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Abstract
We present a simple, but efficient, way to calculate connection matrices between
sets of independent local solutions, defined at two neighbouring singular points,
of Fuchsian differential equations of quite large orders, such as those found for
the third and fourth contribution (χ(3) and χ(4)) to the magnetic susceptibility
of the square lattice Ising model. We deduce all the critical behaviours of the
solutions χ(3) and χ(4), as well as the asymptotic behaviour of the coefficients in
the corresponding series expansions. We confirm that the newly found quadratic
singularities of the Fuchsian ODE associated with χ(3) are not singularities of
the particular solution χ(3) itself. We use the previous connection matrices
to get the exact expressions of all the monodromy matrices of the Fuchsian
differential equation for χ(3) (and χ(4)) expressed in the same basis of solutions.
These monodromy matrices are the generators of the differential Galois group
of the Fuchsian differential equations for χ(3) (and χ(4)), whose analysis is just
sketched here. As far as the physics implications of the solutions are concerned,
we find challenging qualitative differences when comparing the corrections
to scaling for the full susceptibility χ at high temperature (respectively low
temperature) and the first two terms χ(1) and χ(3) (respectively χ(2) and χ(4)).

PACS numbers: 05.50.+q, 05.10.−a, 02.30.Hq, 02.30.Gp, 02.40.Xx
Mathematics Subject Classification: 34M55, 47E05, 81Qxx, 32G34, 34Lxx,
34Mxx, 14Kxx

1. Introduction

Since a pioneering, and quite monumental, paper [1] on the two-dimensional Ising models, it
has been known that the magnetic susceptibility of square lattice Ising model can be written
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[1] as an infinite sum of (n − 1)-dimensional integrals [2–7] contributions:

χ(T ) =
∞∑

n=1

χ(n)(T ). (1)

The odd (respectively even) n correspond to the high (respectively low) temperature domain.
These (n − 1)-dimensional integrals are known to be holonomic, since they are integrals of
holonomic (actually algebraic) integrands. In addition to the known χ(1) and χ(2) terms,
which can be expressed in terms of simple algebraic or hypergeometric functions, it is only
recently that the Fuchsian differential equations satisfied by the χ(3) and χ(4) terms have been
found [8–10]. These two exact differential equations of quite large orders (7 and 10) can be
used to find answers to a set of problems traditionally known to be subtle, and difficult, for
functions with confluent singularities, such as the fine-tuning of the singular behaviours for
all the singularities (dominant singular behaviour, subdominant, etc), accurate calculations of
the asymptotic behaviour of the coefficients, etc.

Recall that the third and fourth contribution to the magnetic susceptibility, χ(3) and χ(4), are
given by multi-integrals and each is, thus, a particular solution of the corresponding differential
equation. These differential equations exhibit a finite set of regular singular points that may (or
may not) appear in the physical solutions χ(3) and χ(4). In addition to the physical singularities
and the non-physical singularities s = ±i (where s = sinh(2K),K being the usual Ising model
coupling constant, K = βJ ), it is commonly believed that the χ(n) have, at least, other non-
physical singularities given by Nickel [6, 7]. The dominant singular behaviours at all these
(non-physical) singularities (χ(3) and χ(4)) have also been given by Nickel. The differential
equations of the χ(n), which ‘encode’ all the information on the solutions and their singular
behaviour, in fact, allow us to obtain not only the dominant, but also all the subdominant
singular behaviours, hardly detectable from straight series analysis. It is thus of interest to get
(or confirm) these singular behaviours from the exact Fuchsian differential equations that we
have actually obtained for χ(3) and χ(4) and, especially, the singular behaviour at the two new
quadratic singularities, 1 + 3w + 4w2 = 0 (where w = s/(1 + s2)/2) found for χ(3) [8].

The physical solution χ(3) is defined by a double integral on two angles and is known as a
series obtained by expansion (then integration) of the double integral at w = 0 (or s = 0). It is
certainly not simple to obtain the χ(3) expansion around (say) the ferromagnetic critical point
w = 1/4, due to a singular logarithmic behaviour. However, one can overcome this difficulty
since, with a differential equation, it is straightforward to obtain the formal series solutions at
each regular singular point (i.e., a local basis of series solutions). By connecting the formal
solutions around w = 0 and the formal series solutions around another regular singular point
like w = 1/4, one will be able to express the particular solution χ(3) (and also all the other
formal solutions) as a linear combination of solutions valid at w = 1/4. The seven local
solutions at w = 0 will, then, be given by the product of a 7 × 7 matrix with the vector having
the seven local solutions at w = 1/4 as entries. In other words, succeeding in obtaining these
connection matrices amounts to building a common (global) basis of solutions valid for all the
regular singular points. Furthermore, with these connection matrices, we obtain, in fact, the
analytic continuation in the whole complex plane of the variable w, of χ(3) and χ(4), which
are known as integral representations.

Note that, remarkably, the Fuchsian differential equation for χ(3) has simple rational
and algebraic solutions. These rational or algebraic solutions, known in the closed form,
can be understood globally. One can easily expand such globally defined solutions around
any singular point of the ODE, and follow these solutions through any ‘jump’ from one
regular singularity to another and, therefore, from one well-suited basis to another well-suited
basis. For a function not known in the closed form, like the ‘physical’ solution χ(3), the
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decomposition on each well-suited local basis associated with every singular point of the
ODE, is far from clear. The correspondence between these various (well-suited) local bases
associated with each singular point of the ODE, is typically a global problem and, thus, a
quite difficult one. One clearly needs to build effective methods to find such connection
matrices in the case of Fuchsian differential equations of order 7, or 10 (χ(3) and χ(4)), or of
much higher orders (χ(5), χ(6), etc). With a method of matching of series, we will show that
the connection matrices matching these various well-suited bases of series solutions can be
obtained explicitly. The entries of these matrices can be calculated with as many digits as we
want. We will show that we can actually find the exact expressions of these entries as simple
algebraic expressions of (in the case of the Fuchsian ODEs of χ(3) and χ(4)) powers of π ,
ln(2), ln(3) and various algebraic numbers or integers, together with more ‘transcendental’
numbers like the ‘ferromagnetic constant’ I +

3 introduced in equation (7.12) of [1]:

I +
3 = 1

2π2

∫ ∞

1

∫ ∞

1

∫ ∞

1
dy1 dy2 dy3

(
y2

2 − 1(
y2

1 − 1
)(

y2
3 − 1

)
)1/2

Y 2

= 0.000 814 462 565 662 504 439 391 217 128 562 721 9978 . . . (2)

Y = y1 − y3

(y1 + y2)(y2 + y3)(y1 + y2 + y3)

Focusing on χ(3), and since this physical solution is known as a series expansion at w = 0
(low- or high-temperature expansions), we will give all the connection matrices between
this w = 0 regular singular point and all the other regular singularities of the differential
equation including the two new complex regular singularities [8, 9] which are roots of
1 + 3w + 4w2 = 0. We will comment on the occurrence of the ‘ferromagnetic constant’ I +

3 in
the various blocks of the connection matrices. The decomposition of χ(3) in the well-suited
basis for each regular singular point allows us to find all the singular behaviours of the physical
solution. From these results, we will deduce the asymptotic behaviour of the coefficients of
the series expansion of χ(3). These last problems are interesting, per se, for series expansions
analysis of lattice statistical mechanics, since they correspond to subtle analysis of confluent
singularities. Actually, we will see that even the last asymptotic evaluation problem is a
(global) connection problem since the physical solution like χ(3) does not correspond to the
obvious dominant singular behaviour one might have imagined from the indicial equation.

Focusing on the two new singularities, the roots of 1 + 3w + 4w2 = 0, we will show that
the physical solution χ(3) is not singular at these points. The factor of the logarithmic term, in
the decomposition of χ(3) at these singular points, is known exactly and vanishes identically.

Note that a fundamental concept to understand (the symmetries, the solutions of)
these exact Fuchsian differential equations is the so-called differential Galois group [11].
Differential Galois groups have been calculated for simple enough second-order, or even
third-order, ODEs (see, for instance, [12]). However, finding the differential Galois group
of such higher order Fuchsian differential equations (order 7 for χ(3), order 10 for χ(4)) with
eight regular singular points (for χ(3)) is not an easy task [12] and requires the computation
of all the monodromy matrices associated with each (non-apparent) regular singular point,
considered in the same basis4.

We will give the exact expression of all the monodromy matrices expressed in the same
(w = 0) basis of solutions, these eight matrices being the generators of the differential Galois
group, which will be given in a forthcoming publication [14].

4 These monodromy matrices are the generators of the monodromy group which identifies with the differential Galois
group when there are no irregular singularities, and thus no Stokes matrices [13].
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This method can be generalized, mutatis mutandis, to the Fuchsian differential equation
of χ(4). Here, we give the connection matrix between w = 0 and both the ferromagnetic
and anti-ferromagnetic critical points. The singular behaviour is straightforwardly obtained
with the asymptotic behaviour of the series coefficients of the physical solution χ(4). The
monodromy matrices, expressed in the same basis of solutions are also obtained.

The paper is organized as follows. We recall, in section 2, some results on the Fuchsian
differential equation satisfied by χ(3), and give a new factorization for the corresponding order 7
differential operator, yielding the emergence of an order 2, and an order 3, differential operator
(denoted by Z2 and Y3 below). We give, in section 3, the connection matrices matching the
(series) solutions around the regular singular point w = 0 and around all the other regular
singular points. With these connection matrices we deduce the singularity behaviour and the
asymptotics on the physical solution of this ODE (section 4). In section 5, we deduce the exact
expressions of the monodromy matrices expressed in the same basis. Section 6 generalizes
these results to the Fuchsian differential equation satisfied by χ(4). Some physics implications
of our results at scaling are discussed in section 7. Our conclusion is given in section 8.

2. The order 7 operator L7

Let us first recall, with the same notation as in [8, 9], the seven linearly independent solutions
given in [8, 9] for the order 7 differential operator L7, associated with5 χ̃ (3).

One finds two remarkable rational and algebraic solutions of the order 7 differential
equation associated with χ̃ (3), namely,

S(L1) = w

1 − 4w
, S(N1) = w2

(1 − 4w)
√

1 − 16w2
(3)

associated with the two order 1 differential operators given in [8]:

L1 = d

dw
− 1

w(1 − 4w)
, N1 = d

dw
− 2(1 + 2w)

w(1 − 16w2)
. (4)

There is a solution behaving like w3, that we denote by S3,

S3 = w3 + 3w4 + 22w5 + 74w6 + 417w7 + 1465w8 + 7479w9 + 268 39w10 + · · · (5)

and three solutions with logarithmic terms given by equation (17) in [8]. Note the singled-out
series expansion starting with w9, corresponding to the physical solution χ̃ (3):

S9 = χ̃ (3)(w)

8
= w9 + 36w11 + 4w12 + 884w13 + 196w14 + · · · . (6)

The choice of this set of linearly independent solutions (and of these series) is, in fact,
arbitrary since any linear combination of solutions is also a solution of the differential equation.
Three of the above solutions are, however, singled out: the solutionsS(L1) andS(N1) which are
global (since they have closed expression), and the series S9 associated with the highest critical
exponent in the indicial equation (w9 + · · ·), which has a unique (well-defined) expression and
happens to correspond to the ‘physical’ solution χ̃ (3). Linear combinations, like S3 − α · S9,
are, at first sight, on the same footing.

Nevertheless, introducing such a specific linear combination, Nickel6 has been able to
show that the resulting series for the particular value α = 16 is, also, the solution of a linear

5 χ̃ (n) is defined as χ(n) = (1 − s4)1/4/s · χ̃ (n), for n odd.
6 We thank B Nickel for kindly communicating this result.
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Table 1. Critical exponents for each regular singular point for the differential operators Z2 ·N1 and
Y3 · Z2 · N1. The columns N show the number of solutions with logarithmic terms. The columns
P show the maximum power of the logarithm occurring in the solutions.

w-singularity Z2 · N1 N P Y3 · Z2 · N1 N P

0 2, 1, 1 1 1 3, 2, 2, 1, 1, 1 3 2
−1/4 1, 0,−1/2 0 0 2, 1, 0, 0, 0, −1/2 2 2
1/4 −1, −1,−3/2 1 1 0, 0, 0, −1,−1,−3/2 3 2
∞ 1, 0, 0 1 1 2, 1, 1, 1, 0, 0 3 2
−1/2 3, 1, 0 1 1 4, 3, 3, 2, 1, 0 1 1
1 3, 1, 0 1 1 4, 3, 3, 2, 1, 0 1 1
−3±i

√
7

8 1, 1, 0 1 1 4, 3, 2, 1, 1, 0 1 1

differential equation of lower order, namely order 4. With this result, the factorization scheme
of L7 becomes7

L7 = M1 · Y3 · Z2 · N1 = B3 · X1 · Z2 · N1

= B3 · B2 · O1 · N1 = B3 · B2 · T1 · L1 (7)

where the indices correspond to the order of the differential operators (B3, Y3 are order 3,
B2, Z2 order 2, and so on). The differential operators L7,M1 and T1 have been given in [8].
We give in appendix A, the differential operators X1, Z2 and Y3. With these differential
operators, all the factorizations (7) can be found by left and right division.

From these factorizations of L7, one can see that the general solution of the corresponding
differential equation is the direct sum of the solution of L1 and of the general solution of the
differential operator L6 = Y3 · Z2 · N1. The operator L7 has the following decomposition:

L7 = L6 ⊕ L1. (8)

We thus consider, from now on, the differential operator L6.
The formal solutions of L6 (at the singular point w = 0) show the occurrence of three

Frobenius series and three solutions carrying logarithmic terms. With the factorizations (7),
it is interesting to see which operator brings with it a singular behaviour for a given regular
singular point. Table 1 shows the critical exponents at each regular singular point for both
differential operators Z2 · N1 and Y3 · Z2 · N1. In the third and sixth column, the number of
independent solutions with logarithmic terms is shown.

At the singular points w = 1, w = −1/2, and at the two roots w1, w2 of 1 + 3w + 4w2 = 0,
we remark that the solution carrying a logarithmic term is in fact a solution of Z2 · N1.
Therefore, the three solutions of the differential operator Y3 · Z2 · N1, emerging from Y3, are
analytical at the non-physical singular points w = 1, w = −1/2, and at the quadratic roots of
1 + 3w + 4w2 = 0. At the singular point w = 1/4, we also note that the differential operator
Z2 · N1 is responsible for the (1 − 4w)−1 behaviour. We will then expect the ‘ferromagnetic
constant’ I +

3 to be localized in the blocks of the connection matrix corresponding to the
solutions of the order 3 differential operator Z2 · N1 at the point w = 1/4.

As far as explicit calculations are concerned, a well-suited basis necessary for explicitly
writing connection matrices exists and can be described. Considering the order 6 operator
L6 = Y3 · Z2 · N1, we construct the local solutions, sequentially, as the global solution of
N1 then the two solutions coming from Z2 · N1, to which we add the three further solutions
coming from Y3 · Z2 · N1. We will use below this well-suited basis.

7 The order 4 differential operator found by B Nickel corresponds to B2 · T1 · L1 = B2 · O1 · N1 = X1 · Z2 · N1.
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3. Connection matrices for χ̃(3)

Using a very simple method, let us show, in the case where one has an exact Fuchsian
differential equation, that one can actually very simply, and very efficiently, obtain the
connection matrices between two sets of series solutions valid at two different points. The
method consists in equating, at some matching points, the two sets of series corresponding,
respectively, to expansions around w = 0 and, for instance, w = 1/4. The matching point
should be in the radius of convergence of both series. The singular points (i.e., w = 0 and
w = 1/4) should be neighbours, having no other singularity in between. Recall that the
differential equation for χ̃ (3) has eight regular singular points, the point at infinity, five on the
real axis and two (w1 and w2) on the upper and lower half-plane each. At a given singular
point ws , the solutions are obtained as series in the variable x, where x = w (respectively
x = 1/w) for the point ws = 0 (respectively ws = ∞) and x = 1 − w/ws for the other
regular singular points. We take the definition ln(x) = ln(−x) + iπ for negative values of x
which corresponds to matching points in the lower (respectively upper) half-plane for w > 0
(respectively w < 0).

The computation of the connection matrix should be more efficient when two
‘neighbouring’ singularities are, as far as possible, far away from the other singularities
and especially when the test points chosen half-way are, as far as possible, far from the
other singularities, in order not to be ‘polluted’ by the other singularities. We remark
that one can calculate in this way just ‘neighbouring’ singularities: connection matrices of
two singularities w1, wr that are not ‘neighbours’ should be deduced using some path of
‘neighbouring’ connection matrices:

C(w1, wr) = C(w1, w2) · C(w2, w3) · · · C(wr−1, wr). (9)

This is the prescription we take for the singular points on the real axis and the singularity
w1 lying in the upper half-plane. For the singularity w2 lying in the lower half-plane, the
connection matrix is calculated from

C(0, w2) = C∗(0,−1/4) · C∗(−1/4, w1) = C∗(0, w1) (10)

where ∗ denotes the complex conjugate.
Let us remark that changing the variable w we are working with, to the more traditional

s = sinh(2K) variable, or the usual high-temperature (respectively low-temperature) variable
t = tanh(K), or the variable τ = (1/s − s)/2, modifies the distribution of singularities in the
complex plane and their radii of convergence. However, the method can still be used. One can
use that freedom in the choice of the expansion variable to actually improve the convergence
of our calculations.

3.1. Connecting solutions

Let us first show, as an example, how we compute the connection matrix between two
neighbouring regular singular points (w = 0 and w = 1/4) for order 3 differential operator
Z2 · N1. Around the singular point w = 0, the local solutions are two Frobenius series (one
being the global solution S(N1)) and a series with a logarithmic term. The chosen basis is
then (where x = w)

S
(0)
1 (x) = S(N1)(x), S

(0)
2 (x) = [0, 1, 5, 26, 106, 484, . . .], (11)

S
(0)
3 (x) = S

(0)
2 (x) · ln(x) + S

(0)
30 (x) (12)

with

S
(0)
30 (x) = [0, 0, 0, 6, 26, 529/3, 2149/3, . . .] (13)
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where [a0, a1, a2, . . .] denotes the series a0 + a1x + a2x
2 + · · ·. There are three independent

series S
(0)
1 , S

(0)
2 and S

(0)
30 , since the operator Z2 · N1 is of order 3. Similarly, around w = 1/4,

the local solutions read (with x = 1 − 4w and, where again, S
(1/4)

1 is the global solution
corresponding to operator N1)

S
(1/4)

1 (x) = S(N1)(x), (14)

S
(1/4)

2 (x) = 1

x
− 3

4
− 5

96
· x − 3

64
· x2 − 1801

55 296
· x3 + · · · (15)

S
(1/4)

3 (x) = S
(1/4)

2 (x) · ln(x) + S
(1/4)

30 (x) (16)

with

S
(1/4)

30 (x) = [3/8,−367/5760,−193/6720,−244 483/6635 520, . . .]. (17)

The series S
(0)
i are defined around w = 0, and are convergent in a radius of 1/4, which

corresponds to the nearest regular singular point (i.e., w = 1/4). Similarly, the solutions S
(1/4)

i

are convergent in the disc centred at w = 1/4 with the same radius (i.e., 1/4). Between the
points w = 0 and w = 1/4, there is a region where both sets of solutions (S(0)

i and S
(1/4)

i )
are convergent. This region corresponds to the common area between two discs centred,
respectively, at w = 0 and w = 1/4, with the same radius 1/4.

Connecting the local series solutions at the regular singular points w = 0 and w = 1/4
amounts to finding the 3 × 3 matrix C(0, 1/4) such that

S(0) = C(0, 1/4) · S(1/4) (18)

where S(0) (respectively S(1/4)) denotes the vector with entries S
(0)
i (respectively S

(1/4)

i ). The
solutions S

(0)
i and S

(1/4)

i are evaluated at three arbitrary points around a point xc belonging to
both convergence discs of the series solutions S

(0)
i and S

(1/4)

i .
Equation (18) is thus a linear system of nine unknowns. The entries of the connection

matrix C(0, 1/4) are obtained in the floating point form with a large number of digits. These
entries are ‘recognized’ in the symbolic form and matrix C(0, 1/4) then reads

C(0, 1/4) =




1 0 0

1 −9
√

3

64π

(
2

3
− ln(24)

)
−9

√
3

64π

0 −3π
√

3

32
0


 . (19)

The entries of this matrix are combinations of radicals, of powers of π and logarithms of
integers. Note that there is no straightforward manner to recognize numerical values such as
those displayed above. However, it is possible, in a ‘tricky’ way, to get rid of the logarithms
of integers in the entries, and obtain as many zero entries as possible. This is shown, in the
following, for this very example.

The series, in the set of local solutions S
(1/4)

i , are solutions of the differential equation
(ODE) corresponding to the third-order differential operator Z2 · N1 at the regular singular
point w = 1/4. It is obvious that any linear combination of these series is also a solution of
the differential equation. Consider the following combination instead of the third component
in (16):

S
(1/4)

3 (x) −→ (ln(x/24) + 2/3) · S
(1/4)

2 (x) + S
(1/4)

30 (x). (20)

By writing the argument of the logarithm as x/24, there will be no logarithm in the connection
matrix. Furthermore, by adding the second component of the basis to the third component with
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a factor of 2/3, the entry (2, 2) of the connection matrix will be cancelled. The connection
matrix then reads

C(0, 1/4) =




1 0 0

1 0 − 9

64

√
3

π

0 −3π
√

3

32
0


 . (21)

These tricks, based on well-chosen linear combinations of the solutions, allow us to
obtain as many zeros as possible, and to get rid of the logarithms. They will be used in
order to compute the connection matrix for L6 between the point w = 0 and, respectively,
w = 1/4, w = −1/4 and w = ∞.

The chosen well-suited basis of solutions, at each regular singular point calls for some
comment. The factorization of the differential operator L6 being Y3 · Z2 · N1, our method
of producing the solutions, sequentially, allows one to determine from which differential
operator a given solution emerges. Near the points w = 0, w = ±1/4 and w = ∞, the
third-order differential operator Y3 brings three solutions (see table 1), one Frobenius series,
one solution with a log term and one solution with a log2 term, denoted, respectively, by S̃4, S̃5

and S̃6. The solutions of the differential operator Y3 itself are of elliptic integral type (see
appendix B). These elliptic integrals behave around w = ±1/4 (respectively w = ∞) like
g(t) · ln(t/16)+f (t), with t = 1−16w2 (respectively t = 1/16w2), g(t) and f (t) being series
with rational coefficients. One may then assume that the logarithmic term that appears in the
solutions of L6, inherited from Y3, will be of the form ln((1 − 16w2)/16), near w = ±1/4,
and of the form ln(1/256/w2), near w = ∞. The general form of combination for the fourth
to sixth components of the well-suited basis will be

S̃4 −→ S̃4

S̃5 −→ S̃5 + (a1 − ln(c)) · S̃4

S̃6 −→ S̃6 + 2(a1 − ln(c)) · S̃5 + (ln(c)2 − 2a1 ln(c) + a2) · S̃4

(22)

where c = 1, 8, 16 for the basis at, respectively, w = 0, w = ±1/4 and w = ∞. The values
of the parameters a1 and a2 depend on each basis.

Note that the argument in ln(x/24) in the series solutions of the differential operator
Z2 · N1 at w = 1/4 will be ln(x/4) and ln(x/24) at, respectively, w = ∞ and w = 1.
Similarly to Y3, these arguments may come from the explicit solutions of Z2.

3.2. The connection matrix between w = 0 and w = 1/4

The first three local solutions at w = 0 are given by (11), (12), (13), and the fourth, fifth and
sixth solutions read

S
(0)
4 (x) = [0, 1, 9, 34, 178, 692, . . .],

S
(0)

5 (x) = S
(0)
4 (x) · ln(x) + S

(0)

50 (x) − S
(0)
4 (x)

/
4,

S
(0)
6 (x) = S

(0)
4 (x) · ln2(x) + 2

(
S

(0)

50 (x) − S
(0)
4 (x)

/
4
) · ln(x)

+ S
(0)
60 (x) − S

(0)

50 (x)
/

2 + 25S
(0)
4 (x)

/
16

with

S
(0)

50 (x) = [0, 0, 0,−2, 34, 241/3, . . .],

S
(0)
60 (x) = [0, 0, 0, 0,−19/3,−7693/72,−575 593/1800, . . .].
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At the singular point w = 1/4, we make use of the combination (22) which amounts to taking
x/8 as an argument of the logarithms in the fourth, fifth and sixth component. The parameters
a1 and a2 in (22) are, respectively, 23/6 and 41/9. The first three local series at x = 1 − 4w

are given in (14), (15), (17), (20) and the fourth, fifth and sixth read

S
(1/4)

4 (x) = [1,−1/8, 3/16, 29/512, . . .],

S
(1/4)

5 (x) = (ln(x/8) + 23/6) · S
(1/4)

4 (x) + S
(1/4)

50 (x),

S
(1/4)

6 (x) = (
ln2(x/8) + 23

3 ln(x/8) + 41/9
) · S

(1/4)

4 (x)

+ 2(ln(x/8) + 23/6) · S
(1/4)

50 (x) + S
(1/4)

60 (x)

(23)

with

S
(1/4)

50 (x) = [0, 457/480,−2231/1680,−128 969/184 320, . . .]

S
(1/4)

60 (x) = [0,−967/100, 4312 219/470 400, 595 578 701/116 121 600, . . .].

Connecting both solutions amounts to solving a linear system of 36 unknowns (the entries
of the connection matrix). We have been able to recognize these entries which are obtained
in the floating point form with a large number of digits. The connection matrix C(0, 1/4) for
the order 6 differential operator L6 reads

C(0, 1/4) =




1 0 0 0 0 0

1 0 −9
√

3

64π
0 0 0

0 −3π
√

3

32
0 0 0 0

5
1

3
− 2 · I +

3
3
√

3

64π
0 0

1

16π2

−5

4
−3π

√
3

32

45
√

3

256π
0

1

32
0

29

16
− 2π2

3

15π
√

3

64
−225

√
3

1024π
− 3π

√
3

64

π2

64
0 0




. (24)

Some comments on how these entries have been ‘recognized’ will be given below. Let us
remark that, once the entries of the connection matrix have been obtained, a further change of
basis can be made to get it as ‘simple’ as possible.

3.3. Connection matrices between w = 0 and the other regular singular points

The chosen basis of solutions and the connection matrices between w = 0 (high or low
temperature) and, respectively, the anti-ferromagnetic point w = −1/4 and the point w = ∞
(corresponding to s = ±i) are given in appendix C.

The chosen basis, used for the regular singular points w = 1,−1/2 and 1+3w+4w2 = 0,
are given in appendix D together with the corresponding connection matrices with the point
w = 0. Many entries are ‘recognized’ and, in particular, those required to find the singular
behaviour of the physical solution. They correspond to the third column of matrices given in
appendix D.

The connection matrix between each pair of neighbouring singular points is computed
with the well-defined procedure described above. The connection matrix between w = 0, and
a non-neighbour singular point, is computed using (9). For instance, C(0, 1) is computed from
C(0, 1/4) and C(1/4, 1) as C(0, 1) = C(0, 1/4) · C(1/4, 1) which says that the solutions
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defined at w = 1/4 connected to the solutions defined at w = 0, are also the solutions that are
connected to the solutions defined at w = 1.

To be more confident of this prescription, let us underline that the connection matrices
C(0, 1) and C(0,−1/2), deduced from (9), will be used below to confirm the known dominant
singular behaviour of χ̃ (3) and find the subdominant behaviour.

3.4. Comments and remarks

The connection matrices between w = 0 and the other singular points are structured in blocks.
The latter, due to the factorization of the differential operators and to the sequential building
of the solutions, are easily recognized. The block (1, 2, 3) × (1, 2, 3) is associated with the
third-order differential operator Z2·N1. The block (4, 5, 6)×(4, 5, 6) represents the connection
between the solutions (at both w = 0 and the other singular points being considered) of L6

that are not solutions of Z2 · N1. The ‘ferromagnetic constant’ I +
3 appears in the connection

matrix between w = 0 and w = 1/4, as mentioned earlier, in the block (1, 2, 3) × (1, 2, 3)

at the column corresponding to the S
(1/4)

2 (see (15)) solution of the third-order differential
operator Z2 · N1.

To compute the connection matrix, we have used the differential operator L6 which has
a unique factorization. If, instead, we consider the differential operator L7, the next solution
(around w = 0), which comes from M1, will be the series (6) and will correspond to χ̃ (3).
This seventh solution is expressed as a linear combination of the already existing components
and of the solution of the differential operator L1. We can then choose to add the latter as the
seventh solution. The connection matrix will have an 1 at the entry (7, 7) and zero elsewhere
on the seventh line (and column), since the solution of the differential operator L1 is global.
By considering another factorization of L7, we will get the same structure with an obvious
relabelling.

Let us make a few computational remarks on the calculation of these connection matrices.
At the matching of the series solutions for which 1500 coefficients8 are generated from
homogeneous and non-homogeneous recurrences, the entries of the matrix are computed
with 800 digits for all the singular points. The numbers that come in the floating form
are ‘recognized’ as powers of π , radicals and rational numbers, and are in agreement up to
400 digits9 for the connection between the solutions at w = 0 and w = ±1/4, and up to
100 digits for the connection involving other singular points like w = 1. This fact is related
to the convergence rate of the series at the (midway) chosen matching points. For instance,
between w = 0 and w = 1/4, the matching points near w = 1/8 are such that both series
(at w = 0 and w = 1/4), which have the same radius of convergence, will be faithfully
reproduced with the number of terms used in the series. The matching of the solutions
between w = 1/4 and w = 1, will then require more terms to fulfil the same accuracy than
in the (w = 0)-(w = 1/4) situation. This is due to the fact that, at w = 1, the convergence
radius being 3/4, the matching points, which should be in the common region of both discs,
are closer to w = 1/4 than to w = 1. As a general rule, the matching points are chosen
around the middle of the segment in the common area between the convergence discs of the
two regular singular points for which the connection matrix is computed.

The difficulty in finding ‘non-local’ connection matrices is rooted in the recognition of
the entries. We have given the connection matrix between w = 0 and w = 1/4 with entries
fully recognized (apart from I +

3 ) to show that the method actually works and is efficient. For
the matrices concerning the connection between w = 0 and the other singular points, we have

8 For some checks, 3000 terms have been generated.
9 Let us note that the ‘ferromagnetic constant’ I+

3 has been obtained up to more than 400 exact digits.
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concentrated our effort on the entries that will show up in the physical solution. We should
note that there is no reason to expect the other (not yet recognized) entries to be ‘simply’
combinations of π , log and radicals. These entries are probably valuations of holonomic
functions. This was clearly seen in numerous examples we tackled of various differential
equations (of order 2 and 3) with the known solutions of hypergeometric type. The recognition
process used the fact that we actually found the explicit solutions of differential operator Y3

and, thus, knew how the numerical logarithms can be tackled. These were ‘absorbed’ in
the basis. We know, on the other hand, that the problem is strewn with hypergeometric
functions. We then expect some π to be present. For the entries consisting of a simple product
expression, recognizing the number amounts to performing simple arithmetic operations. Note
that considering the inverse of the connection matrix, some entries also show up as simple
rationals. The combination where π , radicals and rationals appear additively comes from
looking, for instance, at the determinant of the matrices, or block matrices, which happen to be
easily recognizable (in fact, rational or quadratic numbers for the roots of 1 + 3w + 4w2 = 0).

Another remark is the following. We first obtained the connection matrix (24) in some
general basis. The matrix had more non-zero entries compared to (24) involving powers of π ,
radicals and also ln(3) and powers of ln(2). The well-suited basis we chose has ‘evacuated’ all
these logs in the entries of the matrix, lessening the recognition-process effort. But, of course,
all these logs will reappear in the final result such as the singular behaviour of the physical
solution as next sections will show.

4. The physical solution χ̃(3) and its singular behaviour

The calculations of connection matrices are obtained straightforwardly from the well-defined
numerical process described in section 3. Having N singularities, one needs N − 1 such
connection matrices in order to find the correspondence between all these well-suited bases of
series solutions.

Let us focus on some particular entries of these various connection matrices, namely
the entries corresponding to the decomposition of χ̃ (3) in terms of the various well-suited
bases associated with each singularity. We have used the fact that the physical solution
(corresponding to χ̃ (3)) decomposes as the solution of differential operator L1,S(L1) (which
is χ̃ (1)/2) and the physical solution of the operator L6 denoted by �6(w) [8, 9]:

χ̃ (3)(w) = 1
6 χ̃ (1) + �6(w).

Furthermore, our well-suited basis of solutions at the singular point w = 0, does not contain, as
a component, the physical solution �6(w) which is given in terms of the previously considered
components as

�6(w) = 4
3S

(0)
1 − 1

12S
(0)
2 − 1

4S
(0)
4 . (25)

This physical solution can now be easily obtained from the connection matrices between
w = 0 and any regular singular point, which we denote by w = ws (with x = w, x = 1/w

for, respectively, w = 0 and w = ∞ and x = 1 − w/ws , otherwise) as

�6(x) =
6∑

j=1

(
4

3
C(0, ws)1j − 1

12
C(0, ws)2j − 1

4
C(0, ws)4j

)
· S

(ws)
j .

For instance, at the ferromagnetic critical point, this physical solution �6(x) can easily be
deduced from (24), and written as

�6(x) = −1

4

(
1

3
− 2I +

3

)
· S

(1/4)

2 − 1

64π2
S

(1/4)

6 .
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Here S
(1/4)

2 and S
(1/4)

6 are known from their series expansion (15) and (23). This equation,
giving the full expansion of χ̃ (3) at w = 1/4, can hardly be obtained directly from the integrals
defining χ̃ (3)(w). One has similar expansions for all the other singular points.

4.1. Singular behaviour of χ̃ (3)

Knowing the behaviour of solutions S
(ws)
j near each regular singular point, it is straightforward

to get the singular behaviour at those points for the physical solution �6 (and thus χ̃ (3)).
Considering the critical behaviour of χ̃ (3) near the ferromagnetic critical point w = 1/4,

and denoting x = 1 − 4w, the singular part of the ‘physical’ solution χ̃ (3) reads

χ̃ (3)(singular, 1/4) = 1

2

I +
3

x
− 1

64π2
S

(1/4)

4 · ln2(x)

+
1

32π2

((
3 ln(2) − 23

6

)
· S

(1/4)

4 − S
(1/4)

50

)
· ln(x) (26)

where I +
3 is actually the ‘ferromagnetic constant’ (2), and S

(1/4)

i the series defined in the
well-suited basis (23) at w = 1/4. The results agree with previous results of Nickel, but
the correction terms are new10, in particular the term 3 ln(2)/32/π2 in (26). In terms of the
τ = (1/s − s)/2 variable introduced in [6, 15, 16], the singular part (26) reads

χ̃ (3)(singular, τ � 0) � I +
3

τ 2
− ln2(τ )

16π2
+

(
ln(2) − 23

24

)
· ln(τ )

4π2
+ · · · .

Near the anti-ferromagnetic critical point w = −1/4, χ̃ (3) behaves as

χ̃ (3)(singular,−1/4) = − 1

32π2
S

(−1/4)

4 · ln2(x)

− 1

16π2

(
3(2 − ln(2)) · S

(−1/4)

4 + S
(−1/4)

50

) · ln(x). (27)

At the non-physical singularities w = 1 and w = −1/2 the physical solution behaves,
respectively, like

χ̃ (3)(singular, 1) =
√

3

27π
· S

(1)
2 · ln(x) (28)

and

χ̃ (3)(singular,−1/2) = −8
√

3

27π
· S

(−1/2)

2 · ln(x) (29)

confirming Nickel’s calculations given in [7].
At the point w = ∞, corresponding to the non-physical singularities s = ±i, the singular

behaviour reads

χ̃ (3)(singular,∞) = − 1

16π2
S

(∞)
4 · ln2(x)

− 1

8π2

(
(4 − 2π i) · S

(∞)
2 −

(
5 + 4 ln(2) + i

π

2

)
· S

(∞)
4 + S

(∞)

50

)
· ln(x). (30)

At the new singularities found in [8], namely the roots of 1 + 3w + 4w2 = 0, which are
regular singular points of the differential equation, the singular part of the physical solution
reads, at first sight,

χ̃ (3)(singular, w1) = − 1
12 (a23 + 3a43) · S

(w1)
2 · ln(x).

The entries a23 and a43 (see the connection matrix for these points in appendix D) are,
however, such that a23 + 3a43 = 0. The physical solution is thus, not singular, at the newly
found quadratic singularities, confirming our conclusion given in [9] from series analysis.
10 These results have also been found by B Nickel (private communication).
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4.2. Asymptotic series analysis

As the physical solution χ̃ (3) is given as a series around w = 0, the coefficients of the
latter are controlled by the nearest singular points (i.e., w = ±1/4). Since the singular
parts at the ferromagnetic and anti-ferromagnetic critical points (26), (27) are obtained, it is
straightforward to deduce the behaviour of the coefficients of series (6) for large values of
n. Standard study of the asymptotic behaviour of the coefficients via their linear recursion
relation can be used (see [17]). For our purpose, we use the following identity for ln2(1 − x)

(where x stands for x = 4w),

ln2(1 − x) =
∞∑

n=2

b(n) · xn, where b(n) =
n−1∑
i=1

1

i(n − i)
= 2

n
· (�(n) + γ ) (31)

where γ = 0.577 215 66 . . . denotes Euler’s constant, and � denotes the logarithmic derivative
of the 	 function. Recalling the asymptotic expansion of �(n) up to 1/n2 for large values of
n, one obtains

b(n) → 2

n
·
(

γ + ln(n) − 1

2n
− 1

12n2
+ · · ·

)
.

With the same manipulations of ln2(1 + x), and inserting in (26), (27), one obtains the
asymptotic form of coefficients of χ̃ (3)/8w9 as

2−15 · c(n)

4n
� I +

3

2
− 1

16π2

(
1

2
+ (−1)n

)(
ln(n)

n
+

b1

n
− 1

2n2

)
+

1

16π2

(
23

12
+ 6(−1)n

)
1

n
+ · · ·

where b1 = γ + 3 ln(2).
It is this parity effect in the asymptotic behaviour of the coefficients that we saw,

numerically, (see equations (33) in [9]) where we obtained, around n � 500, c(n) � 13.5×4n

for n even and c(n) � 11 × 4n for n odd. For very large values of n, the asymptotic value of
the coefficient c(n)/4n is thus 214 · I +

3 � 13.344 154 67 . . . .

5. Monodromy matrices for χ̃(3)

5.1. Sketching the differential Galois group of L7

As a consequence of the direct sum (8), the differential Galois group of L7 reduces (up to a
product by C) to the differential Galois group of L6. From the factorization of L6, one can
immediately deduce that the differential Galois group of L6 is the semi-direct product of the
differential Galois group of Y3, of the differential Galois group of Z2 and of the differential
Galois group of N1 (namely C).

In some ‘well-suited global basis’ of solutions, the form of the 6×6 matrices representing
the differential Galois group of L6, reads[

A 0
H B

]
, with A =

[
b 0
h g

]
where the 2 × 2 matrix g, and 3 × 3 matrix B correspond, respectively, to the differential
Galois group of Z2 and Y3. The 3×3 matrix A is associated with the differential Galois group
of Z2 · N1, and the 3 × 3 matrix H corresponds to the fact that we have a semi-direct product
of the differential Galois group of Y3 and Z2 · N1 in L6 = L3 · Z2 · N1.

Many papers (for instance [18–22]) describe how to calculate the differential Galois
groups of order 2 and order 3 differential operators. The differential Galois group of L7 will
be deduced in a forthcoming publication [14].

To go beyond this sketchy description of the differential Galois group, one needs to
calculate specific elements like the monodromy matrices expressed in a common basis.
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5.2. Monodromy matrices rewritten in the w = 0 basis

Having the connection matrices between w = 0 and each singularity, the local monodromy
matrices expressed in their own well-suited basis of (series) solutions, can be rewritten in a
unique global basis valid for all singularities. This will allow us, in a second step, to calculate
their products and thus generate the differential Galois group. Let us define the 2 × 2 and
3 × 3 matrices

A =
[

1 0

 1

]
, B =


 1 0 0


 1 0

2 2
 1


 (32)

where 
 denotes 2iπ and corresponds to the translation of the logarithm when performing a
complete rotation around the regular singular point: ln(w) → ln(w) + 
.

The expression of the local monodromy matrix around each regular singular point ws in
its own well-suited basis of (series) solutions reads

l(ws) =

ε 0 0

0 C 0
0 0 D


 (33)

where, ε and the 2 × 2 blocks C, and 3 × 3 blocks D, are such that

w = 0, w = ∞ → ε = +1, C = A,D = B

w = 1/4, → ε = −1, C = A,D = B

w = −1/4, → ε = −1, C = Id,D = B

w = 1,−1/2,−3/8 ± i
√

7/8, → ε = +1, C = A,D = Id.

The monodromy matrix around any singularity w = ws expressed in terms of the (w = 0)

well-suited basis, and denoted as Mw=0(ws), reads

Mw=0(ws) = C(0, ws) · l(ws)(
) · C−1(0, ws). (34)

In order to keep track of the π corresponding to the translation of the logarithm in the local
monodromy matrix l(ws)(
), and the π occurring in the expression of the entries of the (quite
involved) connection matrix C(0, ws), we will denote the latter by α = 2iπ .

Let us focus on the singular point w = 1. Its monodromy matrix, expressed in terms of
the w = 0 well-suited basis, is given by (34) with ws = 1, and where the connection matrix
C(0, 1), matching the (w = 1) well-suited basis together with the (w = 0) well-suited basis,
is a ‘quite involved’ matrix given in appendix D, with entries depending on π and on a set of
15 constants, not yet recognized in the closed form. The monodromy Mw=0(1) can finally be
written as a function of only α and 
:

8α2 · Mw=0(1)(α,
) =




8α2 0 0 0 0 0

−48 α 
 8α2 −48 
 0 0 0

0 0 8α2 0 0 0

−1008α
 0 −1008 
 8α2 0 0

12 α(5 + 16α)
 0 12(5 + 16α)
 0 8α2 0

−α(75 + 44α2)
 0 −(75 + 44α2)
 0 0 8α2




.

(35)



Galois group of the Ising model 9453

Let us give one more example corresponding to the new quadratic singularities
1 + 3w + 4w2 = 0. The monodromy matrix around one of the quadratic singularities w = w1,
expressed in terms of the (w = 0) well-suited basis, after the conjugation (34), reads

8α2 · Mw=0(w1)(α,
) =
[
A 0
B C

]
(36)

with:

[
A

B

]
=




8α2 0 0
48α 
 8α(α + 6 
) −144 


16 
α2 16 
α2 −8α(−α + 6 
)

−16α 
 −16α 
 48 


4α(4α − 15)
 4α(4α − 15)
 −12(4α − 15)


αa αa −3a




with a = (−40α + 12α2 + 75)
 and [C] = 8α2 · Id(3 × 3).
One can actually verify that the monodromy matrix around the other quadratic singularity

w = w2 (w2 is the complex conjugate of w1), expressed in terms of the (w = 0) well-suited
basis, actually identifies with (36) where α has been changed into −α.

We have totally similar results for all the other (regular) singularities. The expressions of
the other monodromy matrices Mw=0(ws), around the other (regular) singular points w = ws ,
are displayed in appendix E.

We have seen that the connection matrices depend on I +
3 and on ‘not yet recognized’

(probably transcendental) numbers, like x42 and y41 (for the connection matrix between w = 0
and w = ∞). Rewriting a monodromy matrix in a unique (global) basis like the w = 0
basis, amounts to performing conjugation, like (34), of simple (local) monodromy matrices
depending only on 
, by these quite involved connection matrices. As a consequence, one
does expect, at first sight, these monodromy matrices, rewritten in the unique w = 0 basis, to be
dependent on the still unknown numbers. For instance, one certainly expects the monodromy
matrix around w = 1/4 (see appendix E) to be expressed in terms of the transcendental number
I +

3 , or the monodromy matrix (35) to depend on 15 parameters. It is worth noting that all these
matrices M(ws), expressed in the same (w = 0) well-suited basis, turn out to be quite simple
matrices where the entries are actually rational expressions, with integer coefficients of α and

. Section 5.3 gives some hints on why this is so.

The introduction of the two parameters α and 
 is a nice ‘trick’ to track the π coming from
the connection matrices versus the π coming from the local monodromy matrices. However,
one should keep in mind that α is not independent of 
: the ‘true’ monodromy matrices are
such that α = 
 (
 being equal to 2iπ ). Let us denote these ‘true’ monodromy matrices by
Mi, i = 1, . . . , 8:

M1 = Mw=0(∞)(
,
), M2 = Mw=0(1)(
,
),

M3 = Mw=0(1/4)(
,
), M4 = Mw=0(w1)(
,
),

M5 = Mw=0(−1/2)(
,
), M6 = Mw=0(−1/4)(
,
),

M7 = Mw=0(0)(
,
), M8 = Mw=0(w2)(
,
).

(37)

The matrices M2,M4,M5,M8, and respectively the matrices M1 and M7, share the same
Jordan block form. The Jordan block forms for M3 and M6 read, respectively,
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

−1 0 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1




,




−1 0 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




.

These matrices Mi are the generators of a 6 × 6 matrix representation of the differential
Galois group of the Fuchsian differential equation corresponding to L6. Any element of the
differential Galois group is of the form

M
n1
P(1) · M

n2
P(2) · M

n3
P(3) · M

n4
P(4) · M

n5
P(5) · M

n6
P(6) · M

n7
P(7) · M

n8
P(8) (38)

where P denotes an arbitrary permutation of eight elements and where the ni are positive or
negative integers. This looks, at first sight, like an infinite discrete group, but the closure of
this infinite set of matrices can be quite large continuous groups like semi-direct products of
SL(2, C) with SL(3, C), and so on.

Our ‘global’ (800 digits, 1500 terms) calculations yield quite involved exact connection
matrices. With such large and involved computer calculations there is always a risk of a
subtle mistake or misprint. At this stage, and in order to be ‘even more confident’ in our
results, let us recall that the monodromy matrices must satisfy one matrix relation which will
be an extremely severe non-trivial check on the validity of these eight matrices Mi , or more
precisely their (α,
) extensions. Actually, it is known (see, for instance, proposition 2.1.5
in [23]) that the monodromy group11 of linear differential equations (with r regular singular
points) is generated by a set of matrices γ1, γ2, . . . , γr that satisfy γ1 · γ2 · · · γr = Id, where
Id denotes the identity matrix. The constraint that ‘some’ product of all these matrices should
be equal to the identity matrix, looks quite simple, but is, in fact, ‘undermined’ by subtleties
of complex analysis on how connection matrices between non-neighbouring singular points
should be computed. The fact that the prescription (9), (10) has given no contradictory results
on the χ̃ (3) singular behaviour may be an argument that our Mi are not ‘too far’ from these
‘elementary’ γi . In other words, one of the products (38) must be equal to the identity matrix
for some set of ni and for some permutation P . With the particular choice (37) of ordering of
the eight singularities, this product actually reads

M1 · M2 · M3 · M4 · M5 · M6 · M7 · M8 = Id. (39)

Of course, from this relation, one also has seven other relations deduced by cyclic permutations.
It is important to note that these relations (39) are not verified by extensions like (35), (36)
depending on two independent parameters α and 
, of the monodromy matrices Mi . If one
imposes relations (39) for the (α,
) extensions of the Mi , one will find that, necessarily, α

has to be equal to 
, but (of course12) one will find that these matrix identities are verified for
any value of 
, not necessarily equal to 2iπ .

5.3. Comments

The entries of the connection matrices are seen to be expressed as various polynomials, or
algebraic combinations of powers of π , ln(2), ln(N) (N integer), algebraic numbers, etc, and
more ‘involved’ transcendental numbers like (2). On the other hand, the monodromy matrices

11 Which identifies in our Fuchsian case with the differential Galois group.
12 A matrix identity like (39) yields a set of polynomial (with integer coefficients) relations on 
 = 2iπ . The number
π being transcendental it is not a solution of a polynomial with integer coefficients. These polynomial relations have,
thus, to be polynomial identities valid for any 
.
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Mw=0(ws), expressed in the same (w = 0) well-suited bases, have entries which are rational
expressions with integer coefficients of α and 
. To get some hint as to how this occurs, let
us consider, for instance, the regular singular point w = 1. The local monodromy matrix is
almost the unity matrix (only one solution with log) with elements

l(1)ij = δij + 
 · δi3δj2. (40)

The product (34) giving the global monodromy matrix will be given by

Mw=0(1)ij = δij + 
 · C(0, 1)i3 · C−1(0, 1)2j (41)

where one can see that only the third column of C(0, 1) and the second row of its inverse will
contribute. These entries have been ‘recognized’ (see appendix D).

Let us assume that there is another solution with a log term (this is not so, see table 1).
An entry (for instance l(1)65) of the local monodromy matrix changes from zero to 
. In this
case equation (41) becomes

Mw=0(1)ij = δij + 
 · C(0, 1)i3C
−1(0, 1)2j + 
 · C(0, 1)i6C

−1(0, 1)5j .

The entries C(0, 1)i6 and C−1(0, 1)5j will appear in the global monodromy matrix. In fact,
changing the entry l(1)65 from zero to 
 means that a formal solution will exhibit logs, and
this will correspond to the entries C(0, 1)i6. As a practical rule, we found that such entries
(corresponding to solutions with logs) can be easily ‘recognized’ in contrast with the entries
corresponding to Frobenius series which will be cancelled by the zero entries of l(1). The
entries corresponding to Frobenius series are probably valuations of holonomic functions.

Let us now assume (for the actual situation) that the whole column C(0, 1)i3 has unknown
entries. Recalling the fact that the product of the monodromy matrices, expressed in the same
basis, should be equal to the identity matrix [23] (this is what we found for our eight matrices
Mi , see (39)), one then expects the ‘not yet guessed constants’ (i.e., the column C(0, 1)i3) to
be given by a non-linear system of equations. This is indeed what occurs for this example,
and we recover that way the entries given for this case in appendix D.

A last remark is the following. Right now, we have considered all the matrices (connection
and therefore monodromy matrices expressed in a unique basis) with respect to the (w = 0)

well-suited basis of solutions. This is motivated by the physical solution χ̃ (3) which is known
as series around w = 0. In fact, we can switch to another w = w̃ well-suited basis of
solutions. This amounts to considering the connection C(w̃,ws) = C−1(0, w̃) ·C(0, ws). For
instance, we have actually performed the same calculations for the (w = 1/4) basis of series
solutions. We have calculated all the connection matrices from the (w = 1/4) basis to the other
singular point basis series solutions, and deduced the exact expressions of the corresponding
monodromy matrices now expressed in the same (w = 1/4) basis of series solutions. It is
worth noting that we get, this time, for the monodromy Mw=1/4(ws) around singular point ws

and expressed in the (w = 1/4) basis, a matrix whose entries depend rationally on α,
, but,
this time, also (except for the monodromy matrix at w = 1) on the ‘ferromagnetic constant’
I +

3 . One verifies that the product of these monodromy matrices in the same order as (39), is
actually equal to the identity matrix when α = 
, the matrix identity being valid for any value
of α = 
 (equal or not to 2iπ ), and for any value of I +

3 (equal or not to its actual value given
in (2)).

We have similar results for the monodromy matrices around singular point ws , expressed
in the (w = ∞) basis, but, now, the monodromy matrices Mw=∞(ws) depend on α, 
, and,
this time, on the (not yet recognized) constants y41 and x42. Again, the product of these
monodromy matrices in the same order as (39), is actually equal to the identity matrix when
α = 
, the matrix identity being valid for any value of α = 
 (equal or not to 2iπ ) and for
any values of y41 and x42 (equal, or not, to their actual values given in appendix C).
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6. Mutatis mutandis: connection matrices and singular behaviour for χ̃(4)

6.1. Connection matrices

The Fuchsian differential equation for13 χ̃ (4), the 4-particle contribution to the susceptibility, is
given in [10]. The order 10 differential operator L10 associated with this differential equation
has 36 (equivalent up to isomorphisms) factorizations (see appendix F in [10]). Consider, for
instance, two of these factorizations:

L10 = N8 · M2 · L25 · L12 · L3 · L0

= M1 · L24 · L13 · L17 · L11 · N0. (42)

The notations are the same as those in [10], the M operators are of order 4, the N and L
operators are, respectively, of order 2 and 1. The two factorizations above mean that L10 is a
direct sum of an order 8 differential operator, L8 = M2 · L25 · L12 · L3 · L0 and of the order 2
differential operator N0 (which, see [10], has remarkably χ̃ (2) as solution):

L10 = L8 ⊕ N0. (43)

As was the case for χ̃ (3), it is thus sufficient to consider the differential operator L8 for which
a general form of 8 × 8 matrices, representing Gal(L8), the differential Galois group of L8, is
deduced: [

L 0
G M

]
.

Here G, M and L are 4 × 4 matrices, the latter being lower triangular. Recall that L8 has four
known global solutions (see [10] and below).

Similarly to the calculation on χ̃ (3), we can, for instance, calculate connection matrices
associated with the correspondence between the series near x = 16w2 = 0 (high temperature)
with the series near x = 16w2 = 1 (the ferromagnetic and anti-ferromagnetic critical point),
and find how the ‘physical solution’ χ̃ (4) can be decomposed on the various well-suited bases
around each singular point (physical or non-physical) of the order 10 Fuchsian differential
equation.

We use the factorization (42) to construct the basis of solutions, sequentially, as the four
solutions corresponding to the differential operator L25 · L12 · L3 · L0 that we call respectively
S1, S2, S3 and S4. To these solutions, we add the four solutions coming from L8 and inherited
from the differential operator M2, that we call S5, . . . , S8. Here, again, an optimal choice of
basis is made in order to have as many zeros as possible in the connection matrix with as
‘simple’ entries as possible. The bases of solutions at x = 0 and x = 1 (with, respectively,
t = x and t = 1 − x) have similar forms and read

S1(t) = 1, S2(t) = equation (33) in [10],

S3(t) = equation (32) in [10], S4(t) = equation (43) in [10],

S5(t) = see below, S6(t) = S5(ln(t/16) + a1) + S60

S7(t) = (ln(t/16)2 + 2a1 ln(t/16) + a2) · S5 + 2S60(ln(t/16) + a1) + S70

S8(t) = (ln(t/16)3 + 3a1 ln(t/16)2 + 3a2 ln(t/16) + a3) · S5

+ 3(ln(t/16)2 + 2a1 ln(t/16) + a2) · S60 + 3(ln(t/16) + a1) · S70 + S80

13 χ̃ (n) is defined as χ(n) = (1 − s−4)1/4 · χ̃ (n), for n even.
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where the constants a1, a2 and a3 and the series read, near x = 0,

a1 = 79/60, a2 = −751/1800, a3 = −10 619/375,

S
(0)

5 (t) = [0, 0, 1, 45/32, 425/256, 945/512, . . .],

S
(0)
60 (t) = [0, 2/3, 0, 2353/13 440, 121 619/322 560, . . .],

S
(0)
70 (t) = [8,−119/45, 0,−560 333/1411 200, . . .],

S
(0)
80 (t) = [0, 0, 0, 0,−127 639 044 817/85 349 376 000, . . .]

and, near x = 1,

a1 = 35/6, a2 = 107/9, a3 = −1051 745 657/749 700

S
(1)

5 (t) = [1,−1/4,−7/64,−45/256,−3385/16 384, . . .],

S
(1)
60 (t) = [0, 7/120,−3809/13 440, 42 401/16 120, 9271 027/18 923 520, . . .],

S
(1)
70 (t) = [0, 1099/75, 741 847/78 400, 218 499 331/101 606 400, . . .],

S
(1)
80 (t) = [0, 0, 0,−37 462 660 457/592 220 160, . . .].

The connection matrix between x = 0 and x = 1 comes out as

C(0, 1) =
[

1 0
A B

]
(44)

where 1 denotes the 4 × 4 identity matrix and 0 denotes the 4 × 4 zero matrix. The 4 × 4
identity matrix corresponds to the fact the four solutions S1, . . . , S4 are global solutions. The
two lower 4 × 4 blocks read

A =




a51 a52 −5

2
a54

0
2

3
π 0

1

32
a71 0 a73 0
a81 −π3 a83 a84


 , B =




0 0 0 − 1

2π3

0 0 − 1

2π
0

0 −π

2
0 0

−π3

2
0 0 0




with

a71 = π2

6
− 2422

225
, a73 = 5π2

6
+

2422

225
, a84 = −π2

32
− 1211

600
.

The ‘not yet recognized’ entries of this matrix read

a51 � −17.882 936 774 520, a52 � 7.767 669 067 696, a54 � 0.530 951 641 617,

a81 � −92.773 462 923 758, a83 � 77.887 072 991 056.

Here again, the block structure of the connection matrix relies on the factorization of L8

and on the ‘sequential’ building of the solutions. The block matrix B represents, specifically,
the connection between the solutions inherited from M2 at both points x = 0 and x = 1. This
fourth-order differential operator M2 in L8 (corresponding to χ̃ (4)) is structurally very similar
(see the remark at end of appendix B) to operator Y3 in L6 (χ̃ (3)). Similarly to the χ̃ (3) case, a
ferromagnetic (and anti-ferromagnetic) constant (see (48) below) is localized at the fifth line.

We have also computed the connection matrices14 (not given here) between the solutions
at x = 0 and, respectively, x = 4 (corresponding to Nickel’s non-physical singularities)
and x = ∞ (corresponding to the non-physical singularities s = ±i). Denoting by

14 The matching points are taken in the lower half-plane of the variable x.
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Mx=0(0),Mx=0(1), Mx=0(4) and Mx=0(∞), the monodromy matrices expressed in the same
x = 0 well-suited basis obtained with similar conjugation like (34), one obtains

Mx=0(∞) · Mx=0(4) · Mx=0(1) · Mx=0(0) = Id. (45)

This identity is valid irrespective of the still unknown constants.

6.2. Singular behaviour of χ̃ (4)

The particular physical solution corresponding to χ̃ (4) = χ̃ (2)/3 + �8 (see [10]) is given, in
terms of the basis chosen at the point x = 0, by

�8 = 1

384
· (

5S
(0)
1 − 5S

(0)
3 − 2S

(0)

5

)
. (46)

At the ferromagnetic, and anti-ferromagnetic, critical point x = 1, the solution can be deduced
from the above connection matrix and reads

�8 = − 1

384
(2a51 − 5) · S

(1)
1 − a52

192
· S

(1)
2 − a54

192
· S

(1)
4 +

1

384π3
· S

(1)
8 .

Here again, the above decomposition corresponds to an expansion at the point x = 1 of the
triple integral defining χ̃ (4).

From this solution, the singular part of χ̃ (4) reads (with t = 1 − x)

χ̃ (4)(singular, 1) = I−
4

t
+

1

384π3
S

(1)

5 · ln3(t) − 1

32π3

((
ln(2) − 35

24

)
S

(1)

5 − 35

24
S

(1)
60

)
· ln2(t)

+
1

8π3
·
((

ln(2)2 − 35

12
ln(2) +

107

144

)
· S

(1)

5

−
(

1

2
ln(2) − 35

48

)
· S(1)

60 +
1

16
S

(1)
70

)
· ln(t) +

1

48π
2F1(1/2,−1/2; 2; t) · ln(t).

(47)

The constant [1] I−
4 reads, in terms of the ‘not yet recognized’ numbers a52, a54,

I−
4 = 1

36π
+

a52

128
− a54π

24
� 0.000 025 448 511 0658 . . . . (48)

The first term on the right-hand side of (48) comes from χ̃ (2), as well as the last term in (47).
Similarly, the singular behaviour of the physical solution χ̃ (4) at the other singular points

can easily be obtained from the corresponding connection matrices (not given here). At the
singular point x = 4, the physical solution behaves like (with t = 4 − x)

χ̃ (4)(singular, 4) = − i · t13/2

210 · 32 · 5005

(
1 +

5

4
t +

261

272
t2 + · · ·

)
(49)

confirming the calculations in [7].
The singular behaviour of χ̃ (4) at the singular point x = ∞ reads (with t = 1/x)

χ̃ (4)(singular,∞) = −20i · t−1/2 · (
A0 + 3A1 · ln(t)

+ 3
(
(a1 − 4 ln(2)) · S∞

5 + S∞
60

) · ln2(t) + S∞
5 · ln3(t)

)
+

(−t)−1/2

36π

(
1 +

3t

4
2F1(1/2, 5/2; 2; t) · ln(−t) − 9πt

16

∞∑
n=0

bnt
n

)
(50)

Jon Borwein
Highlight
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with

A1 = 2

5
(2K − 1) · S∞

41 + (16 ln2(2) − 8a1 ln(2) + a2) · S∞
5 + 2(a1 − 4 ln(2)) · S∞

60 + 3S∞
70

A0 = 2π3

(
i52 + i

24

π2
(2K − 1)

)
S∞

2

/
5 −

(
− 48

π2
(2K − 1) + i(5 + 2r53)

)
π3S∞

3

/
5

− (64 ln3(2) − 48a1 ln2(2) + 12a2 ln(2) − a3) · S∞
5

+
6

5
(2K − 1) · S∞

40 + 3(16 ln2(2) − 8a1 ln(2) + a2) · S∞
60

+ 3(a1 − 4 ln(2)) · S∞
70 + S∞

80

bn = 	(n + 1/2)	(n + 5/2)

	(n + 2)	(n + 1)

(
�(n + 2) + �(n + 1) − �

(
n +

5

2

)
− �

(
n +

1

2

))

where K = 0.915 965 . . . is Catalan’s constant and the other parameters, constants and series
are a1 = 2/5 − π i, a2 = 1 − π2 − 4π i/5, a3 = −6π2/5 + 481 93/7500 + π(π2 − 3)i,
i52 = −0.740 250 494 . . . , r53 = 2.225 246 651 . . . , and

S∞
2 = 1 − 6t + 2t2

2(t − 1)
, S∞

3 = 3 − 12t + 8t2

8(t − 1)3/2

S∞
40 = [2, 41/2, 313/48, 3047/480, . . .],

S∞
41 = [1,−25/2,−61/8,−129/16, . . .],

S∞
5 = [0, 1, 7/10, 47/64, 981/1280, . . .],

S∞
60 = [0, 0, 161/300, 2039/4800, . . .],

S∞
70 = [0, 0, 1847/180 00, 2627/360 00, . . .],

S∞
80 = [0, 0, 0, 144 238 79/720 000 0, . . .].

The last bracket in (50) comes from χ̃ (2).
Having the singular part of χ̃ (4) at the ferromagnetic and anti-ferromagnetic critical points,

it is straightforward to obtain the asymptotic behaviour of the series coefficients. This time,
one needs the form of the coefficients in the expansion of ln3(1 − x) that we find to be15

ln3(1 − x) =
∞∑

n=3

(
−3

n
(�(n) + γ )2 +

π2

2n
− 3

n
�(1, n)

)
· xn (51)

where �(1, n) is the first derivative of �(n). Expanding �(n) and �(1, n) up to 1/n2 for
large values of n, one obtains the following asymptotic behaviour for the coefficients of the
χ̃ (4) series,

c(n) � I−
4 − ln2(n)

128π3n
+

ln(n)

128π3n2
− b1 ln(n)

64π3n
− b2

2304π3n
+

b1 − 1

128π3n2
+ · · ·

where

b1 = γ + 4 ln(2) − 35

6
,

b2 = 288 ln2(2) + 144γ ln(2) + 18γ 2 − 210γ − 840 ln(2) + 45π2 + 214.

15 An asymptotic form can be obtained using various packages available at http://algol.inria.fr/libraries/
software.html like the command ‘equivalent’ in gfun [24], see details in [25, 26].
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7. χ̃(1) + χ̃(3) versus χ̃ at scaling

Thus far we have discussed, in sections 4 and 6.2, the mathematical aspects of the solutions
to the Fuchsian differential equations for χ̃ (3) and χ̃ (4). However, the physics implications of
the solutions we have obtained call for some remarks near the physical critical points. Taking,
as an example, the ferromagnetic singularity for χ̃ (3), the sum of the first two n-particle terms
behave at τ � 0 as

χ̃ (1) + χ̃ (3) � 1 + I +
3

τ 2
− ln2(τ )

16π2
+

(
ln(2) − 23

24

)
· ln(τ )

4π2
+

11

48
+

3

8
I +

3

− 1

4π2

(
ln2(2) − 23

12
ln(2) +

14

144

)
+ · · · . (52)

The exact susceptibility, as reported in [16], yields for the normalized susceptibility χ̃ ,

χ̃ = s

(1 − s4)1/4
· χ = (τ +

√
1 + τ 2)−1/2

(1 + τ 2)1/8


c1τ

−2F+(τ ) +
τ−1/4

√
2

∞∑
p=0

∞∑
q=p2

b
(p,q)
+ · τ q lnp(τ )




(53)

where c1 = 1.000 815 260 . . . is given with some 50 digits in [15]. F+(τ ) and b
(p,q)
+ are given

in [15]. The constants 1 + I +
3 and c1 verify 1 + I +

3 + I +
5 = c1 with nine digits, I +

5 , corresponding
to χ(5), is the constant given in [1] (and with some 30 digits in [6]). Thus, and as suggested in
[1], the partial sums of the χ(n) would converge rapidly to the full χ . Furthermore, adding χ(3)

term has resulted in a series expansion that reproduces the first 24 terms of χ to be compared
with only eight first terms for χ(1) series.

However, equation (53) shows a τ−1/4 divergence as an overall factor to the logarithmic
singularities. This structure, absent in (52), could suggest, in the most pessimistic scenario,
that the n-particle sequence is perhaps useless in understanding scaling corrections and that
one should be cautious in accepting the conclusions of studies of higher field derivatives of the
susceptibility, based on similar n-particle representations [27, 28]. The same situation occurs
for the low-temperature regime when we compare the first two n-particle terms (χ̃ (2) and χ̃ (4))
with the full χ̃ at scaling16.

This observation raises several profound issues, which we do not address here. One is
how the logarithmic terms in the entire sum add up to make the τ−1/4 divergence be factored
out. If one assumes that the other χ̃ (2n+1) terms share the same singularity structure as χ̃ (3),
in particular the occurrence (in variable τ or s) of only integer critical exponents at the
ferromagnetic critical point, the τ−1/4 divergence, as an overall factor, implies the following
correspondence,

∞∑
n=1

N(n)∑
m=0

αn,m · Sn,m(τ ) lnm(τ) → τ−1/4 ·
∞∑

p=0

∞∑
q=p2

b
(p,q)
+ τ q lnp(τ )

with Sn,m(τ ) analytical at τ = 0 and αn,m numerical coefficients. N(n) is the maximum power
of logarithmic terms occurring in the solution around the ferromagnetic point of the differential
equation of χ̃2n+1. This correspondence requires probably a very particular structure in the
successive differential equations. Obtaining the differential equation for χ̃ (5) (or for χ̃ (6)),
and obtaining much larger series for the full susceptibility χ , will certainly help to guess
such a structure and understand the susceptibility of the two-dimensional Ising model which

16 For the leading amplitude, χ̃ (2) and χ̃ (4) give 1/12π + I−
4 � 1.000 9593 . . . /12π which is very close to

1.000 9603 . . . /12π for the full χ̃ [6].
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continues to be a treasure-trove of profound insights into both the mathematics and physics of
integrable systems.

Let us note that the phenomenon we have discussed may be more widespread than that
observed here. If so, a whole new chapter could be opened on field-theoretical expansions.
The challenging problem one faces here is to link linear and non-linear descriptions of
a physical problem, namely the description in terms of an infinite number of holonomic
(linear) expressions for a physical quantity of a non-linear nature. Actually, the latter is
‘Painlevé like’ since its series expansion can be obtained from a program of polynomial growth
which uses exclusively a quadratic finite difference double recursion generalizing the Painlevé
equations [15, 16]. The difficulty to link holonomic versus non-linear descriptions of physical
problems is typically the kind of problems one faces with the Feynmann diagram approach of
particle physics, but the susceptibility of the Ising model is, obviously, the simplest non-trivial
example to address such an important issue.

8. Conclusion

We have introduced a simple and very efficient method to calculate numerically, with an
arbitrary number of digits, the connection matrices between the independent solutions, defined
at two singular points, of differential equations of quite high orders. We have considered the
order 7, and 10, Fuchsian ODEs corresponding to the 3- and 4-particle contribution to the
magnetic susceptibility of the Ising model. The entries of the connection matrix between two
regular singular points have been obtained in the floating point form and most of them have
been recognized, particularly those that show up in the singular behaviour of the physical
solutions. They are expressed as polynomial, or algebraic, combinations of π , ln(2), . . . ,

radicals, and more involved numbers (not yet recognized) such as the ‘ferromagnetic constant’
(2). The method allows us to obtain the series expansions of the physical solutions χ̃ (3) (and
χ̃ (4)) around any other regular singular point, besides the already known series around w = 0.
We obtained, in this way, near each singular point all the dominant and subdominant singular
behaviours of the physical solutions. Such subdominant singular behaviour is certainly hard
to obtain from series analysis. At the newly found quadratic singularities of the differential
equation, we showed that the physical solution χ̃ (3) itself is not singular. Also note, at w = 1/4,
that the behaviour in (1 − 4w)−3/2 corresponding to the largest critical exponent for the ODE
is actually absent in the physical solution. Note the remarkable fact that the factorization of
differential operator L7 (and L10) associated with χ̃ (3) (respectively χ̃ (4)) shows clearly the
differential operator responsible for the non-physical singularities given in [6, 7] and the newly
found quadratic numbers [8]. In both cases (χ̃ (3) and χ̃ (4)), these non-physical singularities
are carried by the differential operator Z2 · N1 (respectively L25 · L12 · L3 · L0) occurring at
the right of L7 (respectively L10).

The physical solutions χ̃ (3) (and χ̃ (4)) being known as series around w = 0, the
growth behaviour of the corresponding series coefficients should be controlled by the singular
behaviour at the nearest singular points which are the ferromagnetic and anti-ferromagnetic
critical points in both cases (w = ±1/4 and x = 1). This growth is easily found from the
expansion around the ferromagnetic and anti-ferromagnetic points.

The connection matrices we have obtained allow us to relate the solutions around any
given singular point to a common (non-local) basis of solutions. In this respect, we have
obtained the exact expression of all the monodromy matrices, expressed in the same basis, and
we have seen that they are simple matrices with rational function entries. In a forthcoming
publication [14], we will give the whole structure of the differential Galois group for the two
previous Fuchsian differential equations.
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As far as the physics implications of the solutions are concerned, we have compared
the corrections to scaling at the ferromagnetic point given by the first two terms (χ(1) and
χ(3)) with the full χ . Qualitative difference is found raising profound issues on the n-particle
representation of the susceptibility. The same observation occurs for the anti-ferromagnetic
point, and also for the low-temperature regime.
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Note added in proof. After completion of the revised version of our manuscript we were told that, as a consequence
of the work of McCoy, Tracy and Wu, the two transcendental numbers I+

3 and I−
4 can actually be written in terms of

polylogarithms, namely the Clausen function Cl2 and of the Riemann zeta function, as follows:

I+
3 = 1

2π2
·
(

π2

3
+ 2 − 3

√
3 · Cl2

(π

3

))
, Cl2(θ) =

∞∑
n=1

sin(n θ)

n2

I−
4 = 1

16π3
·
(

4 π2

9
− 1

6
− 7

2
· ζ(3)

)
.

The derivation of these results has never been published but these results appeared in a conference proceedings [30].
We have actually checked that I+

3 and I−
4 we got from the calculations displayed in our paper as floating numbers

with respectively 450 digits and 400 digits accuracy are actually in agreement with the previous two formula. These
two results provide a clear answer to the question of how ‘complicated and transcendental’ some of our constants
occurring in the entries of the connection matrices can be. These extremely interesting results are not totally surprising
when one recalls the deep link between zeta functions, polylogarithms and hypergeometric series [31–34].

Appendix A

We give, in this appendix, the explicit expressions of the differential operators X1 and Z2 and
Y3. The order 1 differential operator X1 reads

X1 = d

dw
+

p0

p1
(A.1)

with

p1 = (−1 + w)(4w − 1)(1 + 2w)(4w + 1)(1 + 3w + 4w2)(1 − 3w − 18w2 + 104w3 + 96w4)

× (1 − 7w − 4w2 − 47w3 + 36w4 + 280w5 + 160w6 + 256w7)

p0 = w · (−58 + 909w + 3284w2 − 247 11w3 − 723 52w4 + 181 016w5

+ 125 176 8w6 + 285 288 0w7 + 145 459 2w8 − 114 556 16w9

− 317 122 56w10 − 204 185 60w11 + 208 404 48w12 + 349 634 56w13

+ 301 465 60w14 + 157 286 40w15).

The order 2 differential operator Z2 is

Z2 = 1

p2

2∑
n=0

pn · d

dwn
(A.2)

Jon Borwein
Highlight
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where the polynomials pi , now, read

p2 = w · (4w − 1)2(4w + 1)(1 + 3w + 4w2)(−1 + w)(1 + 2w)

× (1 − 3w − 18w2 + 104w3 + 96w4)

p1 = (4w − 1)(1 − 6w − 111w2 − 108w3 + 1080w4 − 4488w5

− 403 68w6 − 942 72w7 − 483 84w8 + 727 04w9 + 491 52w10)

p0 = 4 + 48w − 276w2 − 1520w3 − 3192w4 − 4224w5 − 715 52w6

− 307 200w7 − 239 616w8 + 983 04w9 + 983 04w10.

The order 3 differential operator Y3 is given by

Y3 = 1

p3

3∑
n=0

pn · dn

dwn
(A.3)

where the polynomials pi now read

p3 = w2 · (w − 1)(1 + 2w)(1 + 3w + 4w2)(4w − 1)3(4w + 1)3

× (96w4 + 104w3 − 18w2 − 3w + 1)3(1 + 19w − 368w2 − 3296w3

+ 178 82w4 + 272 599w5 + 160 900w6 − 697 920 8w7 + 755 080 0w8

+ 203 094 872w9 − 278 920 192w10 − 395 981 430 4w11 − 211 544 742 4w12

+ 208 947 294 72w13 + 397 197 281 28w14 + 205 160 980 48w15

+ 256 763 363 328w16 − 327 065 010 176w17 − 881 022 776 115 2w18

+ 414 933 057 536w19 + 116 411 936 538 624w20 + 296 827 723 186 176w21

+ 317 648 030 138 368w22 + 179 148 186 189 824w23

+ 194 933 533 179 904w24 + 112 931 870 081 024w25

− 552 461 643 284 48w26 + 110 638 357 544 96w27 + 151 182 848 819 2w28)

p2 = w · (4w − 1)2(4w + 1)2(96w4 + 104w3 − 18w2 − 3w + 1)2

× (6 + 102w − 2018w2 − 23 962w3 + 242 904w4 + 2 575 633w5

− 12 389 010w6 − 178 413 527w7 + 80 727 412w8 + 6 252 221 348w9

+ 2 456 938 016w10 − 178 278 888 104w11 − 103 902 989 696w12

+ 3 814 815 965 856w13 + 1 524 977 514 176w14 − 67 400 886 678 400w15

− 74 115 827 788 032w16 + 797 710 351 468 032w17 + 2 324 376 661 856 256w18

− 1 561 280 104 050 688w19 − 16 314 064 973 299 712w20

− 27 005 775 986 622 464w21 − 40 259 640 226 480 128w22

+ 35 764 751 009 841 152w23 + 1 007 304 244 270 727 168w24

+ 1 460 771 505 523 654 656w25 − 13 359 756 413 056 843 776w26

− 63 988 213 537 189 134 336w27 − 116 684 614 339 309 600 768w28

− 75 710 498 024 932 245 504w29 + 57 121 462 326 803 824 640w30

+ 132 479 693 600 191 414 272w31 + 111 232 702 128 767 107 072w32

+ 106 152 703 871 500 156 928w33 + 83 508 376 521 540 632 576w34

+ 10 084 606 300 752 183 296w35 − 9 404 395 631 251 816 448w36

+ 2 682 738 003 029 262 336w37 + 297 237 575 406 452 736w38)
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p1 = 2 · (4w − 1)(4w + 1)(96w4 + 104w3 − 18w2 − 3w + 1)

× (−3 − 25w + 1013w2 + 7893w3 − 353 904w4 − 1 562 671w5

+ 43 285 825w6 + 192 457 911w7 − 2 690 351 207w8 − 15 077 420 736w9

+ 94 510 776 436w10 + 707 838 800 508w11 − 2 327 528 107 216w12

− 23 421 365 465 744w13 + 45 755 890 012 000w14 + 568 028 144 875 200w15

− 824 814 656 530 816w16 − 10 390 722 028 797 440w17

+ 12 438 134 957 505 536w18 + 145 637 031 330 319 360w19

− 127 616 737 495 506 944w20 − 1 708 173 874 007 113 728w21

− 52 355 400 373 420 032w22 + 15 741 676 181 476 802 560w23

+ 24 085 046 332 129 804 288w24 − 57 977 682 482 294 161 408w25

− 168 033 877 030 234 750 976w26 − 56 941 336 876 602 621 952w27

− 426 707 803 148 891 717 632w28 − 200 805 832 817 071 095 808w29

+ 8 716 841 486 700 848 873 472w30 − 6 642 009 916 749 838 811 136w31

− 192 590 979 400 145 399 971 840w32 − 564 260 086 660 360 537 374 720w33

− 585 770 764 250 229 243 904 000w34 + 235 172 208 485 444 226 121 728w35

+ 1 203 159 617 695 281 059 987 456w36 + 1 323 272 087 085 206 269 329 408w37

+ 997 072 075 164 663 150 542 848w38 + 789 138 181 323 007 857 786 880w39

+ 388 137 877 034 203 055 390 720w40 + 4 946 627 729 914 186 432 512w41

− 26 947 297 377 570 617 556 992w42 + 10 614 515 947 351 012 540 416w43

+ 998 718 253 365 681 192 960w44)

p0 = 2w · (−348 + 2768w + 248 784w2 − 358 217w3 − 50 461 860w4

+ 16 394 998w5 + 5 283 255 372w6 + 3 911 764 831w7 − 329 364 073 508w8

− 572 985 025 996w9 + 13 847 002 317 264w10 + 38 091 073 842 520w11

− 437 846 238 222 272w12 − 1 682 624 909 395 232w13

+ 10 892 230 218 721 408w14 + 52 959 188 332 189 824w15

− 214 291 413 015 639 808w16 − 1 200 734 422 407 578 112w17

+ 3 319 489 124 092 462 080w18 + 20 066 023 020 568 346 624w19

− 38 248 948 302 383 529 984w20 − 254 480 826 931 185 762 304w21

+ 261 281 404 771 497 082 880w22 + 2 480 194 764 802 183 397 376w23

+ 148 352 203 759 030 894 592w24 − 19 049 822 668 612 433 870 848w25

− 29 328 532 357 149 024 583 680w26 + 103 410 036 785 394 615 320 576w27

+ 391 034 390 334 579 595 542 528w28 + 11 096 790 708 133 489 016 832w29

− 1 530 120 948 962 096 058 466 304w30 − 2 868 669 407 093 825 701 150 720w31

− 6 126 661 019 209 831 555 268 608w32 + 2 808 943 911 875 675 603 075 072w33

+ 40 458 568 379 798 955 017 371 648w34 − 169 712 327 643 359 793 079 386 112w35

−1092 943 871171 162 347 998 806 016w36−1781 375 524 629 107 822 238 367 744w37

+ 250 471 471 742 289 487 729 786 880w38 + 4 679 788 548 889 591 917 580 386 304w39

+7 101 176 295 364 126 941 625 974 784w40+5 918 768 536 906 007 398 653 624 320w41

+4 083 406 571 846 803 705 271 681 024w42+2 567 747 434 748 530 216 944 009 216w43
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+ 846 246 487 598 480 459 424 595 968w44 − 49 595 159 800 068 478 383 161 344w45

− 37 040 268 890 013 610 134 208 512w46 + 21 784 239 691 989 525 951 676 416w47

+ 1 753 178 556 765 355 785 584 640w48). (A.4)

Appendix B. Solutions of the differential operator Y3

Considering the critical exponents at the regular singular points, as well as the formal solutions
of differential operator Y3, one can make the following remarks. The roots of the polynomial of
degree 28 in polynomial p3 (see (A.4)) are apparent singularities. The roots of the polynomial
of degree 4 in one of the factors of the same polynomial p3 are not apparent singularities.
While the formal solutions near w = 0, w = ±1/4 and w = ∞ have one Frobenius solution
and two logarithmic solutions, the formal solutions near the other regular singular points
are free of logarithmic solutions. The critical exponents at w = 1, w = −1/2, roots of
1 + 3w + 4w2 = 0, and roots of 1 − 3w − 18w2 + 104w3 + 96w4 = 0, are respectively
(−1, 0, 1), (−1, 0, 1), (−1, 0, 1) and (−1, 1, 2). This leads us to look for the solutions of the
third-order differential operator Y3 as a linear combination of powers of elliptic integrals with
a common factor ‘taking care’ of the non-logarithmic singularity behaviour of the singular
points.

Defining

K(x) =2 F1(1/2, 1/2; 1; x), E(x) =2 F1(1/2,−1/2; 1; x)

and

s(w) = w2 · (1 − 16w2)3(1 + 2w)(1 − w)(1 + 3w + 4w2)(1 − 3w − 18w2 + 104w3 + 96w4)

one obtains the three independent solutions of the differential operator Y3 as

S1(Y3) = 1

s(w)
· (P1 · K2(16w2) + P2 · E2(16w2) + P3 · K(16w2)E(16w2))

S2(Y3) = 1

s(w)
· (P4 · K2(1/16w2) − 16w2P2 · E2(1/16w2)

+ P5 · K(1/16w2)E(1/16w2))

S3(Y3) = 1

s(w)
· ((P1 + P2 + P3) · K2(1 − 16w2) + P2 · E2(1 − 16w2)

− (2P2 + P3) · K(1 − 16w2)E(1 − 16w2))

with

P4 = − P1

16w2
− (1 − 16w2)2

16w2
· P2 − 1 − 16w2

16w2
· P3,

P5 = −2(1 − 16w2) · P2 − P3

where the three polynomials P1, P2 and P3 read

P1 = −(1 + 4w)(1 − 5w − 69w2 + 537w3 + 2964w4 − 4100w5

− 46 816w6 − 74 688w7 + 230 656w8 + 647 680w9 + 475 136w10

− 8192w11 + 720 896w12)

P2 = −1 + 5w + 25w2 − 9w3 − 2408w4 − 17 460w5 − 19 696w6

+ 28 800w7 − 3328w8 − 62 464w9 − 36 864w10

P3 = 2 · (1 − 3w − 65w2 + 143w3 + 3888w4 + 15 144w5 − 10 624w6 − 172 416w7

− 241 536w8 + 111 616w9 + 282 624w10 + 180 224w11 + 98 304w12).
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Remark. Let us note the very close similarity between the differential operator Y3, occurring
at the left of differential operator L6 (see (7)) for χ̃ (3), and the differential operator M2 (see
(42)) occurring at the left of differential operator L8 for χ̃ (4). For this order 4 differential
operator M2, we have been able, using the same ansatz, to obtain in the closed form three of
the four solutions, also expressed as a linear combination of products of elliptic integrals. Note
that, setting λ = 16w2, one can detect in the solutions of Y3 (and also in the three solutions of
M2 we have found) the structure of �3 permutation group [29], λ, 1/λ, 1 − λ, 1 − 1/λ, etc.

Appendix C. Connection matrices between w = 0 and w = −1/4, w = ∞
C.1. The connection matrix between w = 0 and w = −1/4

The basis of solutions at the anti-ferromagnetic critical point w = −1/4 are chosen as follows
(with x = 1 + 4w),

S
(−1/4)

1 (x) = S(N1)(x),

S
(−1/4)

2 (x) = [1, 0, 1/10,−87/700,−313/1680, . . .],

S
(−1/4)

3 (x) = [0, 1,−17/10,−23/25,−1/30, . . .],

S
(−1/4)

4 (x) = [1,−5/2,−3/8, 5/16, 83/512, . . .],

S
(−1/4)

5 (x) = S
(−1/4)

4 (x) · (ln(x/8) + 6) + S
(−1/4)

50 (x)

S
(−1/4)

6 (x) = S
(−1/4)

4 (x) · (ln2(x/8) + 12 ln(x/8) + 23264/315)

+ 2S
(−1/4)

50 (x) · (ln(x/8) + 6) + S
(−1/4)

60 (x)

with

S
(−1/4)

50 (x) = [0, 97/6, 553/240,−2339/672,−1 678 457/645 120, . . .],

S
(−1/4)

60 (x) = [0, 0, 0, 85 997/18 000, 8 450 503/1 814 400, . . .].

Here again, an optimal choice of the components is made in order to remove logarithms and
to have as many zeros as possible in the entries of the matrix. The same method of matching
the series solutions at a half-way point between w = 0 and w = −1/4, gives

C(0,−1/4) =




1 0 0 0 0 0

−2 r22 r23 0 0 0

−2π i r32 + r22π i r33 + r23π i 0 0 0

6
1

π
i52

1

π
i53 0 0

1

8π2

5

2
+ 6π i a52 a53 0

1

16

1

8π
i

−23

8
− 17π2

3
+ 5π i a62 a63

π2

32

π

8
i −1

8




(C.1)

with

r22r33 − r23r32 = 25/12288

a52 = −3r32 − 5

4
r22 + i52i, a53 = −3r33 − 5

4
r23 + i53i

a62 =
(

25

16
− 2π2

3
− 5π

2
i

)
r22 −

(
5

2
+ 6π i

)
r32 − i52π
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a63 =
(

25

16
− 2π2

3
− 5π

2
i

)
r23 −

(
5

2
+ 6π i

)
r33 − i53π

and where17

r22 � −0.059 050 961 331, r23 � −0.086 431 902 55,

r32 � 0.163 138 242 313 1, i52 � −1.839 621 665 835,

i53 � −0.015 467 563 102.

C.2. The connection matrix between w = 0 and w = ∞
The bases of solutions at the singular point w = ∞ are chosen as follows (with x = 1/w),

S
(∞)
1 (x) = S(N1),

S
(∞)
2 (x) = [1, 1, 7/16, 1/16, 7/256, . . .],

S
(∞)
3 (x) = (ln(x/4) − 2/3) · S

(∞)
2 (x) + S

(∞)
30 (x),

S
(∞)
4 (x) = [0, 1, 0, 1/32,−9/512, . . .],

S
(∞)

5 (x) = (ln(x/16) + a1) · S
(∞)
4 (x) + S

(∞)

50 (x),

S
(∞)
6 (x) = (ln2(x/16) + 2a1 ln(x/16) + a2) · S

(∞)
4 (x) + 2(ln(x/16) + a1) · S

(∞)

50 (x) + S
(∞)
60 (x)

(C.2)

with

a1 = −5 − π

2
i, a2 = −π2

4
+

379

11
+ 5π i,

S
(∞)
30 (x) = [2/3, 1/6, 1/24,−1/96, 7/768, . . .],

S
(∞)

50 (x) = [0, 0,−3/2, 3/64,−107/512,−23113/491520, . . .],

S
(∞)
60 (x) = [0, 0, 0, 93/44,−80891/13516, 105811/4055040, . . .].

The connection matrix reads

C(0,∞) =




1 0 0 0 0 0

1 − 1

16
− 3

16π
i 0 0 0

−π i 0 − 1

16
0 0 0

−11 + y41i x42 − 1

π
i

2

π2
− 15

16π
i 0 0

1

4π2

a51 a52 − 9

16
− 49

64π
i 0

1

16
− 1

8π
i

a61 a62 −11

32
+

5π

16
i − 75

256π
i

π2

64
− π

16
i − 1

16




(C.3)

where
x42 � −1.534 248 223 197, y41 � −22.932 479 960 454,

a51 = −5

4
+

π

2
y41 + 7π i, a52 = −11

64
− π

2
x42i − π

32
i,

a61 = 29

16
+

16π2

3
− π2

4
iy41 +

5π

2
i, a62 = − 25

256
− 7π2

192
− π2

4
x42.

17 The numbers rij and iij are peculiar to each connection matrix.
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Appendix D

D.1. Basis of solutions for w = 1, w = −1/2 and 1 + 3w + 4w2 = 0

The basis near w = 1 is (with x = 1 − w)

S
(1)
1 (x) = S(N1)(x),

S
(1)
2 (x) = [0, 0, 0, 1, 65/24, 383/72, . . .],

S
(1)
3 (x) = S

(1)
2 (x) · (ln(x/24) + 2666/75) + S

(1)
30 (x),

S
(1)
4 (x) = [0, 1, 0, 0, 0,−213 149 176 769/914 630 737 500, . . .],

S
(1)

5 (x) = [0, 0, 1, 0, 0, 806 017 240 807/426 827 677 500, . . .],

S
(1)
6 (x) = [0, 0, 0, 0, 1, 555 108 887/158 084 325, . . .],

with

S
(1)
30 (x) = [0, 96/5, 628/25, 0,−812 657/18 000, . . .].

The basis near w = −1/2 reads (with x = 1 + 2w)

S
(−1/2)

1 (x) = S(N1)(x),

S
(−1/2)

2 (x) = [0, 0, 0, 1, 8/3, 46/9, 247/27, . . .],

S
(−1/2)

3 (x) = S
(−1/2)

2 (x) · ln(x) + S
(−1/2)

30 (x),

S
(−1/2)

4 (x) = [0, 1, 0, 0, 0,−55 489/60 345, . . .],

S
(−1/2)

5 (x) = [0, 0, 1, 0, 0, 159 977/80 460, . . .],

S
(−1/2)

6 (x) = [0, 0, 0, 0, 1, 1492/447, . . .]

where

S
(−1/2)

30 (x) = [0, 3/4, 7/8, 0,−95/144, . . .].

The basis near w1 = −3/8 + i
√

7/8 root of 1 + 3w + 4w2 is (with x = 1 − w/w1)

S
(w1)
1 (x) = S(N1)(x),

S
(w1)
2 (x) = [0, 1, 49/64 − 61/(64

√
7)i, 655/1024 − 747/(1024

√
7)i, . . .],

S
(w1)
3 (x) = S

(w1)
2 (x) · ln(x) + S

(w1)
30 (x), S

(w1)
4 (x) = [0, 0, 1, 0, 0, . . .],

S
(w1)

5 (x) = [0, 0, 0, 1, 0, . . .], S
(w1)
6 (x) = [0, 0, 0, 0, 1, . . .]

with

S
(w1)
30 (x) = [0, 0, 657/896 + 61/(128

√
7)i, 41 203/43 008 + 1991/(6144

√
7)i, . . .].

D.2. Connection matrices for w = 1, w = −1/2 and 1 + 3w + 4w2 = 0

For the singular point w = 1, the connection matrix with w = 0 reads

C(0, 1) =
[

A 0
B C

]
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where
[A

B

]
and [C] read



1 0 0

4 + i21i −
√

3

144
i −

√
3

144π

−2π i −π
√

3

216
0

−4 − 4

π
i51 − 5

π
i21 + i41i r42 +

4

π
r52i +

√
3

48
i −7

√
3

48π

5 − 2

π
i61 +

(
2π

3
+

25

8π

)
i21 + i51i r52 +

2

π
r62i − 25

√
3

1728
i

5
√

3

576π
+

√
3

18
i

13

2
+

π2

3
+ i61i r62 − π2

√
3

432
i − 25

√
3

2304
i

11π
√

3

432
− 25

√
3

2304π







r44 + i44i r45 + i45i r46 + i46i
π

4
i44 + i54i

π

4
i45 + i55i

π

4
i46 + i56i

π

2
i54

π

2
i55

π

2
i56




where
i21 � 1.838 093 775 180, i41 � 4.136 525 226 980, i51 � −8.138 989 276 03

i61 � 20.743 660 887 04, r42 � 2.542 631 644 752, r52 � −0.011 842 088 97

r62 � −4.871 087 773 44, r44 � 1.622 875 171 987, r45 � 1.954 781 507 112

r46 � −3.513 874 999 53, i44 � 0.158 271 118 920, i54 � −2.138 739 670 59

i45 � 0.041 310 289 307, i55 � −2.467 598 547 30, i46 � −0.028 730 643 96

i56 � 4.392 293 882 282,

These numbers are such that

i46i55r44 + r45i56i44 − r46i55i44 − i46r45i54 + i45r46i54 − i45i56r44 = − 468 398

18 984 375π2
.

The connection matrix between w = 0 and the singular point w = −1/2, reads

C(0,−1/2) =
[

A 0
B C

]

where
[A

B

]
and [C] read



1 0 0

−2 − 3 ln(2)

π
i r22 −

√
3

9π

−π i + 3 ln(2) −π
√

3

54
+ πr22i

−√
3

9
i

r41 + i41i r42 + i42i
11

√
3

9π

r51 + i51i r52 + i52i
5
√

3

36π
+

7
√

3

9
i

r61 + i61i r62 + i62i −25
√

3

144π
− 13π

√
3

27
+

5
√

3

18
i




,
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

r44 + i44i r45 + i45i r46 + i46i

−3π

4
i44 + i54i −3π

4
i45 + i55i −3π

4
i46 + i56i

r64 − π2

2
i44i r65 − π2

2
i45i r66 − π2

2
i46i




where

r22 � −0.025 399 597 75, r41 � 6.805 351 589 429, r51 � 7.203 810 787 172,

r61 � −8.757 986 516 23, i41 � −5.235 292 153 52, i51 � 12.149 726 439 02,

i61 � 7.505 979 318 469, r42 � 0.512 271 205 543, r52 � −0.754 975 549 89,

r62 = 2.232 400 538 972, i42 � 0.462 196 540 081, i52 � 0.143 220 115 658,

i62 � −0.181 954 276 23, r44 � −0.168 129 055 3, r45 � −0.002 706 580 55,

r46 � −0.003 230 432 90, i44 � −0.143 012 924 13, i45 � 0.690 508 507 395,

i46 � −1.263 549 266 77, i54 � −0.348 445 547 01, r64 � 0.812 327 323 812,

i55 � −0.501 086 485 04, r65 � 2.347 957 990 666, i56 � 1.132 041 888 142,

r66 � −5.350 563 266 40.

The connection matrix between w = 0 and the singular point w1 = −3/8 + i
√

7/8 root
of 1 + 3w + 4w2 = 0, reads

C(0, w1) =
[

A 0
B C

]

where
[A

B

]
and [C] read




1 0 0

r21 − 3

2π
r31i r22 − 3

2π
r32i +

275
√

7

16384
i a

r31 +
2π

3
r21i +

2π

3
i r32 +

2π

3
r22i − 623π

24576
i

2π

3
ia

r41 + i41i r42 + i42i −1

3
a

r51 + i51i r52 + i52i

(
−5

4
+

2π

3
i

)
a

r61 + i61i r62 + i62i

(
25

16
− π2 − 5π

3
i

)
a





r44 + i44i r45 + i45i r46 + i46i

r54 + i54i r55 + i55i r56 + i56i
r64 + i64i r65 + i65i r66 + i66i




where

a = 825
√

7 − 1869i

16 384π
,
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r21 � −0.309 839 631 51, r31 � 1.386 294 361 11, r22 � −0.079 967 467 93,

r32 � 0.044 743 829 620, r41 � 4.703 166 105 99, i41 � −5.102 032 209 92,

r42 � 0.028 522 637 766, i42 � 0.037 312 675 44, r51 � 1.404 170 417 754,

i51 � 10.771 852 695 95, r52 � 0.256 542 990 02, i52 � −0.036 953 282 52,

r61 � −6.988 982 509 54, i61 � −17.585 497 074, r62 � −0.183 427 057 50,

i62 � 1.339 914 984 659, r44 � 0.003 948 320 42, i44 � 0.043 931 830 095,

r45 � −0.027 162 803 32, i45 � −0.090 075 389 9, r46 � 0.070 134 204 478,

i46 � 0.050 869 745 772, r54 � −0.212 294 769 9, i54 � 0.033 562 029 788,

r55 � 0.496 361 798 471, i55 � 0.004 559 664 93, r56 � −0.368 676 471 37,

i56 � 0.040 697 038 977, r64 � −0.127 940 761 2, i64 � −0.683 828 600 60,

r65 � −0.147 391 270 07, i65 � 1.645 961 232 66, r66 � 0.189 914 623 980,

i66 � −1.294 833 256 56.

Appendix E. Monodromy matrices in the w = 0 basis

The monodromy matrix around w = 0 expressed in terms of its own (w = 0) well-suited
basis is given in (33).

The monodromy matrix around w = −1/2, expressed in terms of the (w = 0) well-
suited basis, after a conjugation similar to (34), and thus using the previously given connection
matrices, reads in terms of α and 
,

4α2 · Mw=0(−1/2)(α,
) =
[

A 0
B C

]
where

[
A
B

]
=




4α2 0 0
48α
 4α (12
 + α) −96


24
α2 24
α2 4 (α − 12
) α

−528α
 −528α
 1056


−12 (14α + 5) α
 −12 (14α + 5) α
 24 (14α + 5) 


−αa
 −αa
 2
a




with a = (−75 + 52α2 + 60α) and [C] = 4α2 · Id(3 × 3).
The monodromy matrix around w = 1/4, expressed in terms of the (w = 0) well-suited

basis reads

24α4 · Mw=0(1/4)(α,
) =
[

A 0
B C

]

where
[A

B

]
and [C] read, respectively,



−24α4 0 0
−48α4 24α4 −144α2


0 0 24α4

−48(5α4 + 8
2 + 8
2α2) 32(4
α2 − 75
 − 15α2)
 48(9α2 + 80
)


12(5α2 + 4
 + 4
α2)α2 4(75 − 4α2)α2
 −300α2


−(87 + 8α2)α4 0 3(4α2 − 75)α2





,
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and 
24α4 −384α2
 1536
2

0 24α4 −192α2


0 0 24α4


 .

The monodromy matrix around w = −1/4, expressed in terms of the (w = 0) well-suited
basis reads

12α4 · Mw=0(−1/4)(α,
) =
[

A 0
B C

]

where
[A

B

]
and [C] read, respectively,



−12α4 0 0
48α4 12α4 0
24α5 0 12α4

a41 a42 192
(10
 − 3α2)

a51 a52 48α
(−5α + 20
 − 6α2)

a61 a62 48α2
(−5α + 10
 − 3α2)




,

with

a41 = −144α4 − 192
2 − 192
2α2,

a42 = −16
(60α
 + 75
 + 8
α2 − 18α3 + 15α2),

a51 = −12α(5α3 + 6α4 + 8
2 + 8
2α2 − 2α
 − 2α3
),

a52 = −2α
(300
 + 32
α2 + 240α
 − 80α3 − 75α),

a61 = −α2(−69α2 + 60α3 + 34α4 + 48
2 + 48
2α2 − 24α
 − 24α3
),

a62 = −2α2
(150
 − 30α2 + 16
α2 + 120α
 − 44α3 − 75α),

and 
 12(α + 4
)2α2 −192(α + 4
)α
 768
2

24α3
(α + 4
) −12α2(−α2 + 32
2) 96(−α + 4
)α


48α4
2 48(α − 4
)α3
 12(−α + 4
)2α2


 .

The monodromy matrix around w = ∞, expressed in terms of the w = 0 well-suited
basis reads

24α4 · Mw=0(∞)(α,
) =
[

A 0
B C

]

where
[A

B

]
and [C] read, respectively,



24α4 0 0
−288α3
 −24α3(−α + 6
) −864
α2

48α4
 24α4
 24α3(α + 6
)

a41 a42 96(−21α2 + 160
)


a51 a52 −120(−6α2 − α + 32
)α


a61 a62 6(20α − 225 − 36α2 + 160
)α2





with

a41 = 96(α3 + 16
α2 − 16
)
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a42 = 16(−33α3 − 60α2 + 240α
 + 8
α2 − 600
)
,

a51 = −24(2α3 − 15α2 − 4α + 16
α2 − 16
)α
,

a52 = −4(−40α3 − 45α2 − 150α + 240α
 + 8
α2 − 600
)α
,

a61 = 6(−20α2 − 83α + 4α3 + 16
α2 − 16
)α2
,

a62 = (−525α − 44α3 + 240α
 + 8
α2 − 600
)α2
,

and 
 24(−α + 4
)2α2 768
(−α + 4
)α 6144
2

−24α3
(−α + 4
) −24α2(−α2 + 32
2) −384α
(α + 4
)

24α4
2 48α3
(α + 4
) 24α2(α + 4
)2


 .
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[23] van der Waal A 2002 Lamé Equations with finite monodromy Thesis Universiteit Utrecht
(http://www.library.uu.nl/digiarchief/dip/diss/2002-0530-113355/full.pdf)

[24] Mgfun’s project http://algo.inria.fr/chyzak/mgfun.html gfun—Generating Functions Package (see gfun in)
http://algo.inria.fr/libraries

[25] Salvy B 1991 Asymptotique automatique et fonctions génératrices PhD Thesis Ecole Polytechnique
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