ISRAEL MATHEMATICAL CONFERENCE PROCEEDINGS, Vol. 4, 1991

THE NON-LOCAL NATURE OF THE SUMMABILITY OF FOURIER
SERIES BY CERTAIN ABSOLUTE RIESZ METHODS!
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ABSTRACT. For a large class of sequences {\, } the summability at a point of a Fourier series
- An(t) by the absolute Riesz method |R, As,1] is not a local property of the generating
function. On the other hand, for every € > 0, the |R, An, 1| summability of the factored series
2 An(1)A7° at any point is always a local property of the generating function.

Suppose throughout that, forn =1,2,...,
pn >0, Ani=p1 g+ -+ ptn — 00,
and s, := ay +as+ - -+ay,. The series 3 a, 1s said to be summable by the absolute Riesz
method |R, Ap, 1] if g
o)== 3 (= AnJan

Ap<w

is of bounded variation over (A1, 00), and it is said to be summable by the absolute weighted
mean method | M, u,| if the sequence of means {t,} defined by

1 n
tn = /\" ZHV'SU
" op=1

is of bounded variation, that is if

oo

Z |At,] < oo,

n=1

where Aty :=t, — t,41. It is well known, and easily verified, that these two methods are
equivalent.
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Let
o0 1 o0
1 — :
lag + Z Apd) = 5% -+ Z(an cosnt + [, sinnt)

n=1 n=1
be the Fourier series generated by a periodic function F' with period 21 which is Lebesgue
integrable over (—m,w). It is familiar that the convergence of the Fourier series at t = =
is a local property of F (i.e. depends only on the behaviour of F' in an arbitrarily small
neighbourhood of z), and hence the summability of the Fourier series at t = = by any
regular linear summability method is also a local property of F. On the other hand,
Bosanquet and Kestleman [5] showed that the summability |C, 1| (= |M, 1|) of the Fourier
series at any point is not a local property of F, and Mohanty [8] subsequently showed that
this is also the case with summability |R, A, 1| when A, := £i(n) for n sufficiently large,
where

b(z) =z and F£i(z):=log(fr-1(z))

for k =1,2,... and z sufficiently large. Mohanty also showed that the |R,logn, 1| summa-
bility of the factored Fourier series

Z A, (t)/ logn
n=2

at any point is a local property of F, whereas the |C,1| summability of this series is
not. Matsumoto [6] improved the first of these results by showing that the |R,logn,1]|

summability of the series
oo

3 An(t)(loglogn)™?, p > 1,

n=3

at any point is a local property of F, and Bhatt[3] went a step further by showing that the
factor (loglogn)~® in the above series can be replaced by the more general factor v, logn
where {¥,} is a convex sequence such that 3 ,/n is convergent. Mishra [7] proved that
if {yn} is as above, and if

An = O0(nps) and ApApn = O(pinpintr);

then the summability |M, p,| of the series

Z An(t)n o
n=1

Nfin

at any point is a local property of F. This does not directly generalize any of the above
mentioned results involving | R, logn, 1| summability since the order relations are not satis-
fied by pn := 1/n. Bor [4] recently showed that |M, y1,| in Mishra’s result can be replaced
by a more general summability method |M, pin|x.

The following two theorems include most of the above mentioned results as special cases.
Their proofs will appear in the Proceedings of the American Mathematical Society.
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THEOREM 1. Suppose that a is a positive integer, and that f is a positive, unbounded
function with an absolutely continuous pesitive derivative on [e®, oc) such that, on this
interval,

zf'(x)

f(=)
ef"(z) = 0("(=))-

decreases to 0

and

Suppose also that

Ap := f(e™) forn 2 a,
and that 0 < o < § < 27. Then there is a function F, Lebesgue integrable over («, 3) and
zero in the remainder of (0, 2r), whose Fourier series is not summable |R, A,,, 1| at t = 0.

This shows that, subject to the hypotheses of the theorem, the summability |R, \,, 1| of
a Fourier series at any point is not a local property of its generating function. Since the
hypotheses are satisfied by f(z) := £(z) for k = 1,2,..., Bosanquet and Kestleman’s
result, and also Mohanty’s result, on the non-local nature of the summability of a Fourier
series by certain absolute methods are special cases of Theorem 1.

THEOREM 2. Suppose that the sequence {c,} is such that
(1) 5 ol < oo
n=1""
and
@ 3 |Acal < co.
n=1

Then the summability |R, A,, 1| of the factored Fourier series

Z An(t)en

at any point is a local property of the generating function F'.

This theorem is a special case of a result due to Baron [2, Theorem 3]. The proof that
is to appear in the Proceedings of the American Mathematical Society is, however, some-
what simpler and more direct than Baron’s, partly because he deals with more general
summability methods. Baron has established many results concerning local propertics of
Fourier series in [1] and [2]. Theorem 2 generalizes Bhatt’s above-mentioned result, since
it is known (see [3] for references) that if {7y,} is a convex sequence such that 3 v,/n is
convergent, then

Tn 2 Tn+1 20 and Zlogn Axy < 00,
n=1
and so (1) and (2) are satisfied by pn 1= 1/n, ¢, 1= 4, logn. Since, by Dini’s theorem,
Yo inA; 7€ is convergent whenever e > 0, we have the following corollary of Theorem 2.
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COROLLARY. For ¢ > 0, the summability |R, An, 1| of the factored Fourier series

o+

a

b

(o]

[

o

oo

oo

o0

D At

n=1

any point is a local property of the generating function F.
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