for integral $\alpha \leq -1$ the above definition coincides with one given by Lyra [5].

445

We require the following lemma, of which part (i) is trivial, and part (ii) is due to Knopp and Lorentz ([4], 12) who effectively obtained it as a consequence of a more general result. An alternative (direct) proof of part (ii) is given here.

Lemma 1. Let $\mu_n = \int_0^t t^n d\chi(t)$, where $\chi(t)$ is a real function of bounded variation in [0, 1]. Let H be the Hausdorff matrix generated by the sequence $\{\mu_n\}$, and let $\sigma_n = H(s_n)$.

(i) If
$$s_n = O(1)$$
, then $\sigma_n = O(1)$.

(ii) If
$$\sum_{0}^{\infty} |\Delta s_n| < \infty$$
, then $\sum_{0}^{\infty} |\Delta \sigma_n| < \infty$.

Proof. It is familiar and readily verified that

$$\sigma_n = \sum_{r=0}^n \binom{n}{r} s_r \int_0^1 t^r (1-t)^{n-r} d\chi(t).$$

Consequently, if $|s_n| < M < \infty$, then $|\sigma_n| \le M \int_0^1 |d\chi(t)| < \infty$; and this establishes (i).

Now

$$\begin{split} (C,\ 1)^{-1}\left(\sigma_{n}\right) &= \sigma_{n} + n\Delta\sigma_{n} = (C,\ 1)^{-1}H(s_{n}) = H(C,\ 1)^{-1}\left(s_{n}\right) \\ &= H(s_{n}) + H(n\Delta s_{n}). \end{split}$$

$$\begin{split} \text{Hence} \qquad & \Delta \sigma_n = \frac{1}{n} \sum\limits_{r=1}^n \binom{n}{r} r \Delta s_r \int_0^1 t^r (1-t)^{n-r} d\chi(t) \quad (n \geqslant 1), \\ \text{and so} \qquad & \sum\limits_{n=1}^N |\Delta \sigma_n| \leqslant \int_0^1 |d\chi(t)| \sum\limits_{r=1}^N |\Delta s_r| \sum\limits_{n=r}^N \binom{n}{r} \frac{r}{n} t^r (1-t)^{n-r} \\ \leqslant & \int_0^1 |d\chi(t)| \sum\limits_{r=1}^N |\Delta s_r| t^r \sum\limits_{n=r}^\infty \binom{n-1}{r-1} (1-t)^{n-r} \\ & = \int_0^1 |d\chi(t)| \sum\limits_{r=1}^N |\Delta s_r|. \end{split}$$

Result (ii) follows.

It is known that a necessary and sufficient condition for a Hausdorff matrix H generated by a real sequence $\{\mu_n\}$ to be regular is that

$$\mu_n = \int_0^1 t^n d\chi(t) \quad (n \geqslant 0),$$

where $\chi(t)$ is a real function of bounded variation in [0, 1] such that $\chi(0+) = \chi(0)$ and $\chi(1) - \chi(0) = 1$.

We therefore have the following corollary of Lemma 1.

Lemma 2. If H, K are real Hausdorff matrices and the former is generated by a sequence with no vanishing terms, and if $K \supseteq H$, then $|K| \supseteq |H|$, and $s_n = O(1)$ (K) whenever $s_n = O(1)$ (H).

In consequence of Lemma 2 and results (I) to (IV), we now have the following results:

$$|I| |C^*, \alpha| \simeq |H, \alpha| \quad (all \ real \ \alpha),$$

$$|\operatorname{II}| \quad |C, \alpha, \beta| \geq |C^*, \alpha| \quad (\beta > -1, \alpha + \beta > -1),$$

$$|\operatorname{III}| |(C^* \alpha)(C^*, \beta)| \simeq |C^*, \alpha + \beta| \quad (all \ real \ \alpha, \beta),$$

$$|IV|$$
 $|C^*, \alpha+\delta| \supseteq |C^*, \alpha|$ (all real α ; $\delta > 0$);

and also the corresponding results involving boundedness which we label I_0 , II_0 , III_0 , IV_0 .

The cases $\alpha>-1$, $\beta>-1$, $\alpha+\beta>-1$ of $|\mathrm{III}|$, and $\alpha>-1$ of $|\mathrm{I}|$ and $|\mathrm{IV}|$ are known (see Knopp and Lorentz [4]). Lyra [5] has proved $|\mathrm{I}|$ for $\alpha=-1,\ -2,\ \dots$ and $|\mathrm{IV}|$ for $\alpha=-1,\ -2,\ \dots$, $\delta=1$. Various cases of results I_0 to IV_0 are also known.

We require two additional lemmas.

Lemma 3. If $\beta > \alpha$, $\delta > 0$, and $\sum_{0}^{\infty} a_n$ is bounded (C, α) and summable (C, β) to A, then the series is summable $(C, \alpha + \delta)$ to A.

This result is known for the cases $\alpha \ge -1$ (see Hardy [2], Theorems 45 and 70, and the references given on p. 127) and $\alpha = -2, -3, ..., \beta = \alpha + 2, \delta = 1$ (Lyra [5], 559).

Proof. Let $s_n = \sum_{r=0}^n a_r$, then

$$(C^*, \alpha)(s_n) = O(1) \ (C, 0).$$

Further, $s_n \rightarrow A(C^*, \beta)$, and so, by (III),

$$(C^*, \alpha)(s_n) \to A (C, \beta - \alpha).$$

Hence, by one of the known cases of the lemma,

$$(C^*, \alpha)(s_n) \to A (C, \delta),$$

so that, by (III), $s_n \rightarrow A$ (C^* , $\alpha + \delta$).

Lemma 4. Suppose that $0 \le \alpha < 1$, $0 < \delta \le 1$, and let

$$P_n = \frac{1}{\epsilon_n^{1-\alpha}} \sum_{r=0}^n \epsilon_{n-r}^{-\alpha} x_{n-r} y_r, \quad Q_n = \frac{1}{\epsilon_n^{1-\alpha}} \sum_{r=0}^n \epsilon_{n-r}^{1-\alpha-\delta} \epsilon_r^{\delta-1} x_{n-r} y_r,$$

$$R_n = \frac{1}{\epsilon_n^{1-\alpha}} \sum_{r=0}^n \epsilon_{n-r}^{1-\alpha} x_{n-r} \Delta y_r.$$

On multiplication of $(C, -\mu)$ summable series.

 $(C, 1)(u_n) = \frac{1}{n+1} \sum_{r=0}^{n} s_r t_{n-r},$

(i) If $x_n \to \xi$, $y_n \to \eta$, then $P_n \to \xi \eta$.

(ii) If $x_n = O(1)$, $y_n \to 0$, then $Q_n \to 0$.

(iii) If $x_n \to \xi$, $y_n \to \eta$ and $\sum_{n=0}^{\infty} |\Delta x_n| < \infty$, then $R_n \to \xi \eta$.

(iv) If $x_n \to \xi$, $y_n \to \eta$ and $\sum_{n=0}^{\infty} |\Delta y_n| < \infty$, then $R_n \to \xi \eta$.

Parts (i) and (ii) are simple consequences of variants of Toeplitz's theorem.

Proof of (iii). Note that

$$R_n = \frac{1}{\epsilon_n^{1-\alpha}} \sum_{r=0}^n y_r \Delta(\epsilon_{n-r}^{1-\alpha} x_{n-r}).$$

Now

$$\frac{\Delta(\epsilon_{n-r}^{1-\alpha}x_{n-r})}{\epsilon_n^{1-\alpha}} \to 0 \text{ as } n \to \infty,$$

and

$$\frac{1}{\epsilon_n^{1-\alpha}} \sum_{r=0}^n \Delta(\epsilon_{n-r}^{1-\alpha} x_{n-r}) = x_n \to \xi.$$

Further

$$\begin{split} \frac{1}{\epsilon_n^{1-\alpha}} \sum_{r=0}^n \left| \Delta(\epsilon_{n-r}^{1-\alpha} x_{n-r}) \right| & \leqslant \frac{1}{\epsilon_n^{1-\alpha}} \sum_{r=0}^n \left(\epsilon_r^{1-\alpha} \big| \Delta x_r \big| + \epsilon_r^{-\alpha} \big| x_{r-1} \big| \right) \quad (x_{-1} = 0) \\ & \leqslant \sum_{r=0}^\infty \left| \Delta x_r \big| + \sup_{r \ge 0} \left| x_r \right| < \infty. \end{split}$$

Consequently, by Toeplitz's theorem, $R_n \to \xi \eta$.

Proof of (iv). We now observe that

$$\frac{\epsilon_r^{1-\alpha} \Delta y_{n-r}}{\epsilon_n^{1-\alpha}} \to 0 \text{ as } n \to \infty,$$

and, since $y_n \to \eta$, that

$$\frac{1}{\epsilon_n^{1-\alpha}} \sum_{r=0}^n \epsilon_{n-r}^{1-\alpha} \Delta y_r = \frac{1}{\epsilon_n^{1-\alpha}} \sum_{r=0}^n \epsilon_{n-r}^{-\alpha} y_r \to \eta$$

Also

$$\frac{1}{\epsilon_n^{1-\alpha}} \sum_{r=0}^n \left| \epsilon_{n-r}^{1-\alpha} \Delta y_r \right| \leqslant \sum_{r=0}^\infty \left| \Delta y_r \right| < \infty.$$

Hence, by Toeplitz's theorem, $R_n \to \xi \eta$.

2. Proofs of the main theorems.

Let $\mu = m + \alpha$, where m is a non-negative integer and $0 \le \alpha < 1$; and let

$$s_n = \sum_{r=0}^n a_r$$
, $t_n = \sum_{r=0}^n b_r$, $c_n = \sum_{r=0}^n a_r b_{n-r}$, $u_n = \sum_{r=0}^n c_n = \sum_{r=0}^n s_r b_{n-r}$.

Then

and, by (II) and (III), a necessary and sufficient condition for $\sum c_n$ to be summable $(C, -\mu)$ to AB, is that

447

$$v_n = (C, -\mu - 1, m+2)(C, 1)(u_n)$$

should tend to AB

 $v_n = \frac{1}{\epsilon^{1-\alpha}} \sum_{r=0}^{n} \epsilon_{n-r}^{-\mu-2} \epsilon_r^{m+2} \frac{1}{r+1} \sum_{r=0}^{r} s_r t_{r-\nu},$

and

$$\frac{1}{r+1} \epsilon_r^{m+2} = \frac{1}{m+2} \epsilon_{m+1}^{r+1} = \frac{1}{m+2} \sum_{p=0}^{m+1} \epsilon_{\nu}^{m+1-p} \epsilon_{r-\nu}^{p} \quad (\nu = 0, 1, ..., r).$$

Also, it is well known and easily verified that, for all real θ , ϕ ,

$$\Delta^{\theta+\phi}\Big(\sum_{r=0}^n x_r y_{n-r}\Big) = \sum_{r=0}^n \Delta^{\theta} x_r \ \Delta^{\phi} y_{n-r}.$$

Hence (cf. Palmer [6], 262),

$$(m+2)\,v_n = \sum_{p=0}^{m+1} \frac{1}{\epsilon_n^{1-\alpha}} \Delta^{\mu+1} \Big(\sum_{r=0}^n \epsilon_r^{m+1+p} \, s_r \, \epsilon_{n-r}^p t_{n-r} \Big) = X_n + Y_n + Z_n,$$

where

$$X_n = \sum\limits_{p=1}^m rac{1}{\epsilon_n^{1-lpha}} \sum\limits_{r=0}^n \Delta^{m+1-p}(\epsilon_r^{m+1-p}\,s_r) \ \Delta^{p+lpha}(\epsilon_{n-r}^pt_{n-r})$$

when $m \ge 1$ and $X_n = 0$ when m = 0, and for any real β ,

$$\boldsymbol{Y}_n = \frac{1}{\epsilon_n^{1-\alpha}} \sum_{r=0}^n \Delta^{\mu+\beta} (\epsilon_{n-r}^{\mu+1-\alpha} \boldsymbol{s}_{n-r}) \ \Delta^{1-\beta} \, t_r,$$

$$Z_n = \frac{1}{\epsilon_n^{1-\alpha}} \sum_{r=0}^n \Delta^{\mu+\beta} (\epsilon_{n-r}^{\mu+1-\alpha} t_{n-r}) \ \Delta^{1-\beta} s_r.$$

Proof of Theorem 1. Suppose that μ , δ of the hypotheses are such that

$$0 < \delta < 1$$
, $\mu = \lambda - \delta$.

In view of (IV) and Lemma 3, these extra conditions can be imposed without loss in generality.

We now have to show that $\sum_{n=0}^{\infty} c_n$ is summable $(C, -\mu)$ to AB, and, since $\mu > 0$, this is equivalent to showing that $v_n \to AB$.

Since $s_n \to A$ $(C^*, -\mu)$, $t_n \to B$ $(C^*, -\mu)$, it follows from (II) and (IV) that, if $m \ge 1$, p = 1, 2, ..., m,

$$\Delta^{m+1-p}(\epsilon_n^{m+1-p} s_n) \to A, \quad \frac{1}{\epsilon_n^{-\alpha}} \Delta^{p+\alpha}(\epsilon_n^{p} t_n) \to B.$$

Consequently, by Lemma 4(i),

$$X_n \to mAB \quad (m \geqslant 0).$$

Put $\beta = \delta$ in the expression for Y_n to get

$$\boldsymbol{Y}_n = \frac{1}{\epsilon_n^{1-\alpha}} \sum_{r=0}^n \Delta^{\boldsymbol{\lambda}}(\epsilon_{n-r}^{\mu+1-\alpha} \boldsymbol{s}_{n-r}) \quad \Delta^{1-\delta}(t_r - B) + \frac{B}{\epsilon_n^{1-\alpha}} \Delta^{\mu}(\epsilon_n^{\mu+1-\alpha} \boldsymbol{s}_n).$$

Note that, by (II), the second term tends to AB. Further, by (II) and (IV), since $1-\delta \leqslant \lambda - \delta = \mu$,

$$\Delta^{1-\delta}(t_n\!-\!B)=o(\epsilon_n^{\delta-1}),$$

and, by II_0 , since $s_n = O(1)$ $(C^*, -\lambda)$,

$$\Delta^{\lambda}(\epsilon_n^{\mu+1-\alpha}s_n) = O(\epsilon_n^{1-\alpha-\delta});$$

and consequently, by Lemma 4(ii), the first term tends to zero.

Hence $Y_n \to AB$, and similarly $Z_n \to AB$.

We have thus shown that $X_n + Y_n + Z_n = (m+2)v_n \rightarrow (m+2)AB$, and the proof is complete.

Proof of Theorem 2. As above, it follows from the hypotheses of the theorem that

$$X_n \rightarrow mAB$$
.

Let

$$w_n = \frac{\Delta^{\mu}(\epsilon_n^{\mu+1-\alpha}s_n)}{\epsilon_n^{1-\alpha}}.$$

Now $s_n \to A \mid C^*$, $-\mu \mid$, $t_n \to B$ (C^* , $-\mu$) and so, by |II| and (IV),

$$w_n \! \to \! A, \quad \mathop{\Sigma}\limits_{0}^{\infty} \big| \Delta w_n \big| < \infty, \quad t_n \! \to \! B.$$

Hence, by Lemma 4(iii)

$$\boldsymbol{Y}_n = \frac{1}{\epsilon_n^{1-\alpha}} \sum_{r=0}^n \epsilon_{n-r}^{1-\alpha} \boldsymbol{w}_{n-r} \Delta t_r \rightarrow AB.$$

Further, by (II) and |IV|,

$$\frac{1}{\epsilon_n^{1-\alpha}} \Delta^{\mu}(\epsilon_n^{\mu+1-\alpha} t_n) \to B, \quad s_n \to A, \quad \sum_{0}^{\infty} |\Delta s_n| < \infty;$$

so that, by Lemma 4(iv),

$$Z_n = \frac{1}{\epsilon_n^{1-\alpha}} \sum_{r=0}^n \Delta^{\mu} (\epsilon_{n-r}^{\mu+1-\alpha} t_{n-r}) \quad \Delta s_r \rightarrow AB.$$

Hence $v_n \rightarrow AB$, and the theorem is established.

3. Additional results.

We prove finally that the conclusions in Theorems 1 and 2 cannot be sharpened (cf. Palmer [6]), even when the hypotheses on $\sum_{n=0}^{\infty} a_n$ are replaced by the more restrictive hypothesis

(a) $\sum_{n=0}^{\infty} a_n$ is absolutely summable $(C, -\kappa)$ for every real κ .

Let $a_0 = 1$, $a_n = 0$ $(n \ge 1)$. Then $\sum_{n=0}^{\infty} a_n$ satisfies (a) and, for any series $\sum b_n$,

$$c_n = \sum_{r=0}^n a_r b_{n-r} = b_n.$$

Hence it is sufficient for our purpose to show that, given any real λ , μ , there are series $\sum_{n=0}^{\infty} b_{n}'$, $\sum_{n=0}^{\infty} b_{n}''$ such that

(b') for every $\delta > 0$, $\sum_{n=0}^{\infty} b_n$ is summable $(C, -\lambda + \delta)$ and is bounded but not summable $(C, -\lambda)$,

(b") $\sum_{n=0}^{\infty} b_n$ " is summable $(C, -\mu)$ but is neither absolutely summable $(C, -\mu)$ nor bounded $(C, -\mu-\gamma)$ for any $\gamma > 0$.

Now it is familiar that the series $\sum_{n=0}^{\infty} (-1)^n$ satisfies (b') with $\lambda = 0$, and that $\sum_{n=0}^{\infty} (-1)^n / \log(n+2)$ satisfies (b'') with $\mu = 0$. Consequently, in view of results (III), |III| and III₀, we can take

$$b_n{'} = \Delta(C^*,\lambda) \Big(\sum_{r=0}^n (-1)^r \Big), \quad b_n{''} = \Delta(C^*,\mu) \Big(\sum_{r=0}^n (-1)^r / \log(r+2) \Big).$$

References.

- 1. D. Borwein, "Theorems on some methods of summability", Quart. J. of Math. (to
- 2. G. H. Hardy, Divergent Series (Oxford, 1949).
- 3. F. Hausdorff, "Die Äquivalenz der Hölderschen und Cesaroschen Grenzwerte negativer Ordnung", Math. Zeitschrift, 31 (1930), 186-196.
- 4. K. Knopp and G. G. Lorentz, "Beiträge zur absoluten Limitierung", Archiv. der Math., 2 (1949), 10-16.
- 5. G. Lyra, "C- und H-Summierbarkeit negativer Ordnung", Math. Zeitschrift, 49 (1944),
- 6. K. O. Palmer, "Eine Verallgemeinerung zweier Sätze von Mertens und Hardy auf Reihen negativer C-Summierbarkeitsordnung", Archiv. der Math., 2 (1949), 258-266.
 - St. Salvator's College. University of St. Andrews.