GENERALIZATION OF THE HAUSDORFF MOMENT PROBLEM

DAVID BORWEIN AND AMNON JAKIMOVSKI

1. Introduction. Suppose throughout that $\{k_n\}$ is a sequence of positive integers, that

$$0 \le l_0 < l_1 < l_2 < \ldots < l_n, l_n \to \infty, \sum_{n=1}^{\infty} \frac{k_n}{l_n} = \infty,$$

that $k_0 = 1$ if $l_0 = 1$, and that $\{u_n^{(r)}\}$ $(r = 0, 1, \ldots, k_n - 1, n = 0, 1, \ldots)$ is a sequence of real numbers. We shall be concerned with the problem of establishing necessary and sufficient conditions for there to be a function α satisfying

$$(1) \qquad (-1)^{r} u_{n}^{(r)} = \int_{0}^{1} t^{ln} \log^{r} t \, d\alpha(t)$$

for
$$r = 0, 1, \ldots, k_n - 1, n = 0, 1, \ldots$$

and certain additional conditions. The case $l_0 = 0$, $k_n = 1$ for n = 0, $1, \ldots$ of the problem is the version of the classical moment problem considered originally by Hausdorff [5], [6], [7]; the above formulation will emerge as a natural generalization thereof. An alternative formulation of the problem is to express it as the "infinite Hermite interpolation problem" of establishing necessary and sufficient conditions for a function F to be a Laplace transform of the form

$$F(z) = \int_{0}^{\infty} e^{-uz} d\gamma(u)$$

and to satisfy

$$F^{(r)}(l_n) = (-1)^r u_n^{(r)}$$
 for $r = 0, 1, ..., k_n - 1, n = 0, 1, ...$

Considerable simplification is obtained by adoption of the following notation. Construct a monotonic sequence $\{\lambda_s\}$ from $\{l_n\}$ by repeating each l_n k_n times. Then

$$0 \leq \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n, \, \lambda_1 > 0, \quad \lambda_n \to \infty, \quad \sum_{n=1}^{\infty} \frac{1}{\lambda_n} = \infty.$$

Received March 5, 1980 and in revised form January 5, 1981. This research was supported in part by the Natural Sciences and Engineering Research Council of Canada Grant A-2983.

For each s there is an integer n(s) such that $\lambda_s = l_{n(s)}$. Let $m_s = k_{n(s)}$ and construct a sequence $\{\mu_s^{(\tau)}\}$ $(r = 0, 1, \ldots, m_s - 1, s = 0, 1, \ldots)$ from $\{u_n^{(\tau)}\}$ by setting $\mu_s^{(\tau)} = u_{n(s)}^{(\tau)}$. Then m_s is the multiplicity of λ_s , i.e., it is the number of indices j for which $\lambda_j = \lambda_s$; and $\mu_j^{(\tau)} = \mu_s^{(\tau)}$ whenever $\lambda_j = \lambda_s$. Formula (1) can be written in the equivalent form

(2)
$$(-1)^{\tau} \mu_s^{(\tau)} = \int_0^1 t^{\lambda_s} \log^{\tau} t \, d\alpha(t)$$

for
$$r = 0, 1, \ldots, m_s - 1, s = 0, 1, \ldots$$

For $0 \le k \le s \le n$, let $m_s(k, n)$ be the multiplicity of λ_s among $\lambda_k, \lambda_{k+1}, \ldots, \lambda_n$. By a standard result on Hermite interpolation (see [3, p. 29]) there is a unique polynomial $P_n(z)$ of degree at most n such that

(3)
$$P_n^{(r)}(\lambda_s) = (-1)^r \mu_s^{(r)}$$
 for $r = 0, 1, \dots, m_s(0, n) - 1,$
 $s = 0, 1, \dots, n.$

It is known (see [11, p. 45]) that

$$P_n(z) = \sum_{k=0}^n u[\lambda_k, \ldots, \lambda_n](\lambda_{k+1} - z) \ldots (\lambda_n - z)$$

where the divided difference $u[\lambda_k, \ldots, \lambda_n]$ is given by

$$u[\lambda_k,\ldots,\lambda_n] = -\frac{1}{2\pi i} \int_{C_{kn}} \frac{P_n(z)dz}{(\lambda_k-z)\ldots(\lambda_n-z)},$$

 C_{kn} being a positively sensed Jordan contour enclosing λ_k , λ_{k+1} , ..., λ_n . For $0 \le k \le n$, $0 < t \le 1$, let

$$\lambda_{nk} = \lambda_{k+1} \dots \lambda_n u[\lambda_k, \dots, \lambda_n],$$

(4)
$$\lambda_{nk}(t) = -\lambda_{k+1} \dots \lambda_n \frac{1}{2\pi i} \int_{C_{kn}} \frac{t^z dz}{(\lambda_k - z) \dots (\lambda_n - z)},$$
$$\lambda_{nk}(0) = \lambda_{nk}(0+1).$$

with the convention that products such as $\lambda_{k+1} \dots \lambda_n = 1$ when k = n. If f(z) is analytic inside and on C_{kn} then, by the theory of residues,

$$\int_{C_{kn}} \frac{f(z)dz}{(\lambda_k - z) \dots (\lambda_n - z)}$$

is a linear combination, with coefficients depending only on λ_k , $\lambda_{k+1}, \ldots, \lambda_n$, of the values $f^{(r)}(\lambda_s)$, $r=0,1,\ldots,m_s(k,n)-1$, $s=k,k+1,\ldots,n$. It follows that $\lambda_{nk}(t)$ is a linear combination of the functions $t^{\lambda_s}\log^r t$, $r=0,1,\ldots,m_s(k,n)-1$, $s=k,k+1,\ldots,n$ and that λ_{nk} is the same linear combination with $(-1)^r\mu_s^{(r)}$ substituted for $t^{\lambda_s}\log^r t$. Consequently, if $\alpha \in \mathrm{BV}$, where BV is the space of norma-

lized functions of bounded variation on [0, 1], i.e., $\alpha(0) = 0$, $2\alpha(t) = \alpha(t+) + \alpha(t-)$ for 0 < t < 1, and if

$$(-1)^{r} \mu_{s}^{(r)} = \int_{0}^{1} t^{\lambda_{s}} \log^{r} t \, d\alpha(t) \quad \text{for } 0 \le r < m_{s}(k, n), \quad k \le s \le n,$$

then

$$\lambda_{nk} = \int_0^1 \lambda_{nk}(t) d\alpha(t).$$

An explicit formula for $u[\lambda_k, \ldots, \lambda_n]$ can be obtained by evaluating

$$\frac{1}{2\pi i} \int_{C_{kn}} \frac{t^2 dz}{(\lambda_k - z) \dots (\lambda_n - z)}$$

and substituting $(-1)^{\tau}\mu_s^{(\tau)}$ for $t^{\lambda_s}\log^{\tau}t$ in the result.

Let

$$D_0 = (1 + \lambda_0)d_0 = 1, D_n = \left(1 + \frac{1}{\lambda_1}\right) \dots \left(1 + \frac{1}{\lambda_n}\right)$$

 $= (1 + \lambda_n)d_n$ for $n \ge 1$.

Then, for $n \geq 0$,

$$D_n = \lambda_{n+1} d_{n+1} = \frac{\lambda_0}{1 + \lambda_0} + \sum_{k=0}^n d_k,$$

and, for $n > k \ge 0$,

(5)
$$\sum_{j=k+1}^{n} \frac{1}{1+\lambda_{j}} = \sum_{j=k+1}^{n} \frac{d^{j}}{D^{j}} \le \sum_{j=k+1}^{n} \int_{D_{j-1}}^{D_{j}} \frac{dx}{x} = \log \frac{D_{n}}{D_{k}}$$

$$\leq \sum_{j=k+1}^{n} \frac{d_j}{D_{j-1}} = \sum_{j=k+1}^{n} \frac{1}{\lambda}.$$

Further, it is known that if all the λ_n 's are different, then

(6)
$$0 \le \lambda_{ns}(t) \le \sum_{k=0}^{n} \lambda_{nk}(t) \le 1$$
 for $0 \le t \le 1$, $0 \le s \le n$,

by [10, Lemma 1] and

(7)
$$\int_0^1 \lambda_{nk}(t)dt = \frac{d_k}{D_n} \quad \text{for } 0 \le k \le n$$

by [6, p. 294]. A simple continuity argument applied to (4) shows that (6) and (7) remain valid when different λ_n 's are allowed to coalesce.

Let θ be an even continuous convex function such that $\theta(u)/u \to 0$ as $u \to 0$ and $\theta(u)/u \to \infty$ as $u \to \infty$. Associated with this function is the Orlicz class L_{θ} of all functions x Lebesgue integrable over [0, 1] for which

$$\int_0^1 \theta(x(t))dt < \infty.$$

Let L_{∞} be the space of measurable functions x on [0,1] with finite norm

$$||x||_{\infty} = \text{ess. sup}_{0 < t < 1} |x(t)|.$$

Let

$$M_{\theta}(n) = \sum_{k=0}^{n} \frac{d_k}{D_n} \, \theta\left(\frac{D_n}{d_k} \, \lambda_{nk}\right),$$

$$M_1(n) = \sum_{k=0}^n |\lambda_{nk}|,$$

$$M_{\infty}(n) = \max_{0 \le k \le n} |\lambda_{nk}| \frac{D_n}{d_k},$$

and let

$$M_{\theta} = \sup_{n \geq 0} M_{\theta}(n), M_{1} = \sup_{n \geq 0} M_{1}(n), M_{\infty} = \sup_{n \geq 0} M_{\infty}(n).$$

The following two theorems are the main results established in the present paper.

THEOREM 1. A necessary and sufficient condition for there to be a function

- (i) $\alpha \in BV$ satisfying (1) is that $M_1 < \infty$:
- (ii) $\beta \in L_{\infty}$ satisfying

(8)
$$(-1)^{\tau} u_n^{(\tau)} = \int_0^1 t^{\ln n} \log^{\tau} t \, \beta(t) dt$$

for
$$r = 0, 1, \ldots, k_n - 1, n = 0, 1, \ldots$$

is that $M_{\infty} < \infty$;

(iii) $\beta \in L_{\theta}$ satisfying (8) is that $M_{\theta} < \infty$.

Furthermore

(iv) if (1) is satisfied by a function $\alpha \in BV$, then

 $M_1 = \int_0^1 |d\alpha(t)| - \delta |\alpha(0+)|$ where $\delta = 0$ when $l_0 = 0$, $\delta = 1$ when $l_0 > 0$; moreover α is unique when $l_0 = 0$, and when $l_0 > 0$ it differs by a constant, over the interval $0 < t \le 1$, from any other function in BV satisfying (1);

(v) if (8) is satisfied by a function $\beta \in L_{\infty}$, then β is essentially unique and $M_{\infty} = \|\beta\|_{\infty}$;

(vi) if (8) is satisfied by a function $\beta \in L_{\theta}$, then β is essentially unique and

$$M_{\theta} = \int_{0}^{1} \theta(\beta(t)) dt.$$

THEOREM 2. For $n = 0, 1, \ldots$

$$M_1(n) \leq M_1(n+1), M_{\infty}(n) \leq M_{\infty}(n+1), M_{\theta}(n) \leq M_{\theta}(n+1);$$

and

$$\lim_{n\to\infty} M_1(n) = M_1, \lim_{n\to\infty} M_{\infty}(n) = M_{\infty}, \lim_{n\to\infty} M_{\theta}(n) = M_{\theta}$$

The case $l_0 = 0$, $k_n = 1$ for $n = 0, 1, \ldots$ of Theorem 1(i) was established by Hausdorff [5], [6] and Schoenberg [13] subsequently gave a different proof; the case $l_0 > 0$, $k_n = 1$ for $n = 0, 1, \ldots$ was proved by Leviatan [9]. (See also [4].)

The case $l_n = n$, $k_n = 1$ for $n = 0, 1, \ldots$ of Theorem 1(ii) is due to Hausdorff [7].

The case $l_n = n$, $k_n = 1$ for $n = 0, 1, \ldots, \theta(u) = |u|^p$, $1 , of Theorem 1(iii) is due to Hausdorff [7] and the case <math>k_n = 1$ for $n = 0, 1, \ldots$ to Leviatan [9], [10]. (See also [1] and [2].)

See [2] and the references there given for known special cases of Theorem 2.

2. Preliminary results.

Lemma 1. Let r, a be non-negative integers, let $0 < \lambda < \lambda_{a+1}$, and let

$$\delta_{nk} = \left(1 - \frac{\lambda}{\lambda_{k+1}}\right) \dots \left(1 - \frac{\lambda}{\lambda_n}\right) \left(\sum_{j=k+1}^n \frac{1}{\lambda_j - \lambda}\right)^r$$

Then (i) δ_{nk} is uniformly bounded for $n > k \ge a$,

(ii) $\lim_{n\to\infty} \delta_{nk} = 0$ for $k \ge a$,

(iii)
$$\delta_{nk} - \left(\frac{D_k}{D_n}\right)^{\lambda} \log^{\tau} \frac{D_n}{D_k} \to 0$$
 uniformly when $n > k \to \infty$.

Proof. Let $0 < \epsilon < \lambda$, $\alpha = \lambda - \epsilon$, $\beta = \lambda + \epsilon$, let

$$\gamma = \gamma_{nk} = \sum_{j=k+1}^{n} \frac{1}{\lambda_j},$$

and, for n > a, let

$$u_n = 1 - \frac{\lambda}{\lambda_n} = e^{-\alpha_n/\lambda_n}, v_n = \left(1 + \frac{1}{\lambda_n}\right)^{-\lambda} = e^{-\beta_n/\lambda_n}.$$

Then $a_n \to \lambda$, $\beta_n \to \lambda$ and so we can choose a positive integer $N \ge a$ so large that

$$|\alpha_n - \lambda| < \epsilon, |\beta_n - \lambda| < \epsilon \text{ for } n > N.$$

First, for $n > k \ge N$, we have that

$$0 < \delta_{nk} = u_{k+1} \dots u_n \left(\sum_{j=k+1}^n \frac{1}{\lambda_j - \lambda} \right)^r \leq e^{-\alpha \gamma} \gamma^r \left(\frac{\lambda_{k+1}}{\lambda_{k+1} - \lambda} \right)^r.$$

Since $\gamma_{nk} \to \infty$ as $n \to \infty$, it follows that (i) and (ii) hold for $k \ge N$. The extension of these conclusions to the range $N > k \ge a$ is simple.

Next, let

$$a_{nk} = |u_{k+1} \dots u_n - v_{k+1} \dots v_n| \left(\sum_{j=k+1}^n \frac{1}{\lambda_j - \lambda} \right)^r,$$

$$b_{nk} = v_{k+1} \dots v_n \left\{ \left(\sum_{j=k+1}^n \frac{1}{\lambda_j - \lambda} \right)^r - \log^r \frac{D_n}{D_k} \right\}.$$

Then, for $n > k \ge N$, we have that

(9)
$$0 \leq a_{nk} \leq (e^{-\alpha \gamma} - e^{-\beta \gamma}) \gamma^r \left(\frac{\lambda_{k+1}}{\lambda_{k+1} - \lambda}\right)^r$$
$$\leq \gamma (\beta - \alpha) e^{-\alpha \gamma} \gamma^r \left(\frac{\lambda_{k+1}}{\lambda_{k+1} - \lambda}\right)^r$$
$$\leq \frac{2\gamma \epsilon \gamma^r (r+1)!}{(\alpha \gamma)^{r+1}} \left(\frac{\lambda_{k+1}}{\lambda_{k+1} - \lambda}\right)^r = \frac{2(r+1)!}{(\lambda - \epsilon)^{r+1}} \left(\frac{\lambda_{k+1}}{\lambda_{k+1} - \lambda}\right)^r \epsilon^r$$

and, by (5), that

$$(10) \quad 0 \leq b_{nk} \leq v_{k+1} \dots v_n r \left(\sum_{j=k+1}^n \frac{1}{\lambda_j - \lambda} \right)^{r-1} \left(\sum_{j=k+1}^n \frac{1}{\lambda_j - \lambda} - \log \frac{D_n}{D_k} \right)$$

$$\leq v_{k+1} \dots v_n r \left(\sum_{j=k+1}^n \frac{1}{\lambda_j - \lambda} \right)^{r-1} \left(\sum_{j=k+1}^n \frac{1}{\lambda_j - \lambda} - \frac{1}{1 + \lambda_j} \right)$$

$$\leq v_{k+1} \dots v_n r \left(\sum_{j=k+1}^n \frac{1}{\lambda_j - \lambda} \right)^r \frac{\lambda + 1}{\lambda_{k+1}}$$

$$\leq e^{-\alpha \gamma} r \gamma^r \left(\frac{\lambda_{k+1}}{\lambda_{k+1} - \lambda} \right)^r \frac{\lambda + 1}{\lambda_{k+1}} \leq \frac{r r!}{(\lambda - \epsilon)^r} \left(\frac{\lambda_{k+1}}{\lambda_{k+1} - \lambda} \right)^r \frac{\lambda + 1}{\lambda_{k+1}}.$$

It follows from (9) that $a_{nk} \to 0$ uniformly when $n > k \to \infty$, and from (10) that $b_{nk} \to 0$ uniformly when $n > k \to \infty$. Since

$$\left| \delta_{nk} - \left(\frac{D_k}{D_n} \right)^{\lambda} \log^{\tau} \frac{D_n}{D_k} \right| \le a_{nk} + b_{nk} \quad \text{for } n > k \ge N,$$

conclusion (iii) follows.

LEMMA 2. Let $\psi(t) = (\lambda_{k+1} - t) \dots (\lambda_n - t)$ where $0 \le k < n$ and $0 < t < \lambda_{k+1}$, and let $t \in A$ positive integer. Then

$$\left| \psi^{(r)}(t) - (-1)^r \psi(t) \left(\sum_{j=k+1}^n \frac{1}{\lambda_j - t} \right)^r \right| \le \frac{M \psi(t)}{\lambda_{k+1} - t} \left(\sum_{j=k+1}^n \frac{1}{\lambda_j - t} \right)^{r-1}$$

where M is a number independent of t, k and n.

Proof. The result is evidently true with M=0 when r=1. Suppose therefore that $r\geq 2$ and let

$$\gamma_j = \frac{1}{\lambda_j - t}.$$

HAUSDORFF MOMENT PROBLEM

As easy inductive argument shows that

$$\frac{\psi^{(r)}(t)}{\psi(t)} - (-1)^r \left(\sum_{j=k+1}^n \gamma_j\right)^r$$

is equal to a linear combination with constant coefficients of terms of the form

$$\left(\sum_{j=k+1}^{n} \gamma_{j}^{a_{1}}\right)^{b_{1}} \left(\sum_{j=k+1}^{n} \gamma_{j}^{a_{2}}\right)^{b_{2}} \dots \left(\sum_{j=k+1}^{n} \gamma_{j}^{a_{m}}\right)^{b_{m}}$$

where the a_i 's and b_i 's are positive integers, $a_1 > 1$ and

$$a_1b_1+a_2b_2+\ldots+a_mb_m=r.$$

Each of the terms is no greater than

$$\gamma_{k+1} \left(\sum_{j=k+1}^{n} \gamma_{j}^{a_{1}-1} \right) \left(\sum_{j=k+1}^{n} \gamma_{j}^{a_{1}} \right)^{b_{1}-1} \left(\sum_{j=k+1}^{n} \gamma_{j}^{a_{2}} \right)^{b_{2}} \dots \left(\sum_{j=k+1}^{n} \gamma_{j}^{a_{m}} \right)^{b_{m}} \\
\leq \gamma_{k+1} \left(\sum_{j=k+1}^{n} \gamma_{j} \right)^{a_{1}-1+a_{1}(b_{1}-1)+a_{2}b_{2}+\dots+a_{m}b_{m}} = \gamma_{k+1} \left(\sum_{j=k+1}^{n} \gamma_{j} \right)^{\tau-1}.$$

The desired conclusion follows.

LEMMA 3. Let $\psi(t) = (\lambda_{s+1} - t) \dots (\lambda_n - t)$, $\Phi(t) = (\lambda_s - t)^a \psi(t)$ where a is a positive integer, $0 \le s < n$ and $\lambda_s < \lambda_{s+1}$. Then $\Phi^{(r)}(\lambda_s) = 0$ when $0 \le r < a$, and when $r \ge a$,

$$|\Phi^{(\tau)}(\lambda_s)| \leq M\psi(\lambda_s) \left(\sum_{j=s+1}^n \frac{1}{\lambda_j - \lambda_s}\right)^{\tau - a}$$

where M is a number independent of s and n.

Proof. The first part is evident. For the second part we observe that, when $r \ge a$,

$$|\Phi^{(r)}(\lambda_s)| = r(r-1) \dots (r-a+1) \psi^{(r-a)}(\lambda_s)$$

and, as in the proof of Lemma 2, that $\psi^{(\tau-a)}(\lambda_s)/\psi(\lambda_s)$ can be expressed as a linear combination with constant coefficients of terms each with absolute value no greater than

$$\bigg(\sum_{j=s+1}^n \frac{1}{\lambda_j - \lambda_s}\bigg)^{r-a}.$$

The desired conclusion follows.

LEMMA 4. If $M_1 < \infty$, $\lambda_s < \lambda_{s+1}$ and $r = 0, 1, \ldots, m_s - 1$, then

$$\mu_s^{(\tau)} = \lim_{n \to \infty} \sum_{k=s}^n \lambda_{nk} \left(1 - \frac{\lambda_s}{\lambda_{k+1}} \right) \dots \left(1 - \frac{\lambda_s}{\lambda_n} \right) \left(\sum_{j=k+1}^n \frac{1}{\lambda_j - \lambda_s} \right)^{\tau}.$$

Proof. For r = 0 the above sum is equal to $\mu_s^{(0)}$ for every $n \ge s$ by

(3). Suppose therefore that $1 \le r \le m_s - 1$. Then, by Lemmas 2 and 3 we have, for $n \ge s$, that

$$(11) \quad \left| (-1)^{\tau} P_{n}^{(\tau)}(\lambda_{s}) - \sum_{k=s}^{n} \lambda_{nk} \left(1 - \frac{\lambda_{s}}{\lambda_{k+1}} \right) \dots \left(1 - \frac{\lambda_{s}}{\lambda_{n}} \right) \right| \\
\times \left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j} - \lambda_{s}} \right)^{\tau} \left| \frac{1}{\lambda_{j} - \lambda_{s}} \right|$$

$$\leq M \sum_{k=s}^{n} |\lambda_{nk}| \frac{w_{nk}}{\lambda_{k+1} - \lambda_s} + M w_{ns} \sum_{k=s-m_s+1}^{s-1} |\lambda_{nk}|$$

where M is a positive number independent of s and n, and

$$w_{nk} = \left(1 - \frac{\lambda_s}{\lambda_{k+1}}\right) \dots \left(1 - \frac{\lambda_s}{\lambda_n}\right) \left(\sum_{j=k+1}^n \frac{1}{\lambda_j - \lambda_s}\right)^{r-1}$$

Since $\sum_{k=0}^{n} |\lambda_{nk}| \leq M_1$ for $n \geq 0$, and, by Lemma 1(i) and (ii), w_{nk} is uniformly bounded and $\lim_{n\to\infty} w_{nk} = 0$ for $k \geq s$, the right-hand side of (11) tends to 0 as $n\to\infty$. In view of (3), this establishes the desired conclusion.

LEMMA 5. If $M_1 < \infty$ and $r = 0, 1, \ldots, m_s - 1$, then

$$(-1)^r \mu_s^{(r)} = \lim_{n \to \infty} \sum_{k=0}^n \lambda_{nk} \left(\frac{D_k}{D_n} \right)^{\lambda_s} \log^r \frac{D_k}{D_n}.$$

Proof. Suppose, without loss in generality, that $\lambda_s < \lambda_{s+1}$, and let

$$\delta_{nk} = \left(1 - \frac{\lambda_s}{\lambda_{k+1}}\right) \dots \left(1 - \frac{\lambda_s}{\lambda_n}\right) \left(\sum_{j=k+1}^n \frac{1}{\lambda_j - \lambda_s}\right)^r$$

Then, by Lemma 1(ii) and (iii),

$$\lim_{n\to\infty}\sum_{k=0}^{n}\lambda_{nk}\left\{\delta_{nk}-\left(\frac{D_k}{D_n}\right)^{\lambda_s}\log^{\tau}\frac{D_n}{D_k}\right\}=0$$

since $\sum_{k=0}^{n} |\lambda_{nk}| \leq M_1$ for $n \geq 0$ and $D_n \to \infty$; and, by Lemma 1(ii) and Lemma 4,

$$\lim_{n\to\infty}\sum_{k=0}^n\lambda_{nk}\delta_{nk}=\mu_s^{(\tau)}.$$

The desired conclusion follows.

LEMMA 6. If a function $x \in BV$ is such that

$$\int_0^1 t^{\lambda_s} \log^r t \, dx(t) = 0 \quad \text{for } r = 0, 1, \dots, m_s - 1, \quad s = 0, 1, \dots,$$

then x(t) = x(0+) for $0 < t \le 1$. If, in addition, $\lambda_0 = 0$, then x(0+) = 0.

HAUSDORFF MOMENT PROBLEM

955

Proof. When $\lambda_0=0$ it follows from a known result (see [11, Theorem 8.2]) that

$$\int_0^1 t^n dx(t) = 0 \text{ for } n = 0, 1, \dots$$

The proof can now be completed in the same way as in the proof of Lemma 3 in [2].

3. Proofs of the main results.

Proofs of the necessity parts of Theorem 1(i), (ii) and (iii).

Part (i). Suppose the function $\alpha \in BV$ satisfies (1). For $0 \le k \le n$, we have that

$$\lambda_{nk} = \int_0^1 \lambda_{nk}(t) d\alpha(t),$$

and thus, by (6),

$$\sum_{k=0}^{n} |\lambda_{nk}| \leq \int_{0}^{1} |d\alpha(t)| \sum_{k=0}^{n} \lambda_{nk}(t) \leq \int_{0}^{1} |d\alpha(t)|.$$

Hence

$$(12) \quad M_1 \leqq \int_0^1 |d\alpha(t)|.$$

Part (ii). Suppose the function $\beta \in L_{\infty}$ satisfies (8). For $0 \le k \le n$, we have that

(13)
$$\lambda_{nk} = \int_{0}^{1} \lambda_{nk}(t) \beta(t) dt$$

and thus, by (6) and (7),

$$|\lambda_{nk}| \leq ||\beta||_{\infty} \frac{d_k}{D_n}.$$

Hence

$$(14) \quad M_{\infty} \leq \|\beta\|_{\infty}.$$

Part (iii). Suppose the function $\beta \in L_{\theta}$ satisfies (8). It follows from (13) and (7), by Jensen's inequality (see [15, pp. 23–24]) that

$$\Theta\left(\frac{D_n}{d_k}\lambda_{nk}\right) \leq \frac{D_n}{d_k}\int_0^1 \lambda_{nk}(t)\Theta(\beta(t))dt \quad \text{for } 0 \leq k \leq n.$$

Hence, by (6),

$$\sum_{k=0}^{n} \frac{d_k}{D_n} \, \Theta \left(\frac{D_n}{d_k} \, \lambda_{nk} \right) \, \leqq \int_{0}^{1} \, \Theta (\beta(t)) dt$$

and so

(15)
$$M_{\Theta} \leq \int_{0}^{1} \Theta(\beta(t))dt.$$

Proofs of the sufficiency parts of Theorem 1(i), (ii) and (iii). We first observe that

$$\sum_{k=0}^{n} |\lambda_{nk}| \leq M_{\infty} \sum_{k=0}^{n} \frac{d_k}{D_n} \leq M_{\infty},$$

and, by Young's inequality (see [8, p. 12]), that

$$\frac{D_n}{d_k} |\lambda_{nk}| \le N(1) + \Theta\left(\frac{D_n}{d_k} \lambda_{nk}\right)$$

where N is the convex function complementary to Θ (see [8, p. 11]). Hence

$$\sum_{k=0}^{n} |\lambda_{nk}| \leq N(1) \sum_{k=0}^{n} \frac{d_k}{D_n} + \sum_{k=0}^{n} \frac{d_k}{D_n} \Theta\left(\frac{D_n}{d_k} \lambda_{nk}\right) \leq N(1) + M_{\Theta}.$$

It follows that $M_1 \leq M_{\infty}$, $M_1 \leq N(1) + M_{\theta}$ and so $M_1 < \infty$ under each of the three hypotheses of the sufficiency parts of Theorem 1(i), (ii) and (iii). Suppose therefore that $M_1 < \infty$.

For $n = 0, 1, \ldots$, define the function α_n on [0, 1] by setting

$$\alpha_n(t) = \begin{cases} 0 & \text{for } 0 \le t < 1/D_n, \\ \sum_{D_k \le tD_n} \lambda_{nk} & \text{for } 1/D_n \le t \le 1, \end{cases}$$

so that

$$\int_0^1 |d\alpha_n(t)| = \sum_{k=0}^n |\lambda_{nk}| \le M_1.$$

Consequently, by Helly's theorem (see [14, p. 29]), there is an increasing sequence of positive integers $\{n_i\}$ and a function α of bounded variation on [0, 1] such that

(16)
$$\lim_{t\to\infty} \alpha_{ni}(t) = \alpha(t)$$
 for $0 \le t \le 1$

and

$$(17) \quad \int_0^1 |d\alpha(t)| \leq M_1.$$

Part (i). By Lemma 5, we have that

$$(-1)^{\tau} \mu_s^{(\tau)} = \lim_{n \to \infty} \sum_{k=0}^n \lambda_{nk} \left(\frac{D_k}{D_n} \right)^{\lambda_s} \log^{\tau} \frac{D_k}{D_s} = \lim_{n \to \infty} \int_0^1 t^{\lambda_s} \log^{\tau} t \, d\alpha_n(t)$$

for $r = 0, 1, \ldots, m_s - 1$, $s = 0, 1, \ldots$ It follows, by the Helly-Bray theorem, (see [14, p. 31]) that α satisfies (2) and hence (1).

HAUSDORFF MOMENT PROBLEM

957

Part (ii). Suppose $M_{\infty} < \infty$. Let $0 \le x < y \le 1$. Then for n sufficiently large there are integers a, b (depending on n) such that $-1 \le a < b \le n$ and

$$\frac{D_a}{D_n} \le x < \frac{D_{a+1}}{D_n} \le \frac{D_b}{D_n} \le y < \frac{D_{b+1}}{D_n} \quad (D_{-1} = 0),$$

since

$$\max_{0 \le k \le n} \frac{d_k}{D_n} = \max_{0 \le k \le n} \frac{D_k}{D_n} \frac{1}{1 + \lambda_k} \to 0 \quad \text{as } n \to \infty.$$

Now

$$\frac{\left|\alpha_n(y) - \alpha_n(x)\right|}{\sum\limits_{k=a+1}^b \frac{d_k}{D_n}} = \frac{\left|\sum\limits_{k=a+1}^b \lambda_{nk}\right|}{\sum\limits_{k=a+1}^b \frac{d_k}{D_n}} \leq M_{\infty},$$

and

$$\lim_{n\to\infty} \sum_{k=a+1}^b \frac{d_k}{D_n} = y - x.$$

In view of (16), it follows that

$$\frac{|\alpha(y) - \alpha(x)|}{y - x} \le M_{\infty}.$$

Hence

$$\alpha(t) = c + \int_0^t \beta(u) du \quad \text{for } 0 \le t \le 1$$

where $\beta \in L_{\infty}$ and $\|\beta\|_{\infty} \leq M_{\infty}$. Further, β satisfies (8) since α satisfies (1).

Part (iii). Suppose $M_{\theta} < \infty$. Let $0 = x_0 < x_1 < \ldots < x_m = 1$. Then, for n sufficiently large, there exist integers a_0, a_1, \ldots, a_m (depending on n) such that $-1 = a_0 < a_1 < \ldots < a_m = n$ and

$$\frac{D_{a_j}}{D_n} \le x_j < \frac{D_{1+a_j}}{D_n} \quad \text{for } j = 1, 2, \dots, m-1,$$

so that

$$\alpha_n(x_{j+1}) - \alpha_n(x_j) = \sum_{k=1+a_j}^{a_{j+1}} \lambda_{nk} \text{ for } j = 0, 1, \dots, m-1.$$

Let

$$\sigma_{jn} = \left(\sum_{k=1+a_j}^{a_j+1} \frac{d_k}{D_n}\right) \theta \left(\frac{\alpha_n(x_{j+1}) - \alpha_n(x_j)}{\sum_{k=1+a_j}^{a_j+1} \frac{d_k}{D_n}}\right).$$

Then, by Jensen's inequality (see [15, pp. 23-24]),

$$\sigma_{jn} \leq \sum_{k=1+a_j}^{a_{j+1}} \frac{d_k}{D_n} \Theta\left(\frac{D_n}{d_k} \lambda_{nk}\right) \quad \text{for } j=0,1,\ldots,m-1,$$

and so

$$\sum_{j=0}^{m-1} \sigma_{jn} \leq M_{\theta}.$$

Also

$$\lim_{n\to\infty} \sum_{k=1+a_j}^{a_{j+1}} \frac{d_k}{D_n} = x_{j+1} - x_j \quad \text{for } j = 0, 1, \dots, m-1.$$

In view of (16), it follows that

$$\lim_{n \to \infty} \sum_{j=0}^{m-1} \sigma_{jn} = \sum_{j=0}^{m-1} (x_{j+1} - x_j) \Theta\left(\frac{\alpha(x_{j+1}) - \alpha(x_j)}{x_{j+1} - x_j}\right) \leq M_{\Theta},$$

and, by a theorem of Medvedev [12], this implies that

$$\alpha(t) = c + \int_0^t \beta(u) du \text{ for } 0 \le t \le 1$$

where $\beta \in L_{\theta}$ and $\int_{0}^{1} \theta(\beta(t))dt \leq M_{\theta}$. Further, β satisfies (8) since α satisfies (1).

Proofs of Theorem 1(iv), (v) and (vi).

Part (iv). Suppose that $l_0 = 0$. By Lemma 6 the function $\alpha \in BV$ satisfying (1) is unique. By (12), (17) and the proof of the sufficiency part of Theorem 1(i), we have that

$$M_1 \leq \int_0^1 |d\alpha(t)| \leq M_1.$$

Suppose that $l_0 > 0$, and let $\gamma(0) = 0$, $\gamma(t) = \alpha(t) - \alpha(0+)$ for $0 < t \le 1$. Then $\gamma \in BV$ and satisfies (1). Hence, by (12),

$$M_1 \leq \int_0^1 |d\gamma(t)|.$$

Further, by (17) and the proof of the sufficiency part of Theorem 1(i), there is a function $\tilde{\alpha} \in BV$ satisfying (1) and

$$\int_0^1 |d\tilde{\alpha}(t)| \leq M_1.$$

By Lemma 6, $\gamma(t) = \tilde{\alpha}(t) - \tilde{\alpha}(0+)$ for $0 < t \le 1$. Since $\gamma(0+) = \gamma(0)$, we have that

$$M_1 \leq \int_0^1 |d\gamma(t)| \leq \int_0^1 |d\tilde{\alpha}(t)| \leq M_1.$$

Hence

$$M_1 = \int_0^1 |d\alpha(t)| - |\alpha(0+)|.$$

Part (v). By Lemma 6, the function $\beta \in L_{\infty}$ satisfying (8) is essentially unique. By (14) and the proof of the sufficiency part of Theorem 1(ii), we have that $M_{\infty} \leq \|\beta\|_{\infty} \leq M_{\infty}$.

Part (vi). This part can be established by the proof of Part (v) with certain obvious modifications.

Proof of Theorem 2. Let $0 \le k \le n$. Then

$$\left(1 - \frac{\lambda_{k}}{\lambda_{n+1}}\right) \lambda_{n+1,k} + \frac{\lambda_{k+1}}{\lambda_{n+1}} \lambda_{n+1,k+1}
= -\lambda_{k+1} \dots \lambda_{n+1} \left(1 - \frac{\lambda_{k}}{\lambda_{n+1}}\right) \frac{1}{2\pi i} \int_{C_{k,n+1}} \frac{P_{n+1}(z)dz}{(\lambda_{k} - z) \dots (\lambda_{n+1} - z)}
-\lambda_{k+2} \dots \lambda_{n+1} \frac{\lambda_{k+1}}{\lambda_{n+1}} \frac{1}{2\pi i} \int_{C_{k,n+1}} \frac{P_{n+1}(z)dz}{(\lambda_{k+1} - z) \dots (\lambda_{n+1} - z)}
= -\lambda_{k+1} \dots \lambda_{n} \frac{1}{2\pi i} \int_{C_{k,n+1}} \frac{P_{n+1}(z)dz}{(\lambda_{k} - z) \dots (\lambda_{n} - z)} = \lambda_{nk};$$

and hence

(18)
$$\lambda_{nk} \frac{D_n}{d_k} = \left(1 - \frac{\lambda_k}{\lambda_{n+1}}\right) \lambda_{n+1,k} \frac{D_n}{d_k} + (1 + \lambda_k) \frac{\lambda_{n+1,k+1}}{\lambda_{n+1}} \frac{D_n}{d_{k+1}}$$

It follows that

$$M_{\infty}(n) \leq M_{\infty}(n+1) \left(1 + \frac{1}{\lambda_{n+1}}\right) \frac{D_n}{D_{n+1}} = M_{\infty}(n+1).$$

Since

$$\left(1 - \frac{\lambda_k}{\lambda_{n+1}}\right) \frac{D_n}{D_{n+1}} + (1 + \lambda_k) \frac{D_n}{\lambda_{n+1} D_{n+1}} = 1,$$

applying Jensen's inequality to (18) yields

$$\begin{split} \frac{d_{k}}{D_{n}} & \Theta\left(\frac{D_{n}}{d_{k}} \lambda_{nk}\right) \\ & \leq \frac{d_{k}}{D_{n}} \left\{ \left(1 - \frac{\lambda_{k}}{\lambda_{n+1}}\right) \frac{D_{n}}{D_{n+1}} \Theta\left(\lambda_{n+1,k+1} \frac{D_{n+1}}{d_{k}}\right) \right. \\ & \left. + \left. (1 + \lambda_{k}\right) \frac{D_{n}}{\lambda_{n+1} D_{n+1}} \Theta\left(\lambda_{n+1,k+1} \frac{D_{n+1}}{d_{k+1}}\right) \right\} \\ & = \left(1 - \frac{\lambda_{k}}{\lambda_{n+1}}\right) \frac{d_{k}}{D_{n+1}} \Theta\left(\lambda_{n+1,k} \frac{D_{n+1}}{d_{k}}\right) + \frac{\lambda_{k+1}}{\lambda_{n+1}} \frac{d_{k+1}}{D_{n+1}} \Theta\left(\lambda_{n+1,k+1} \frac{D_{n+1}}{d_{k+1}}\right). \end{split}$$

Summing this inequality for k = 0, 1, ..., n, we get that

$$M_{\theta}(n) \leq M_{\theta}(n+1) - \frac{\lambda_0 d_0}{\lambda_{n+1} D_{n+1}} \Theta\left(\lambda_{n+1,0} \frac{D_{n+1}}{d_0}\right) \leq M_{\theta}(n+1).$$

Since the above argument is valid when θ is any even continuous convex function, we can take $\theta(u) = |u|$ to obtain, in addition, that

$$M_1(n) \leq M_1(n+1).$$

This completes the proof of Theorem 2.

Note. In all but Theorem 2 the condition that the sequences $\{l_n\}$ and $\{\lambda_n\}$ be monotonic is redundant and was imposed only to avoid non-essential and tedious complication in the proofs. Without the monotonicity condition, but with $\{l_n\}$ distinct, $\lambda_0 = l_0 \ge 0$, $k_0 = 1$ if $l_0 = 0$, $l_n > 0$ for $n = 1, 2, \ldots$, identities and inequalities such as (5), (6) (using (10) and (11) on p. 46 of [11] and the proof of Lemma 1 in [10]) and (7) can readily be shown to hold, and Lemmas 5 and 6 and Theorem 1 remain valid. Removal of the monotonicity condition involves changes in statements and proofs of lemmas as indicated below.

Statements.

LEMMA 1. Replace $0 < \lambda < \lambda_{a+1}$ by $0 < \lambda < \min_{k>a} \lambda_k$.

LEMMA 2. Replace $0 < t < \lambda_{k+1}$ by $0 < t \neq \lambda_j$ for j > k, and

$$\frac{\psi(t)}{\lambda_{k+1}-t}\left(\sum_{j=k+1}^{n}\frac{1}{\lambda_{j}-t}\right)^{r-1}\operatorname{by}\max_{i>k}\frac{|\psi(t)|}{|\lambda_{i}-t|}\left(\sum_{j=k+1}^{n}\frac{1}{|\lambda_{j}-t|}\right)^{r-1}.$$

LEMMA 3. Replace $\lambda_s < \lambda_{s+1}$ by $\lambda_s \neq \lambda_j$ for n > j > s, and

$$\psi(\lambda_s) \left(\sum_{j=s+1}^n \frac{1}{\lambda_j - \lambda_s}\right)^{r-a} \text{by } |\psi(\lambda_s)| \left(\sum_{j=s+1}^n \frac{1}{|\lambda_j - \lambda_s|}\right)^{r-a}.$$

LEMMA 4. Replace $\lambda_s < \lambda_{s+1}$ by $\lambda_s \neq \lambda_j$ for j > s.

Proofs.

Lemma 1. Replace $\lambda_{k+1}/(\lambda_{k+1}-\lambda)$ by $\max_{j>k} \lambda_j/(\lambda_j-\lambda)$, and $1/\lambda_{k+1}$ by $\max_{j>k} 1/\lambda_j$.

Lemma 2. In the inequalities replace γ_j by $|\gamma_j|$ and γ_{k+1} by $\max_{j>k} |\gamma_j|$.

Lemma 3. Replace $\lambda_j - \lambda_s$ by $|\lambda_j - \lambda_s|$.

Lemma 4. Replace $1/(\lambda_{k+1} - \lambda_s)$ by $\max_{i>k} 1/|\lambda_i - \lambda_s|$, and take

$$w_{nk} = \left| \left(1 - \frac{\lambda_s}{\lambda_{k+1}} \right) \dots \left(1 - \frac{\lambda_s}{\lambda_n} \right) \right| \left(\sum_{i=k+1}^n \frac{1}{|\lambda_i - \lambda_s|} \right)^{r-1}.$$

Lemma 5. Replace $\lambda_s < \lambda_{s+1}$ by $\lambda_s \neq \lambda_i$ for i > s.

REFERENCES

- D. L. Berman, Application of interpolatory polynomial operators to solve the moment problem, Urkain Math. Z. 14 (1963), 184-190.
- D. Borwein, The Hausdorff moment problem, Can. Math. Bull. 21 (1978), 257-265; Corrections 22 (1979), 128.
- 3. P. J. Davis, Interpolation and approximation (Blaisdell, New York, 1965).
- K. Endl, On systems of linear inequalities in infinitely many variables and generalized Hausdorff means, Math. Z. 82 (1963), 1-7.
- 5. F. Hausdorff, Summationsmethoden und Momentfolgen I, Math. Z. 9 (1921), 74-109.
- 6. Summationsmethoden und Momentfolgen II, Math. Z. 9 (1921), 280-299.
- 7. Momentprobleme für ein eindliches Interval, Math. Z. 16 (1923), 220-248.
- M. A. Krasnosel'skii and Ya. B. Rutickii, Convex functions and Orlicz spaces (P. Noordhoff, Groningen, 1961).
- 9. D. Leviatan, A generalized moment problem, Israel J. Math. 5 (1967), 97-103.
- 10. —— Some moment problems in a finite interval, Can. J. Math. 20 (1968), 960-966.
- 11. G. G. Lorentz, Bernstein polynomials (University of Toronto Press, Toronto, 1953).
- U. T. Medvedev, Generalization of a theorem of F. Riesz, Uspeshi, Mat. Nauk 8 (1953), 115-118.
- I. J. Schoenberg, On finite rowed systems of linear inequalities in infinitely many variables, Trans. A.M.S. 34 (1932), 594-619.
- 14. D. V. Widder, The Laplace transform (Princeton, 1946).
- A. Zygmund, Trigonometric series I, 2nd edition (Cambridge University Press, Cambridge, 1959).

The University of Western Ontario, London, Ontario; Tel-Aviv University, Tel-Aviv, Israel