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GENERALIZATION OF THE HAUSDORFF
¥ MOMENT PROBLEM

DAVID BORWEIN AND AMNON JAKIMOVSKI

1. Introduction. Suppose throughoutthat {k,} is a sequence of

positive integers, that
4 o kﬂ
ogzo<zl<12<...<z,,,,tn—»oo,zl—=oo,
n=1 ¥n

that ko = L if lg = 1’ and that {un(n} (‘f = 0111-'-skn_ 1; n=05

1,...) is a sequence of real numbers. We shall be concerned with the

problem of establishing necessary and sufficient conditions for there to
be a function « satisfying

1
1) (—D'%" = f t™ log"t da(t)
V]

forr=0,1,...,k.—1, n=01,...

and certain additional conditions. The case I, = 0, k, = 1 for n = 0,
I,... of the problem is the version of the classical moment problem
considered originally by Hausdorff [5], [6], [7]; the above formulation
will emerge as a natural generalization thereof. An alternative formula-
tion of the problem is to express it as the “‘infinite Hermite interpolation
problem’’ of establishing necessary and sufficient conditions for a function
F to be a Laplace transform of the form

Fe) = f T ey ()

0

and to satisfy
FOQ) = (=D)w"forr =0,1,... ,kbs—1,5=0,1,....

Considerable simplification is obtained by adoption of the following
notation. Construct a monotonic sequence {\,} from {I,} by repeating
each I, &, times. Then

1
lhn

M

0=EM=EMENE...SMM>0 oo = 00.

i
T
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~ ywhere the divided difference u[h, . . .

 ever A

. 1
o (D7 = f ) £ log't da(t)

RS P

: Vlt is known (see [11, p. 45]) that

- with the convention that products such as Agy1 - -

i A.H-[,.,.
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For each s there is an integer n(s) such that A\, = (). Let m, = kyy

nd construct a sequence {u,"} (r =0,1,...,m — 1, 8§ = (_), Ly o)
< jrom {#a"} DYy setting ps” = 1", Then m, is the multiplicity of A,
(e, it is the number of indices j for which A; = Ay; and p;” = p,” when-

= A,. Formula (1) can be written in the equivalent form

forr=0,1,...,my—1, s=0,1,....

For 0 é.‘k < s £ a, let my(k, n) be the multiplicity of A\, among
, M\,. By a standard result on Hermite interpolation (see
3, p. 29]) there is a unique polynomial P,(z) of degree at most n such

. that

(3) P, (n) = (—1)"u,"

) ms(Os n) = 17

s=0,1,...,n

forr=0; Lie.n

n

P,z =2 ulhs, - ..

k=0

L
s Ml —2) oo (e — z)

. \,] is given by

1 f P, (z)dz
ke - Aal = T 2mide, M —2) ... (M—2)]
C, being a positively sensed Jordan contour enclosing Ay, ey, -« -y M

For0=2k=n0<t=1,let

U VTS W10 S W §

t'ds

- 1
@) () = _Ak“"')\ﬁﬁfckn e —2z)...0—2)"

Mi(0) = A (0+),

.\, = 1whenk = n.
If f(z) is analytic inside and on Cy, then, by the theory of residues,

f f(z)dz
Cn e —2) ... (A — 2)

IS a linear combination, with coefficients depending only on A

, A, of the values F(A,), *=0,1,...,m,(&, n)‘—- 1, &=
kik+41,...,n. It follows that A,(f) is a linear combination of the
functions slog™t, r=0,1,...,m,k,n) —1, s=kk+1,...,n

and that ), is the same linear combination with (—1)7u," substituted
for pelog” £. Consequently, if @ € BV, where BV is the space of norma-
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lized functions of bounded variation on [0, 1], ie., a(0) = 0, 20(f) =
a(t4+) +a(t—) for 0 < ¢t < 1, and if

1
(=1)"u " =f0 M log'tda(t) for0 sr < ms(k,n), k<5< n,

then

e = ds(01da0)

An explicit formula for u[X, . . ., A,] can be obtained by evaluating

1 Fdz
2mid e, M= 2) ... (A — 2)

and substituting (—1)7u," for Ps log™ in the result.
Let

D0=(1+}\0)d0=1,Dn=(1-{-%})_“(14_&1_)

= (14 z)d, form =1,
Then, for n = 0,

_ IR VER
Dn = }\n+1dn+1 = 1 + ?\D +k§0 dk:
and, forn > & = 0,
L 1 5 di z i dy D
® 3 g [¥

S l+ N ShDi T Shdo,, x D,

n
G

1
D Sal
Further, it is known that if all the \,’s are different, then

6) O0=M(t) EXMu(®) =1 for0<t=<1, 0<s=<n,
k=0

by [10, Lemma 1] and

1
) f % E)dEm % for0<k<n
0 7

by [6, p. 294]. A simple continuity argument applied to (4) shows that
(6) and (7) remain valid when different A,'s are allowed to coalesce.
Let 8 be an even continuous convex function such that 6(n)/u— 0 as
#— 0 and 8(u)/u — © as u — 0. Associated with this function is the
Orlicz class Ly of all functions x Lebesgue integrable over [0, 1] for which

fol B(x(2))dt < oo
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Let L, be the space of measurable functions x on [0, 1] with finite
- porm

]l = ess. supoc < |2(2)].
Let

= d D,
Mg(ﬁ) = Oﬁ-g(z )\nk)r

£
I

M-

M1(?$) = 1 I)\nkln

£
I

D,
Moo(n) = ma'x0§k§n I)\nkl C_ir' l
k
and let

My, = SUDr =0 Ma(ﬂ), M, = SUPxz0 Ml(”): M, = SUPnzo Mm(n)

The following two theorems are the main results established in the
present paper.

THEOREM 1. A necessary and sufficient condition for there to be a func-
tion
(i) @ € BV satisfying (1) is that M, < o :
(ii) B € L, satisfying

1
8) (—=1)"," =f; t™ log"t B(¢)dt

forr=0,1,..., kb, — 1,0 =0,1,...

i that M, < o0 ;

(iif) 8 € Lq satisfying (8) is that My < 0.
Furthermore

(iv) if (1) is satisfied by a function o € BV, then
My = |1 [de(t)| —6la(0+)| where § = O when Iy = 0,6 = 1 when I, > 0,
Mmoreover o is umique when ly = 0, and when ly > 0t differs by a constant,
0ver the interval 0 < t < 1, from any other Junction in BV satisfying (1);

(V) if (8) s satisfied by a function 8 € L., then 8 is essentially unique
ol M, = ||8]|s

(vi) if (8) is satisfied by a function 8 € Ly, then B is essentially unique
and

1
M =f0 8(B(t))ds.
TuEOREM 2. Forn = 0,1, . .. .

Mi(n) £ Ma(n + 1), Mo(n) S Mo(n+ 1), Ms(n) < My(n + 1);
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and

]Imneoo Ml(?z) = Mll hmn—mn M (ﬂ) = oov hmﬂ—)oo Mﬂ (ﬂ)

The case Iy = 0, k, = 1 for n = 0,1, ... of Theorem 1(i) was esta}.

lished by Hausdorff [5], [6] and Schoenberg [13] subsequently gave 5
- was proved by i

different proof; the case I, > 0, k, = 1 forn =0, 1, ..
Leviatan [9]. (See also [4].)

The case I, = n, kb, =1forn =0,1, ..
Hausdorff [7].

Thecasel, = n, bk, = 1forn =0,1,...,0(u) = |[ul,1 < p < o0, of
Theorem 1(iii) is due to Hausdorff [7] and the case k, = 1 for 5 =
0,1, ... to Leviatan [9], [10]. (See also [1] and [2].)

See [2] and the references there given for known spec1a1 cases of
Theorem 2.

. of Theorem 1(ii} is due to

2. Preliminary results.

Lemma 1. Let 7, a be non-negative integers, let 0 < N < Ngy1, and let

A) ( A)( ) 1 )
b= 1 ——) ... (1 -+ :
& ( A+t K j;m Aj— A

Then (1) 8, is uniformly bounded for n > k = a,
(if) lim, o 6.4 = O for k = a,

A
(1i1) 8, — (Dk) log” D, — 0 uniformly when n > k — 0.
D, Dy

Proof. Let0 < e < M a=A— ¢ = A+ ¢ let

= 1
Y= Yak = Z )\_

and, for n > a, let

—X
Uy = 1 — %n = g‘a"'m"’ Up = (1 _I_ )\lﬂ) — g—ﬁﬂ.’)\n-

Then a, — X, 8, — X and so we can choose a positive integer N = a $0
large that

loy — A < & |Be — A\ < e form > N.
First, for n > k = N, we have that
= 1 i —ar )\k+l g
0 <o =u u( )ﬁeyr(——’)-
K k+1 7 ;-=Zk+1 R Af ¥ W

Since v, — 0 as# — 0, it follows that (i) and (ii) hold for # = N. The
extension of these conclusions to the range N > k = « is simple.

: . 1
(10) 0Lby = V41 - - I?nr( E :
1 &

 LEMMA 2. Let $(t) = (heypr — £) . ..
0 <t < Ny, and let r be a positive integer. Then
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~ Next, let

Ank = |Mat1. .

(Bt
.un—'{')}c+1...?)n| Z_,_]_}\j—}\ ’

n 1 T an
bnic = Vg4l e o o ﬂn{ ( j=2k+1 R_.,- _ h) —log Dk}

" Then, for # > & = N, we have that

L 0Sans (- e-ﬂ*)v’(_m_l_)

Moyt — A

A

A T
. —ay_ k-1
y(B = a)e Ty (_?\m — )\)

2vey(r + 1)! ( Aes1 ) _ 20+ 1) ( Aess )
(ay)™ Argr — A A — ™ \ Ny — A

IIA

and, by (5), that

71 n
7 1 D)
- )\) (f_zm X =2 Ep,

v vr(zﬂ: ; )T_l(i - )
L ) P A A=A 14

2 1 A1
Vg1 s o .TJn?’( Z ) +

e_r%f( A1 )m ok P ( N )’A +1
?\k+1 — A Ag41 (?\ - E) )\k+1 — A

It follows from (9) that a,; — 0 uniformly when n > & — o, and from

1A

IIA

IIA

Agt1

(10) that b, — 0 uniformly when # > k — 0. Since

S + b forn>kz N,

p_x)“ + Dy
Ot (Dn log D,

conclusion (iii) follows.

(A, — t) where 0 = k< n and

)\k+l B

o oo 3 )]s

praBt i Ay — 8

Where M is a number independent of t, k and n.

Proof. The result is evidently true with M = 0 when 7

= 1. Suppose
therefore that 7 = 2 and let



952 D. BORWEIN AND A. JAKIMOVSKI

As easy inductive argument shows that

L0 (5 )
= (=i ¥i)
o U &
is equal to a linear combination with constant coefficients of terms of
the form &
(3 [ n by 1 bm
Z 'rf“) PR 3) o ( 2 w“”‘)
=Ft1 =i+ , =it

where the a.'s and b/'s are positive integers, a; > 1 and
albl + ﬂ,zbz + B % + Gmbm = 7.

Each of the terms is no greater than

n . 7 blmvl n b,
el 2 v ) 2, 'Yjal) ( b¥ ‘f:zaz)
J=k+1 i=k+1 J=k+1

n )ﬂ141+ﬂ1(51“1)+32b2+---+ﬂmbm

F=k+1

n r—1
= Y+l ( ’Yj) :
J=k+1

E’Y:‘

= Vet (
J=F+1

The desired conclusion follows.

LEvMA 3. Let ¢() = Qg — £) ... (g — £), ®() = O\, — W)

where a is a positive integer, 0 = s < n and A, < Agy1. Then 7 (X;) =0
when 0 £ v < a, and when r Z a,

7 1 )rma
j;s+1 A — A

where M 1s a number independent of s and n.

127 ()] = Mﬂm)(

Proof. The first part is evident. For the second part we observe that,
when 7 = a,

(8PN =7(r —1) ... (r —a+ 1P\,
and, as in the proof of Lemma 2, that ¢~ (x,)/¥(),) can be expressed

as a linear combination with constant coefficients of terms each with

absolute value no greater than

()"
Ay — A i

The desired conclusion follows.

LemMa 4. If My < 0, A\, < A1 andr = 0,1,...,m, — 1, thet
o Bl 0-W (S
- ikl = 1= :
o }nl_fi k=3 A k( kst ! A J=k+1 7\;' = A

Proof. For » = 0 the above sum is equal to p,'® for every 7 z s by

) |(-LEO0) - kZ=Z Anx(l

n i‘lm': .
E 'Yfa")
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(3). Suppose therefore that 1 < 7 < m, — 1. Then, by Lemmas 2 and 3
e have, for n = s, that
— =] ... 1 —-=
Ak+1

n 1 )r
& (J'=Zk+1}\f_ hs

n s—1
w,
S MY Pl + Muns > Ml
k=3 k+1 s k=s—mg-+1

where M is a positive number independent of s and », and

s Wl :
R;H»I_ )\n j=Zk.I}-1 )\j — As

: 'Since > %o Mkl = M, for n 2 0, and, by Lemma 1(i) and (i), w. is
uniformly bounded and lim,_, w,x = 0 for & = s, the right-hand side of
(11) tends to 0 as # — 0. In view of (3), this establishes the desired

conclusion.

War = (1 =

"_ LemMma 5. If M; < 0 andr = 0,1,...,m, — 1, then

 Ds

(=), = 1imf A (&)M log
8 nk Dn Dn. i

n-co k=0

Proof. Suppose, without loss in generality, that A, < Ay, and let

A py il 1 7
b= (1= 2) (1= )
* M1 An fz%:l A= A

- Then, by Lemma 1(ii) and (iii),

. n D As D
ol (2] -
n:_l)zkE;D)\k B D, log D, 0

since ELO Mzl £ M, for n = 0and D, — o0; and, by Lemma 1(ii) and
~ Lemma 4,

7
]imz ?\nk&m = ,LL@(T).

eo k=0

- The desired conclusion follows.

LemuMa 6. If a function x € BV is such that

1
fo M log’tdx(t) =0 forr=0,1,...,m,—1, s=0,1,...,

fenx(t) = x(0+) for 0 < ¢ = 1. If, in addition, \o = 0, then £(0+) = 0.
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Proof. When Aq = 0 it follows from a known result (see [11,

Theorey
8.2]) that eorem

1
f f'dx(t) =0 form=0,1,....

The proof can now be completed in the same way as in the proof g
Lemma 3 in [2].

3. Proofs of the main results.

Proofs of the necessity parts of Theorem 1(i), (i) and (iii).
Part (i). Suppose the function « € BV satisfies (1). For 0 <

k < 7, We
have that

1
Ao = fn Ank (ﬁ)da (t),
and thus, by (6),

2, éfn Jdoz(t)lé0 An () gfo |dec(8)]-
Hence
@ 5[ o).

Part (ii). Suppose the function g8 € L_ satisfies (8). For 0 < k <,
we have that

1
(13) M =f0 Au(£)B(t)dt
and thus, by (6) and (7),
sl < 181l 2

Hence

(14) Mo = [|8]

Part (iii). Suppose the function 8 € L satisfies (8). It follows from .

(13) and (7), by Jensen’s inequality (see [15, pp- 23-24]) that

- D, (!
d}c d;ﬁ 0
Hence, by (6),

Z%e(%-)\ ) fole(ﬁ(t))dt

k=0
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- Md SO

W) Mo =< f RCICIONE

Proofs of the sufficiency parts of Theorem 1(i), (ii) and (iii).
We first observe that

e
z | S EZ:ODW < M,

]gf

and, by Young's inequality (see [8, p. 12]), that

Da 22 |l S NOD) + e(D” ?\m)

~ where N is the convex function complementary to © (see [8, p. 11]).
- Hence

Z | = N(I)Z -+ E D e(—~ xnk) < N(1) + Me.

It follows that M, = Mm, My = N(1) + My and so M; < 0 under
cach of the three hypotheses of the sufficiency parts of Theorem 1(i),
(i) and (iii). Suppose therefore that M; < .

Forn = 0,1, ..., define the function «, on [0, 1] by setting
_ 10 for0 £t < 1/D,,
al) =45y forl/D, st =1,
. Dkgtﬂn
so that

1 n
f |den (8)] = 22 [l = M.
(1] k=0

Consequently, by Helly’s theorem (see [14, p. 29]), there is an increasing
sequence of positive integers {#,} and a function « of bounded variation

on [0, 1] such that
(16) lim,,_a,({) =) for0st=1

and

(17) f 01 lda(t)| £ M.

Part (i). By Lemma 5, we have that

( 1) ﬂs = hmz )\nk(D lo g D

N—sm k=

hmf * Jogt dow, (¢)

forr=0,1,...,m,—1,s5s=0,1,.... It follows, by the Helly-Bray
theorem, (see [14, p. 31]) that « satisfies (2) and hence (1).
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Part (ii). Suppose M, < 0. Let 0 £ x <y = 1. Then for » suﬂﬁ
ciently large there are integers a, b (depending on #) such that —} 5
a < b= nand

D, Dy _ D, Dyt
Dn=x< Dn =D §y< Dn (Dfl 0)1
since
max —& = max& 1 — () asn—
0=k=n Dn 0 Sk=n Dn 1 + Ak ) .
Now
L »
An
) =@ _ L2
~ & o5 de
k=a+1 Dn k=a+1 Dn
and

b

lim >, -@i:y—x

noew k=a+1l D

In view of (16), it follows that

Y —-x = s
Hence

alt) 2c+f0 Bw)du for0 <t =<1

where 8 € L, and |8, < M.. Further, 8 satisfies (8) since a satisfies
). :
Part (iii}). Suppose My < 0. Let0 =z < %1 < ... < &p =
for n sufficiently large, there exist integers ag, a1, . . .
n) such that —1 =ay < a; < ... < a, = #and

Pﬁing<l—)1"'—“i for7="1;2; ..

1. Then,

Dn Dn ,m — 1,
s0 that
aj+1
0n(Xs41) —an(x,) = D, Ay forj=0,1,...,m— L

k=1+a;

T = ( r %‘)ﬁ(an(sz,l-),,l dan(xL))
k=14a; L/n E Oy

k=14a; D

Let

satisfies (1).
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| Then, by Jensen’s inequality (see (15, pp. 23-24]),

aj+1
R T g—’“e(ﬁ" Mk) forj=0,1,...,m—1,

k=1+aj

and so

aj+1
lim %=xj+1—xj forj=0,1,...,m — 1.

naco k=1l+aj +~n

In view of (16), it follows that

limZ Tin = E (g1 — % )e(a_(m—_a(xj_)) = Mo,

By 7=0 Xip1 — Xy

and, by a theorem of Medvedev [12], this implies that

alt) =c —i—L Blu)du for0 =t =1

where 8 € Ly and fé 6(B(t))dt £ M,y. Further, 8 satisfies (8) since «

Proofs of Theorem 1(iv), (v) and (vi).
Part (iv). Suppose that l; = 0. By Lemma 6 the function @ € BV

| stisfying (1) is unique. By (12), (17) and the proof of the sufficiency

part of Theorem 1(i), we have that

Ml éf: Ida(t)] é M1.

Suppose that Iy > 0, and let v(0) =0, v(!) = «(t) — «(0+) for

; '} 0<t< 1. Then v € BV and satisfies (1). Hence, by (12),
, @y (dependingon {

M, = f.} |dy (@®)].

Further, by (17) and the proof of the sufficiency part of Theorem 1(i),
there is a function & € BV satisfying (1) and

f: |da(t)| = M.

By Lemma 6, v(t) =
1(0), we have that

s [ o< o) s

a(t) — a(0+) for 0 <t = 1. Since y(0+) =
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Hence

m = [ 23] - o0 ).

Part (v). By Lemma 6, the function 8 € L_ satisfying (8) is essentially

unique. By (14) and the proof of the sufficiency part of Theorem L(ii),
we have that M, < 8], £ M.,

Part (vi). This part can be established by the proof of Part (v) w1th

certain obvious modifications.

Proof of Theorem 2. Let 0 < k < un. Then

A
(1 - )T_) )‘n+1 k + Anyr, E+1

. (1 __;\ )“Lf Py (2)ds
ARl Sl wey 7= PU - W S Wby

= Y by )\k+1 _Lf Pﬂ+1(2)dz
E+2 - - Agpa Mp12mid oy e — 2) ... (s — 2)
_ Lf P,,.H_]_(Z)dz _ 3
= —Apr1. o Mg 2mid oy e —2) .. (W —8) Boeh
and hence
(18) Ank'D—ﬂ = (1 ~ )An+1 (LN n+l s
d A n+1 dk+1

It follows that

M (n) éMm(”““”(lﬂl ) Do _ ar n41).

n+1 Dn+1
Since
Ax ) Dy
1 —— 1 =1
( Art1 -Dn 1 + A+ Ar1Dyp1 '

applying Jensen's inequality to (18) yields

bl
(5] dkk
< % ( __Ak_) D ( Dn+1)
_Dn{ 1 Ans1 que Ant it di
2
+ @SR n+1Dn+ 9(7\n+1,k+1 7

Ak ) s ( D +1) M1 Qg1 ( Dn+l)
= L e e f St ZEHL 9 N ).
( At/ Doy O\ At d + M1 Dy (i’

o
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, 1, we get that

e(xn+1_opg:‘) < My(n + 1).

symming this inequality for £ = 0, 1, . ..

Ma(n) < Mo + 1) — 200

N+ an+I

Since the above argument is valid when 8 is any even continuous convex

~ function, we can take 6(u) = |u| to obtain, in addition, that

Ml(n) < Mi(n + 1)-

+ This completes the proof of f{‘heorem 2.

Note. In all but Theorem 2 the condition that the sequences {I,} and
{\) be monotonic is redundant and was imposed only to avoid non-
essential and tedious complication in the proofs. Without the mono-
tonicity condition, but with {l,} distinct, Ao = Iy Z 0, ky = 1 if I, = 0,
L>0forn=1,2,...,identities and inequalities such as (5), (6) (using
(10) and (11) on p. 46 of [11] and the proof of Lemma 1 in [10]) and (7)
can readily be shown to hold, and Lemmas 5 and 6 and Theorem 1
remain valid. Removal of the monotonicity condition involves changes in
statements and proofs of lemmas as indicated below.

Statements.
LemmA 1. Replace 0 < A < Ay1 by 0 < A < mings, M.
LemMA 2. Replace 0 < £ < My1 by 0 < ¢ 5 X, for j > &, and

(£ 1) e (2, )

g1 — Tl Ay — sk (A — ]\ St Ay — ]
LEmMMA 3. Replace A; < Agy1 by A\, # A, for n > j > s, and
voo( 5 1) "oy woal( B )7
jmst1 Rj — A j=s+1 |Aj = l

LEmMMA 4. Replace A\, < Ay, by A, # A, for j > s.
Proofs.

Lemma 1. Replace My1/ (M1 — A) by max,sr A/ (A; — A),and 1/hpqy
by maxpk I/A

Lemma 2. In the inequalities replace v, by |v,| and vz by max;s,|v,|.
Lemma 3. Replace A; — A, by [\; — A,|.
Lemma 4. Replace 1/(Mes1 — Ns) by max;s, 1/|N; — A, and take

w’”‘f ’ (1 B A;_l) (1 - ;_) ( Z;l e 1 ?\ I)H'

Lemma 5. Replace My < Ay by Ay # A, for 7 > 5.
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