SOME REMARKABLE PROPERTIES OF SINC AND RELATED INTEGRALS

DAvVID BORWEIN AND JONATHAN M. BORWEIN
ABSTRACT. Using Fourier transform techniques, we establish inequalities for integrals of the form
o0 n .
/ H sin(agx) .
0 k=g T

We then give quite striking closed form evaluations of such integrals and finish by discussing various
extensions and applications.

1. Introduction. Motivated by questions about the integral®

(1) W= /Ooo ﬁ cos (%) dz,
k=1

we study the behaviour of integrals of the form
© n .
/ H sin(ax) .
0 oo WT

In Section 2 we use Fourier transform theory to establish monotonicity properties of these integrals
as functions of n. In Section 3, by direct methods, we give closed forms for these integrals and for
similar integrals also incorporating cosine terms. In Section 4, we provide a very different proof of
one of these results following an idea in an 1885 paper of Stormer [2]. Finally, in Section 5 we return
to the study of (1).

2. Fourier cosine transforms and sinc integrals. Define

sin x

ifx #£0
1 ifz=0.

sinc(zx) :=
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and, for a > 0,

if |z| < a
if |z| = a
if |z| > a.

Xa(T) =

O = =

We first state some standard results about the Fourier cosine transform (FCT) which may be found
in texts such as [4, ch. 13].

The FCT of a function f € Ly(—o00,00) is defined to be the function f that is the L,-limit as y — oo
of

o0

cy(z) == \/% /_y f(t) cos(zt) dt, i.e. / ley(z) — f(@))? dz — 0 as y — 0.

—00

This function f exists, is unique apart from sets of zero Lebesgue measure, and f € Ly(—00,00);
and if f is even so also is f and f is the FCT of f. If, in addition, f is continuous on (—a, «) for
some a > 0 and f € Ly (—o0,00), then

\/%_W/_O; f(z)cos(at)dz = f(t) for —a<t<a,

since the left-hand term is also continuous on (—a,a) by dominated convergence.

2 2
Note that, for a > 0, the FCT of x, is a4/ ;sinc(am), so that the FCT of a4/ ;sinc(ax) is equivalent

to xq- In fact, it can easily be shown that

1 & 2
— ay[ —sinc(ax) cos(at) dr = x,(t) for all t € (—o0, ),
= [/ Zsinclaa) cos(at) do = a1 (~00,0)

either directly or by appeal to a standard result about inverse Fourier transforms of functions of
local bounded variation.

Note also that if fl, f2 are FCTs of even functions fi, fo € La(—00,00), then fl f2 is the FCT of

1
V2T

f1* fa, where

fix folz) = /Oo ol = 8) fo(t) dt for all 7 € (=00, 00).
In addition, we have the following version of Parseval’s theorem for such even functions:
| h@n@ds= [ @i .
provided at least one of the functions fi, fs is real.

We are now in a position to prove:
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NE

Theorem 1. Suppose that {a,} is a sequence of positive numbers. Let s, := ar and

=~
Il
2N

oo n
Tp 1= / H sinc(agz) dx
0 k=0

(i) Then
17
O<Tn< —5,

ao
with equality if n = 0, or if ag > s, when n > 1.
il) If apy1 < ag < s, with n > 1, then
+

1x
0< 41 <1 < ——.
ag 2

o
(il) If ag < Sp, withng > 1, and Z ai < oo, then there is an integer ny > ng such that
k=0

Tn > / H sinc(agz) de > / H sinc?(agx) dz > 0 for all n > n,.

Observe that applying Theorem 1 to different permutations of the parameters will in general yield
different inequalities.

1
Proof. Part (i). That 7o = —g is a standard result (proven e.g., by contour integration in [1, p.
a

0
157] and by Fourier analysis in [3, p. 563]) with the integral in question being improper (i.e. not
absolutely convergent—the integrals in the other cases are absolutely convergent). Assume therefore
that n > 1, and let

1 ™
—Xaoy Fni= (v27r)1_nf1 * fa *---x fn, where f, := a_\/;xa”'

(10 2 n

Then it is readily verified by induction that, for n > 1, F,,(x) is an even function which vanishes on

(—00, —85,) U (8p, 00) and is positive on (—sy, s5,). Moreover, F,, 11 = \/TFH * fnt1, so that
T

1 T+an+1
Faps(a) = <= / Fo(z = t) fopa () dt = / F,(u) du.

2an+1 —nt1
Hence F,,11(z) is absolutely continuous on (—o0, 00) and, for almost all z € (—o0, ),

2an+1Fn-|-1( z) = Fo(2 + ant1) — Fu(® — any1) = Fo( + ant1) — Fa(ang — 2).
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Since (z+ apt1) > max{(z—an41), (@Gnt1 —x)} > 0 when z > 0, it follows that if F,,(z) is monotone
non-increasing on (0,00), then F} ,(x) < 0 for a.a. x € (0,00), and so F,;1(x) is monotone
non-increasing on (0, 00). This monotonicity property of F;, on (0,00) is therefore established by
induction for all n > 1. Also

F, is the FCT of o, (z H sinc(agz), and o, is the FCT of F,.
k=1

Thus, all our functions and transforms are even and are in L; (0, 00) N L2(0, 00). Hence, by the above
version of Parseval’s theorem,

min(s,,aq)
(2) Tn _/ F,(z)Fy(z) dx \/E/ F,(z)dx.
0

When ag > s,, the final term is equal to —1/ \/7 — — since o,(z) is continuous on

T . .

(—00,00); and when ag < s, the term is positive and less than —5 since F,(z) is positive and
ao

continuous for 0 < z < s,. This establishes part (i).

1
Part (ii). Observe again that F, 11 = \/?Fn * fn+1, and hence that, for y > 0,
71'
An41
Fop1(z)dx = / dm/ F,( na1(t) dt = / dm/ w(z —1t)dt
/ +1(z '_27r t) frt1(t) 2an+1 o
An 41 An 41 y—t
= dt / E,( dr = dt / F,(u) du
2an+1 —Qn+1 2Cln+]_ —An41 —t

/ F du+ (Il +IQ)
2a Ap41

Qn 41 0 An41 y—t
L ._/ dt/ F,(u)du and I, ::/ dt/ F,(u) du.
An 41 —t —Qn41 Y

0
Now I; = 0 since / F,(u) du is an odd function of ¢, and for y > apn41,
—t

An 41 y— y—t
I :/ dt/ du+/ dt/ F,(
0 —Qn+41

An 41 Y An+1 y+t
/ dt / F,(u)du + / dt F,(u)du
0 ¢ 0 y
Qn41 y
:/ dt/ n(u+t) — Fp(u)) du <0
y—

t

where

(=)
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since F),(u) is monotonic non-increasing for u >y —t > y — a,y1 > 0. Hence

y y
(3) / Frpi(z)dz < / F,(z) dz when ap41 <y < sp.
0 0

It follows from (2), and (3) with y = ag, that 0 < 7,41 < 7, if ap41 < ag < 8y, and this completes
part (ii).

(e}

Part (iii). Let p(z) := lim o2(z) = H sinc?(ayx) for z > 0. Observe that the limit exists since

n—oo
k=1
0 < sinc?(axz) < 1, and that there is a set A differing from (0,00) by a countable set such that
0 < sinc?(agz) < 1 whenever z € A and k = 1,2,... . Now
O, 2

z
sinc(apr) = 1 — &, where 0 < = — 3 as k — oo,
ay

oo
so that Z(Sk < 00, and hence, by standard theory of infinite products, o(z) := lim o,(x) exists

n—oo
k=1

and o2(z) = p(x) > 0 for z € A. It follows, by part (ii), that

TnZ/ ai(a:)d;cZ/ p(x)dx >0
0 0

for all n > ny, where ny > ng is an integer such that a,11 < ag for all n > n;. In addition, by
dominated convergence,

lim 7, =/ o(x) dmZ/ p(z)dz,
0 0

n—oo

and this completes the proof of part (iii). O

3. Some elementary identities. In this section we prove some identities involving products of
sines and cosines by straightforward methods not involving Fourier transform theory. We adopt the
usual convention that empty sums have the value 0 and empty products have the value 1, and we
define

1 ifx>0
sign(z) ;=< 0 ifz=0
-1 ifx<0.
Theorem 2. Letag,ay,... ,a, be complex numbers with n > 1. For each of the 2™ ordered n-tuples

v = (71,72, »n) € {—1,1}" define

by = a0+Z'ykak, €y 1= H'yk.
k=1 k=1
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(i) Then
0 forr=1,2,... ,n—1
z &by = 2™ 1_”[ ar forr=n
ye{-1,1}" ‘k:1 k ’
and n
[[sn(aa) = o > by — 5(n+1)
sin(axe) = o ey €08 (byz — o (n .
k=0 ye{-1,1}"
(ii) If ag,a1,... ,an are real, then
© M sin(agx) 7 1 i
/ H —Y dz = 5 o z €, b sign(b,).
0 k=0 T ye{-1,1}n

If, in addition,

n
ao > ) lal,
k=1

then

*© sin(agx)
[ Snlexs) H ax.
0

k=0

Proof. Observe that
aot akt e—akt — € eb_yt
| I E et
ye{-1,1}»

Since e*! — e~ %t = 2aq4t + O(t?) as t — 0, the first summation formula in part (i) follows on
equating coefficients of ¢" in the above identity. Note that the formula also holds for r = 0 if we

define b9 = 1 even when b, = 0. Similarly

1 . . ) .
H sin ak:v 2Z)n+1 (ezaoz _ e—zaoz) H(ezakz _ e—mkw)

1 Z e (eib.,z _ (_1)n€—z’b7z)

n+1
(21') 76{_171}"

= 2% Z € COS (b,,x— g(n+1)),

ve{-1,1}"

and this completes the proof of part (i).

To prove part (ii) of the theorem, observe that

1 o0

® Iy osin(az) )
(4) /0 H — dz = 2 /. x Cy(z)dz,
k=0
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where Cp,(z) = Z € COS (bya: - g(n + 1)) . Because C,(z) is an entire function, bounded

ye{-1,1}n
for all real x, with a zero of order n + 1 at x = 0, we can integrate the right-hand side of (4) by
parts n times to get

o 1 sin(agx) 1 > dx n .
/0 H - dr = 2”n!/0 ?’Y Z €y b7} sin(byz)

k=0

Il
Sl
I
2
o>
3
S—
8
<]
=
8|
=<2
8
S—r
IS

ye{-1,1}"

T 1

= 2 5 Z €7 sign (b )
76{7171}n

Since the additional hypothesis implies that b, > 0 for all ¥ € {-1,1}", the final formula in the
theorem follows from part (i). O

Corollary 1. If 2a, > a, >0 fork=0,1,... ,n—1 and

n n—1
E ar > ag > E a,
k=1 k=1

then .
o sin(akm T H
/ H =—1]ak forr=0,1,...,n -1,
0 o * 2.5
while
sin(agx) o T a1+a2+---+an—a0)"
H - 5 H an—1pl )
Proof. Let v := (—1,-1,...,-1) € {—1,1}". Observe that by := ap —a1 —--- —ap, < 0, that

b, > 0 for every other v € {—1,1}", and that e,, = (—1)". It follows that

o~ I sin(agx) w1
/0 Hwa=§2nn' Z €, bysign(b, )

k=0 ) ve{-1,1}"

1
Z ;b7 + €, b7 (sign(by) — 1)
T \ye{-1,1}»

T "
=3 Hak_Tn'}’

as desired. 0
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Remarks 1. (a) If ag,aq, ... ,a, are real and non-zero, then, by Theorem 2(ii),
© M sin(agx) w1 .
Tp = /0 H — dz = 5 9nnl Z €, b sign (b )
k=0 76{_1a1}n

1 .
= gm Z ey + Z by (51gn(b.,) - 1)

ye{—1,1}n b, <0
: o
= - €
2a 2n—1plaias ---a Rl
0 142 n b, <0

(b) Suppose further that a > 0 for £ =0,1,... ,n. Consider the polyhedra
Pn :P’n(a/OJalJ”- ,Cln)
= {(z1, 32, ,2p)| —ap < ka <ag,—ap <zp <apfork=1,2,...,n},
k=1
QTL ZQTL(G’OJGIJ"' 7an)
n
= {(3:17'7727"' ,.Z'n)| —ag < Zakmk < a07_1 <z <1 for k = 1727"' 7”}7
k=1
H, = {(z1,22," - 7gvn)| —1<z, <1lfork=1,2,... ,n}

(i) If we return to equation (2) we observe that

1 min(sn,ao)
=T / s % Xy % o, do = 7 VOUPR) _ m Vol(@n)
ap 2"a1az - -an Jo 2a9 2"araz - --an,  2ag Vol(H,)

Moreover, we now explain the behaviour of 7;, when we note that the value drops precisely when
n

the constraint —ag < Z arTr < ag becomes active and bites into the hypercube H,,.
k=1

(ii) We sketch a probabilistic interpretation. From (i) it follows that p, := 2a¢7,/m may
be regarded as the probability that independent random variables {zy,k = 1,2,...} identically

distributed in [—1, 1] satisfy |Z arxr| < ag. Correspondingly
k=1

2a0 [ 17 .
Poo 1= — H sinc(axz) dx
0 k=1

™

o

is the probability that the constraint | Z arxr| < ag is met. We have also shown that p, decreases
k=1
monotonically to pe.
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(c) Consider now the special case

o0
Un i= Tp_1 = / sinc”(z) dx.
0

In this case we have ar, =1 for £k =0,1,... ,n — 1, and it is straightforward to verify that
n— T n—1 n—
Z bt = Z (—1)r+ (r_1>(n—2r) Y
76{71a1}n_1ab7<0 1<r<3

and hence that

by 2 s fn—1 S
i =541 gy 5 (010w
2 2n=1(n —1) 1ren r—1
1 —1)r —92 n—1
:g 1+2n_2 ( )1‘(” Ir)1
2, =Dl (=)

The following formula for u,, appears as an exercise in [5, p. 123]:

o= gy 2 (07 (7)o — 20

To<r<2

To show that this formula for u,, is equivalent to the one derived above, it clearly suffices to prove
that

> (7) (n—2r)"t=2""n -1+ > (-1 (: B 11> (n—2r)"1.

0<r<% 1<r<3

Since

this is equivalent to proving that

(-1)" (n> (n —2r)» = 2" I/,

0<r<2

which, by symmetry, is equivalent to proving that

% g(—n" (7) (n—2r)" =27,
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But the left-hand side of this latter identity is the coefficient of " in

i(—l)T (n) et — (1 — e=2H" = (25inh t)".

r

Since 2sinht = 2t + O(t?) as t — 0, the coefficient is indeed 2", and the desired equivalence of the
formulae for p,, is proved.

The next theorem extends Theorem 2 by adjoining cosines to the product of sines.

Theorem 3. Let ag,a1,... ,an,+m be compler numbers with n > 1 and m > 0. For each of the
2n+™ ordered (n + m)-tuples v := (y1,%2, -« - s Yn+m) € {—1,1}"T™ define

n+m n
by :==a¢ + Z’ykak, €y 1= nyk.
k=1 k=1
(i) Then
0 forr=1,2,... , n—1
Z G'Yb’T)“ = 2n+mn| ﬁ a fol"' r=n
76{_1’1}n+m ) b1 k o
and

<kljo sin(%:c)) ( nﬁ” Cos(%:c)) = QH% Z €y COS (bva: - g(n + 1)) )

k=n+1 ye{—=1,1}n+m
(i) If ag,a1,... ,antm are real, then
oS} n n+m T 1
/ (H sin(am;)) ( H cos(aw)) dz = 3 gt Z ey brysign(by ).
0 \z=0 k=n+1 Cye{-1,1}ntm

If, in addition,

n+m

a > > laxl,
k=1

then N
/0 (H sin(ak:c)) < H cos(akm)) dz = g H a.-
k=0 k=n+1 k=1

Proof. By Theorem 2 we have that

n+m 1

. ™
I I sin(apx) = gnFm E €., cos (b,ya: - E(n +m+ 1)) ,
k=1 ye{—1,1}n+m
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Where, for each Y= (717727 s 77n+m) € {_17 1}n+m7

n+m n+m
by=ao+ ) war, € =[] w==L,
k=1 =
and
0 forr=1,2,... , n+m—1
Z e' [— n+m
Yoy T n+m 1 —
e[ T 27+ (n + m)! H ar forr=n+m.
k=1
Differentiating these expressions partially with respect to @ny1,an+2,--- ,@nrm yields part (i) of
Theorem 3 with
€y = 67 H Tn+k = <H ’Yk) H ’Yn+k = H V-
k=1

To deal with part (ii) of Theorem 3 we observe that, by Theorem 2, if ag,ay,- .- ,@nim are real,
then

oo nt+m .

sin(az) ™ 1 , .
| (2 S S o )
n+m ! o el Y

0 k=0 z 2 2 (n + m) 76{*1,1}"+m

Differentiating partially with respect to a,y1,ant2,--- ;Gntm, We get
[e's) n n+m
sin(agx
/ (H k )(Hcosakw)d:c
T
0 k=0 k=n+1
77 1 .
= §W Z e,yb,T;SIgn(b,y).

76{_171}n+m

If, in addition,

n+m

ar > Y akl,
k=2

then, by Theorem 2,

/°° nﬁn sin(agx) P nﬁna

0 T h 2 k-
k=0 k=1

Differentiating partially with respect to a,y1,ap42,--- ;Gnim, We get

n+m n
/W(HSIHEW)(H cosaw)dngnak. O
0 k=1

k=0 k=n+1
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Corollary 2. If 2a, > apym >0 for k=0,1,... ,n+m—1 and

n+m n+m—1

dDar>a0> D ax,
k=1 k=1

then
o r4+m n
[ (020 (3 ) =5 -
0 k=0 k=r+1 k=1
while i
o n+m
/ (H sin(ag > < H cos akx> dz
0 k=0 k=n+1
n
_T (a1 + a2+ -+ angm — ao)"

Proof. The first part follows immediately from Theorem 3, and the second part can be derived from
Corollary 1 with n+m in place of n by differentiating partially with respect to @, 11, 0n12,--- , Gntm,
as above. O

4. An alternative proof. The next theorem is a restatement of the last part of Theorem 3
restricted to real numbers. It appears as an example without proof in [5, p. 122] where it is ascribed
to Carl Stérmer [2]. Stormer’s article does not contain the integral in question, but his proof for the
series identity

i(_l)r-ﬂ (H sin(rag, ) H cos(re;) | = % 1—"[ ag,
k=1

k=1

n m
provided Z lak| + Z lej| <,

k=1 j=1

is readily adapted to yield a proof of the theorem which is radically different from the proof of
Theorem 3.

Theorem 4. Ifa,a;1,a2,...,0,,C1,Co,-.. ,Cn, are real numbers with a > 0 and

n m
a> lal+ Y lejl,
k=1 j=1

then

n

) /Ooo (H sin(apz ) H cos(c;z) siniaa:) dr — g H .

k=1
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Proof. We prove the theorem by induction. Applying as before the convention that empty sums
have the value 0 and empty products have the value 1, we observe that formula (5) for the case
n = m = 0 reduces to the standard result

/ sin(ax) de —
0 z

Formula (5) also holds for the case n = 1,m = 0, by the case n = 1 of Theorem 1 (which can easily
be proved directly).

o) 3

Assume that the theorem holds for certain integers n > 1 and m > 0. First suppose that

m+1

a>2|ak|+ Z lesl-

Then
n m
a>lay£empa|+ D lakl+ > ],

k=2 j=1

and hence
/°° sin(a; £ ¢my1) <H sin(ag > ﬁ ) sin(ax) da
0 z k=2 =1 z

©) ;

Adding the two identities in (6), we immediately obtain

oo [ s mAl in(ax T
(7 /0 (H w> H cos(c;x) i i ) dz = 5 H ag.-
j=1

k=1

Next suppose that
n+1

a>2|ak|+2|cgl

and let ¢ lie between 0 and an41. Then, by (7), we have

(8) /0°° (H W) j:HlCOS(Cﬂ) cos(tz) sinz(vax) de — g H o

k=1

Now integrate (8) with respect to ¢ from 0 to an1 to get

oo [N+ .
©) /0 (H sin(ap ) Hcos ;%) smiaa:) de — g H a.

k=1
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Identities (7) and (9) show that if the theorem holds for a pair of integers n, m with n > 1,m > 0,
then it also holds for the pairs n,m + 1 and n + 1, m. Since it holds for n = 1,m = 0, the proof is
completed by induction. O

Remarks 2. Parts of our previous theorems do, of course, overlap with Theorem 4, but this latter
theorem does not deal with cases where the identity in (4) fails, whereas the other theorems do.

Thus, for example,
> ™
/ sinc(z) dz = =,
0 2
e T T
sinc(z)sinc ( = ) dz = =,
/0 ( 3 ) 2

/000 sinc(z)sinc (g) -+ +sinc (%) dx = g,

/Ooo sinc(zx)sinc (%) -sinc (1 ) dz

4678079247 13440738696537864469
= 935615849440640907310521750000

and this fraction in (10), in accord with Corollary 1, is approximately equal to 0.499999999992646.
When this fact was recently verified by a researcher using a computer algebra package, he concluded
that there must be a “bug” in the software. Not so. In the above example, % + % + -+ % <
1, but with the addition of ﬁ, the sum exceeds 1 and the identity no longer holds. This is a
somewhat cautionary example for too enthusiastically inferring patterns from symbolic or numerical

computation. O

yet

(10)

5. An infinite product of cosines. We return to the integral, which we denote by p, in (1). Let
° T
= H cos (—) .
n=1 n

This product is absolutely convergent, since cos (£) = 1— 2 S+ 0 () asn — oo. Here and elswhere
in this section we ignore the countable set of points on which individual terms of such an infinite
product vanish. Recall the absolutely convergent Weierstrass products [4, p. 144]

sine(z) = ﬁ (1 - Wf;) , cos(z) = ﬁ (1 - #ﬁw) ,

n=1 k=0

from which it follows that

9= (- meerae) = L (- ﬁ)‘,}jﬁ“(ﬂﬂ-

n=1 k=0 k=0n=1




SINC INTEGRALS 15

It is interesting to note that the alternative absolutely convergent product expansion of C'(x) afforded
by (11) can also be derived from the Weierstrass expansion of sinc(x) together with Vieta’s formula

[3, p. 419] in the form
(20) (35)
sinc(2x) H €08 { 5

since every positive integer is uniquely expre551ble as an odd integer times a power of 2.

Now apply Theorem 1 and (11) to obtain

oo N 2z m
= 1. i T .
O<p= / C(z)dz Aim | kl_llsmc(zk_l) d:z:<4
These sinc integrals are essentially those of the previous Remarks. Note that all parts of Theorem

1 1
1 ly si —_— = .
appys1nce;(2k_l)2<oo ,;2k—1

We observe that Theorem 1 allows for reasonable lower bounds on u. Indeed, as cos?z > 1—22 > 0
for 0 < z < 1, we see — using the product form for sinc — that C2?(z) > sinc(rz) on the same
range. Hence, by Theorem 1(iii),

™ *° 1 (7

—>pu> / C*(z)dx > —/ sinc(z) dr ~ .5894898722.

4 0 m™Jo

We could produce a better lower bound, and indeed lower bounds for our more general sinc integrals

in the same way.

In fact
o0
/ C(z) dx =~ 0.785380557298632873492583011467332524761
0

™

while 7 ~ .785398 only differs in the fifth significant place. We note that high precision numerical
evaluation of these highly oscillatory integrals is by no means straightforward.

If C(x) is replaced by
C*(z) := cos(2z)C(x) = cos(2x) H cos (%) ,

n=1

we similarly obtain

(12) C*(z) = sinc(4z) Hsmc(ziil).

n=1

It now takes 55 terms before % + % 4+ 4 2n 1 > 2, so that the corresponding integrals drop below
5 Indeed, lengthy numerical computation shows that

" 1
0<——/ Cc*( d:1:<1041
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We finish by recording without details that (11) allows us to obtain the Maclaurin series for log C(z).
It is

IOgC(Z’) — _i 4k -1 C2(2k)x2k’

2k
o
k=1 k

with radius of convergence %71’. This in turn shows that the coefficient of 2" in the Maclaurin series
for C(z), say ¢y, is a rational multiple of 72* and is explicitly given by the recursion

1 < 2(2k
co:=1,¢cp:= - 2(4'“ — I)CW(% )cn_k forn > 0.

Thus 11 233 1429
] 2,2 4.4 6,6
(=) 127 T1320™ ¥ T 5243200" © T 3048192000

Incidentally, as pointed out by David Bradley, the Maclaurin series of log C(z) can be obtained
without appeal to (11) via the Weierstrass product for cos(z).

oz + 0 (3:9) }

Thanks are due to David Bailey, Richard Crandall, Greg Fee, Richard Lockhart and Frank Stegner
for very useful discussions. Special thanks are due to David Bradley for an extremely thorough
critique of the original draft of the paper and for his many useful and insightful suggestions which
enabled us to greatly improve the presentation. In particular, the present proof of Theorem 2(i) is
his; our original proof was by induction.
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