

Available online at www.sciencedirect.com

SCIENCE DIRECT.

J. Math. Anal. Appl. 293 (2004) 285-292

Journal of
MATHEMATICAL
ANALYSIS AND
APPLICATIONS

www.elsevier.com/locate/jmaa

A one-sided Tauberian theorem for the Borel summability method ☆

David Borwein a,* and Werner Kratz b

a Department of Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7
b Abteilung Mathematik, Universität Ulm, D-89069 Ulm, Germany

Received 4 September 2003 Submitted by K.A. Ames

Abstract

We establish a quantitative version of Vijayaraghavan's classical result and use it to give a short proof of the known theorem that a real sequence (s_n) which is summable by the Borel method, and which satisfies the one-sided Tauberian condition that $\sqrt{n}(s_n - s_{n-1})$ is bounded below must be convergent.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Tauberian; Borel summability

1. Introduction and the main results

Suppose throughout that (s_n) is a sequence of real numbers, and that $s_n = \sum_{k=0}^n a_k$. Let $\alpha > 0$, let

$$p_{\alpha}(x) := \sum_{k=0}^{\infty} \frac{x^k}{(k!)^{\alpha}},$$

and let

$$\sigma_{\alpha}(x) := \frac{1}{p_{\alpha}(x)} \sum_{k=0}^{\infty} \frac{s_k}{(k!)^{\alpha}} x^k \quad \text{for all } x \in \mathbb{R}.$$

^{*} This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

^{*} Corresponding author.

E-mail addresses: dborwein@uwo.ca (D. Borwein), kratz@mathematik.uni-ulm.de (W. Kratz).

Recall that the Borel summability method B is defined as follows:

$$s_n \to s(B)$$
 if $\sum_{k=0}^{\infty} \frac{s_k}{k!} x^k$ is convergent for all $x \in \mathbb{R}$

and

$$\sigma_1(x) \to s$$
 as $x \to \infty$.

For an inclusion result concerning the summability method based on $\sigma_{\alpha}(x)$ see [3, p. 29]. Our aim is to give a short proof of the following well-known Tauberian theorem for the Borel method [6, Theorem 241] and [4,9].

Theorem 1. If $s_n \to s(B)$, and if $\sqrt{n} a_n \ge -c$ for some $c \ge 0$ and all $n \in \mathbb{N}$, then $s_n \to s$.

Our proof depends largely on the next result which is an improvement of Vijayaraghavan's theorem [6, Theorem 238]; see also [8,9] in that it specifies bounds in its conclusion.

Theorem 2. Let $\alpha > 0$, and suppose that

$$\liminf_{n \to \infty} \sqrt{n} \, a_n \geqslant -c_1, \quad \text{where } 0 \leqslant c_1 < \infty, \tag{1}$$

and

$$\lim_{n \to \infty} \sup_{\alpha \to \infty} \left| \sigma_{\alpha} \left(n^{\alpha} \exp\left(\frac{\alpha}{2n}\right) \right) \right| = c_2 < \infty. \tag{2}$$

Then

$$\limsup_{n \to \infty} |s_n| \leqslant c_3 \left(c_2 + c_1 \left(2\delta + \frac{1}{\delta^2 \alpha \sqrt{2\pi \alpha}} \right) \right) \tag{3}$$

for all

$$\delta > \frac{2\sqrt{2}}{\sqrt{\alpha\pi}}$$
 with $c_3 = \left(1 - \frac{2\sqrt{2}}{\delta\sqrt{\alpha\pi}}\right)^{-1}$.

2. An auxiliary result

We require the following lemma for our proofs.

Lemma. Let $\alpha > 0$, $\delta > 0$, and let

$$c_n(x) := \frac{1}{p_{\alpha}(x)} \cdot \frac{x^n}{(n!)^{\alpha}} \quad for \, n \in \mathbb{N}_0.$$

Moreover, suppose that $M, N \in \mathbb{N}$, $x := y^{\alpha}$ with

$$y = y(n) := n \exp\left(\frac{1}{2n}\right), \quad M = M(n), \quad N = N(n) \quad for \ n \in \mathbb{N},$$

and define

$$\Sigma_1 := \sum_{k=0}^{M} c_k(x), \qquad \Sigma_2 := \sum_{k=N}^{\infty} c_k(x), \quad and \quad \Sigma_3 := \sum_{k=N}^{\infty} \sum_{\nu=N}^{k} \frac{c_k(x)}{\sqrt{\nu}}.$$

Then

(i)
$$\limsup_{M \to \infty} \Sigma_1 \leqslant \frac{1}{\delta \sqrt{2\pi\alpha}}$$
 whenever $y \geqslant M + \delta \sqrt{M}$;

(ii)
$$\limsup_{n\to\infty} \Sigma_2 \leqslant \frac{1}{\delta\sqrt{2\pi\alpha}}$$
 whenever $N \geqslant y + \delta\sqrt{y}$;

(iii)
$$\limsup_{n\to\infty} \Sigma_3 \leqslant \frac{1}{\delta^2 \alpha \sqrt{2\pi \alpha}}$$
 whenever $N \geqslant y + \delta \sqrt{y}$.

Proof. First, note that $c_k(x)$ increases with k for $0 \le k \le y = x^{1/\alpha}$ and decreases for $k \ge y$, and that, for $0 \le k \le m \le y$,

$$c_k(x) = c_m(x) \frac{(m(m-1)\dots(k+1))^{\alpha}}{x^{m-k}} \leqslant c_m(x) \left(\frac{m^{\alpha}}{x}\right)^{m-k} \leqslant c_m(x).$$

Hence, for $y \ge M + \delta \sqrt{M}$ with M large enough to ensure $M \le n \le y$, we have that

$$\Sigma_1 \leqslant c_M(x) \sum_{\nu=0}^{\infty} \left(\frac{M^{\alpha}}{x}\right)^{\nu} \leqslant c_n(x) \left(1 - \frac{M^{\alpha}}{y^{\alpha}}\right)^{-1},$$

where

$$\lim_{n \to \infty} c_n(x) \sqrt{n} = \sqrt{\frac{\alpha}{2\pi}},\tag{4}$$

sinc

$$x = n^{\alpha} \exp\left(\frac{\alpha}{2n}\right),$$

by [2, Lemma 4.5.4], [5, p. 55] or [7]. Moreover

$$\frac{1}{\sqrt{n}} \left(1 - \frac{M^{\alpha}}{y^{\alpha}} \right)^{-1} \leqslant \frac{1}{\sqrt{M}} \left(1 - \frac{M^{\alpha}}{(M + \delta\sqrt{M})^{\alpha}} \right)^{-1}$$

$$= \frac{1}{\sqrt{M}} \left(1 - (1 + \delta M^{-1/2})^{-\alpha} \right)^{-1} \to \frac{1}{\alpha \delta} \quad \text{as } M \to \infty,$$

and this proves (i).

Next, we have that, for $y = x^{1/\alpha} \le m + 1 \le k + 1$.

$$c_k(x) = c_m(x) \frac{x^{k-m}}{((m+1)(m+2)\dots k)^{\alpha}} \leqslant c_m(x) \left(\frac{x}{(m+1)^{\alpha}}\right)^{k-m} \leqslant c_m(x).$$

Hence, for $N \ge y + \delta \sqrt{y}$, we have that

$$\Sigma_2 \leqslant c_N(x) \sum_{\nu=0}^{\infty} \left(\frac{x}{N^{\alpha}}\right)^{\nu} \leqslant c_n(x) \left(1 - \frac{y^{\alpha}}{N^{\alpha}}\right)^{-1},$$

where

$$\frac{1}{\sqrt{n}} \left(1 - \frac{y^{\alpha}}{N^{\alpha}} \right)^{-1} \leqslant \frac{1}{\sqrt{n}} \left(1 - \frac{y^{\alpha}}{(y + \delta\sqrt{y})^{\alpha}} \right)^{-1}$$

$$= \frac{1}{\sqrt{n}} \left(1 - (1 + \delta y^{-1/2})^{-\alpha} \right)^{-1} \to \frac{1}{\alpha \delta}$$
as $y = n \exp\left(\frac{1}{2n}\right) \to \infty$,

and this together with (4) implies (ii).

Finally, we see that, for $N \ge y + \delta \sqrt{y}$,

$$\Sigma_3 := \sum_{\nu=N}^{\infty} \frac{1}{\sqrt{\nu}} \sum_{k=\nu}^{\infty} c_k(x) \leqslant \sum_{\nu=N}^{\infty} \frac{c_{\nu}(x)}{\sqrt{\nu}} \left(1 - \frac{x}{\nu^{\alpha}}\right)^{-1} \leqslant \frac{1}{\sqrt{N}} \left(1 - \frac{x}{N^{\alpha}}\right)^{-1} \sum_{\nu=N}^{\infty} c_{\nu}(x).$$

Hence, by what we have shown before, we have that

$$\limsup_{n\to\infty} \Sigma_3 \leqslant \frac{1}{\alpha\delta} \cdot \frac{1}{\delta\sqrt{2\pi\alpha}},$$

which establishes (iii).

3. Proofs of the theorems

Proof of Theorem 2. Let $\alpha > 0$ and $\delta > 2\sqrt{2}/\sqrt{\alpha\pi}$. Given $\varepsilon > 0$, choose $N_0 \in \mathbb{N}$ so large that

$$a_n \geqslant -(c_1 + \varepsilon) \frac{1}{\sqrt{n}}$$
 for all $n \geqslant N_0$

and

$$s_M > S_+(M) - \varepsilon$$
 and $-s_N > S_-(N) - \varepsilon$

for infinitely many integers M and N with $M \ge N_0$ and $N \ge N_0$, where

$$S_+(m) := \max_{N_0 \leqslant k \leqslant m} s_k$$
 and $S_-(m) := \max_{N_0 \leqslant k \leqslant m} (-s_k)$ for $m \geqslant N_0$.

Note that the sequences $(S_+(m))$ and $(S_-(m))$ are nondecreasing, and that $\max(S_+(m), S_-(m)) \ge |s_k|$ for $N_0 \le k \le m$. We consider two cases which exhaust all possibilities (cf. [6, pp. 308–311]).

Case 1. $S_{+}(m) \geqslant S_{-}(m)$ for infinitely many integers m.

Then there are infinitely many integers $M \ge N_0$ such that

$$s_M > S_+(M) - \varepsilon$$
 and $S_+(M) \geqslant S_-(M)$. (5)

We choose such M, and then integers n and N satisfying

$$\begin{cases} M + \delta \sqrt{M} \leqslant y := n \exp\left(\frac{1}{2n}\right) < M + \delta \sqrt{M} + 2, \\ y + \delta \sqrt{y} \leqslant N < y + \delta \sqrt{y} + 2, \end{cases}$$
 (6)

and we put $x := y^{\alpha}$. Then $\sqrt{N} \leqslant \sqrt{M} + \delta + 2/\sqrt{M}$, because

$$N < \left(\sqrt{y} + \frac{\delta}{2} + \frac{1}{\sqrt{y}}\right)^2$$
 and $y < \left(\sqrt{M} + \frac{\delta}{2} + \frac{1}{\sqrt{M}}\right)^2$.

We split $\sigma_{\alpha}(x)$ as follows:

$$\sigma_{\alpha}(x) := \sum_{\nu=1}^{4} \tau_{\nu}(x),$$

where

$$\tau_1(x) := \sum_{k=0}^{N_0} s_k c_k(x), \qquad \tau_2(x) := \sum_{k=N_0+1}^{M} s_k c_k(x),
\tau_3(x) := \sum_{k=M+1}^{\infty} s_M c_k(x), \qquad \tau_4(x) := \sum_{k=M+1}^{\infty} (s_k - s_M) c_k(x).$$

We see immediately that

$$\tau_1(x) \to 0$$
 as $M \to \infty$.

In what follows we use the notation of the lemma. By (5), we have that $-s_k \leqslant S_-(k) \leqslant S_-(M) \leqslant S_+(M) < s_M + \varepsilon$ for $0 \leqslant k \leqslant M$, and hence that

$$\tau_2(x) \geqslant -(s_M + \varepsilon)\Sigma_1.$$

Next, we observe that

$$\tau_3(x) = s_M(1 - \Sigma_1).$$

Finally, we see that

$$\tau_{4}(x) = \sum_{k=M+1}^{\infty} \sum_{\nu=M+1}^{k} a_{\nu} c_{k}(x) \geqslant -(c_{1} + \varepsilon) \sum_{k=M+1}^{\infty} \sum_{\nu=M+1}^{k} \frac{c_{k}(x)}{\sqrt{\nu}}$$
$$= -(c_{1} + \varepsilon) \left(\tau_{4,1}(x) + \tau_{4,2}(x)\right),$$

where

$$\tau_{4,1}(x) := \sum_{k=M+1}^{\infty} \sum_{\nu=M+1}^{\min(k,N)} \frac{c_k(x)}{\sqrt{\nu}} \leqslant \sum_{k=M+1}^{\infty} c_k(x) \int_{M}^{N} \frac{dt}{\sqrt{t}}$$
$$= 2(\sqrt{N} - \sqrt{M}) \sum_{k=M+1}^{\infty} c_k(x) \leqslant 2\left(\delta + \frac{2}{\sqrt{M}}\right)$$

and

$$\tau_{4,2}(x) := \sum_{k=N+1}^{\infty} \sum_{\nu=N+1}^{k} \frac{c_k(x)}{\sqrt{\nu}} \leqslant \Sigma_3.$$

D. Borwein, W. Kratz / J. Math. Anal. Appl. 293 (2004) 285-292

Collecting the above results, we see that

$$\sigma_{\alpha}(x) \geqslant \tau_1(x) + s_M(1 - 2\Sigma_1) - \varepsilon \Sigma_1 - (c_1 + \varepsilon) \left(2\delta + \frac{4}{\sqrt{M}} + \Sigma_3\right).$$
 (7)

Since ε is an arbitrary positive number, and

$$\liminf_{M\to\infty} s_M + \varepsilon \geqslant \lim_{m\to\infty} S_+(m) = \lim_{m\to\infty} \max(S_+(m), S_-(m)) \geqslant \limsup_{m\to\infty} |s_m|,$$

it follows from (7) that

$$\liminf_{M \to \infty} s_M \left(1 - 2 \limsup_{M \to \infty} \Sigma_1 \right) \leqslant \limsup_{M \to \infty} \sigma_{\alpha}(x) + c_1 \left(2\delta + \limsup_{M \to \infty} \Sigma_3 \right)$$

and hence, by the lemma, that

$$\limsup_{m \to \infty} |s_m| \left(1 - \frac{\sqrt{2}}{\delta \sqrt{\alpha \pi}} \right) \leqslant c_2 + c_1 \left(2\delta + \frac{1}{\delta^2 \alpha \sqrt{2\pi \alpha}} \right),$$

which yields assertion (3) in Case 1.

Case 2. $S_{+}(m) < S_{-}(m)$ for all $m \ge N_1 \ge N_0$.

We choose integers M, n, N to satisfy (6) as in Case 1. In addition, we choose $N \ge N_1$ such that $-s_N > S_-(N) - \varepsilon$, which is evidently possible for large N. We now split $\sigma_\alpha(x)$ as follows:

$$\sigma_{\alpha}(x) := \sum_{\nu=1}^{6} \tau_{\nu}(x),$$

where

$$\tau_1(x) := \sum_{k=0}^{N_1} s_k c_k(x), \qquad \tau_2(x) := \sum_{k=N_1+1}^{M} s_k c_k(x),
\tau_3(x) := \sum_{k=M+1}^{\infty} s_N c_k(x), \qquad \tau_4(x) := \sum_{k=M+1}^{N-1} (s_k - s_N) c_k(x),
\tau_5(x) := \sum_{k=N}^{\infty} (-2s_N) c_k(x), \qquad \tau_6(x) := \sum_{k=N}^{\infty} (s_k + s_N) c_k(x).$$

We see immediately that

$$\tau_1(x) \to 0$$
 as $N \to \infty$.

In what follows we again use the notation of the lemma. In this case we have that $s_k \le S_+(k) \le S_+(N) < S_-(N)$ for $0 \le k \le M$ with $N > M > N_1$, and hence, since $-s_N + \varepsilon > S_-(N) \ge 0$, that

$$\tau_2(x) \leqslant (-s_N + \varepsilon) \Sigma_1$$
.

Next, we observe that

$$\tau_3(x) = s_N(1 - \Sigma_1).$$

Further, we see that

$$\tau_{4}(x) = \sum_{k=M+1}^{N-1} \sum_{\nu=k+1}^{N} (-a_{\nu}) c_{k}(x) \leqslant (c_{1} + \varepsilon) \sum_{k=M+1}^{N-1} \sum_{\nu=M+1}^{k} \frac{c_{k}(x)}{\sqrt{\nu}}$$

$$\leqslant (c_{1} + \varepsilon) \sum_{k=M+1}^{\infty} c_{k}(x) \int_{M}^{N} \frac{dt}{\sqrt{t}} = 2(c_{1} + \varepsilon) (\sqrt{N} - \sqrt{M}) \sum_{k=M+1}^{\infty} c_{k}(x)$$

$$\leqslant 2(c_{1} + \varepsilon) \left(\delta + \frac{2}{\sqrt{M}}\right)$$

and that

$$\tau_5(x) = -2s_N \Sigma_2$$
.

Finally, we observe that, for $k \ge N \ge N_1 \ge N_0$, either $s_k \le S_+(k) < S_-(k) = \max_{N_0 \le v \le k} (-s_v) = -s_m$ for some $m \in (N, k]$, in which case we have that

$$s_k + s_N \leqslant s_N - s_m = \sum_{\nu=N+1}^m (-a_{\nu}) \leqslant (c_1 + \varepsilon) \sum_{\nu=N+1}^k \frac{1}{\sqrt{\nu}},$$

or $s_k \leq S_-(N) < -s_N + \varepsilon$. It follows that

$$\tau_6(x) \leqslant (c_1 + \varepsilon) \sum_{k=N}^{\infty} \sum_{\nu=N}^{k} \frac{c_k(x)}{\sqrt{\nu}} + \varepsilon \Sigma_2 = (c_1 + \varepsilon) \Sigma_3 + \varepsilon \Sigma_2.$$

Collecting the above results, we see that

$$\sigma_{\alpha}(x) \leqslant \tau_{1}(x) + s_{N}(1 - 2\Sigma_{1} - 2\Sigma_{2}) + 2(c_{1} + \varepsilon) \left(\delta + \frac{2}{\sqrt{M}}\right) + (c_{1} + \varepsilon)\Sigma_{3} + \varepsilon.$$
(8)

Since ε is an arbitrary positive number, and

$$\liminf_{N\to\infty}(-s_N)+\varepsilon\geqslant \lim_{m\to\infty}S_-(m)=\lim_{m\to\infty}\max(S_+(m),S_-(m))\geqslant \limsup_{m\to\infty}|s_m|,$$

it follows from (8) that

$$\lim_{N \to \infty} \inf(-s_N) \left(1 - 2 \limsup_{N \to \infty} \Sigma_1 - 2 \limsup_{N \to \infty} \Sigma_2 \right) \\
\leqslant \lim_{N \to \infty} \sup(-\sigma_\alpha(x)) + c_1 \left(2\delta + \limsup_{N \to \infty} \Sigma_3 \right),$$

and hence, by the lemma, that

$$\limsup_{m\to\infty} |s_m| \left(1 - \frac{2\sqrt{2}}{\delta\sqrt{\alpha\pi}}\right) \leqslant c_2 + c_1 \left(2\delta + \frac{1}{\delta^2\alpha\sqrt{2\pi\alpha}}\right),$$

which yields assertion (3) in Case 2. □

We now discuss consequences of Theorem 2. The corresponding two-sided result is [2, Lemma 4.5.5] and [7, Lemma 5], and the arguments from now on are much the same as those in the references.

Proposition 1 (Cf. the o-Tauberian theorem [2, Corollary 4.3.8]). Suppose that $s_n \to s(B)$, and that $\liminf_{n\to\infty} \sqrt{n} \, a_n \ge 0$. Then $s_n \to s$.

Proof. We may assume without loss of generality that s=0, so that $\lim_{x\to\infty} \sigma_1(x)=0$. Then Theorem 2 can be applied with $c_1=c_2=0$, $\alpha=1$, and any $\delta>2\sqrt{2}/\sqrt{\pi}$, to yield $\limsup_{n\to\infty}|s_n|=0$, i.e., $s_n\to0$.

Observe that we did not need the full proof of (4) in [2] or [7] which involved asymptotic approximations valid for all $\alpha > 0$. For the case $\alpha = 1$, only Stirling's formula is used.

Proposition 2 (Boundedness). Suppose that $\sigma_{\alpha}(x)$ is bounded as $x \to \infty$ for some $\alpha > 0$, and that condition (1) of Theorem 2 holds. Then the sequence (s_n) is bounded.

Proof. The result follows from Theorem 2 with any $\delta > 2\sqrt{2}/\sqrt{\alpha\pi}$. \Box

Proof of Theorem 1. We may again assume without loss of generality that s = 0, i.e., that $s_n \to 0(B)$. Then, by Proposition 2, (s_n) is bounded, and it follows from [2, Theorem 4.5.2 and Proof of Theorem 4.5.1 on p. 200] (see also [7] and [1]) that

$$\sigma_{\alpha}\left(n^{\alpha}\exp\left(\frac{\alpha}{2n}\right)\right) \to 0 \quad \text{as } n \to \infty$$

for all $\alpha > 0$. Hence, by Theorem 2 with $c_2 = 0$,

$$\limsup_{n \to \infty} |s_n| \le \left(1 - \frac{2\sqrt{2}}{\delta\sqrt{\alpha\pi}}\right)^{-1} c_1 \left(2\delta + \frac{1}{\delta^2 \alpha \sqrt{2\pi\alpha}}\right)$$

for all $\alpha > 0$ and $\delta > 2\sqrt{2}/\sqrt{\alpha\pi}$. Letting $\delta \to 0$, $\alpha \to \infty$, subject to $\delta\sqrt{\alpha} \to \infty$, we obtain the required conclusion that $s_n \to 0$. \square

References

- J. Beurer, D. Borwein, W. Kratz, Two Tauberian theorems for Dirichlet series methods of summability, Acta Sci. Math. (Szeged) 65 (1999) 143–172.
- [2] J. Boos, Classical and Modern Methods in Summability, Oxford Univ. Press, New York, 2000.
- [3] D. Borwein, On methods of summability based on integral functions, Proc. Cambridge Philos. Soc. 55 (1959) 23–30.
- [4] D. Borwein, W. Kratz, U. Stadtmüller, One-sided Tauberian theorems for Dirichlet series methods of summability, Rocky Mountain J. Math. 31 (2001) 797–829.
- [5] G.H. Hardy, Orders of Infinity, Cambridge Univ. Press, 1910.
- [6] G.H. Hardy, Divergent Series, Oxford Univ. Press, 1949.
- [7] W. Kratz, A Tauberian theorem for the Borel method, Indian J. Math. 42 (2000) 297-307.
- [8] T. Vijayaraghavan, A Tauberian theorem, J. London Math. Soc. (1) 1 (1926) 113-120.
- [9] T. Vijayaraghavan, A theorem concerning the summability of series by Borel's method, Proc. London Math. Soc. (2) 27 (1928) 316–326.