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Abstract

We establish a quantitative version of Vijayaraghavan’s classical result and use it to give a short
proof of the known theorem that a real sequence (s,,) which is summable by the Borel method, and
which satisfies the one-sided Tauberian condition that /n(sy, — s,_1) is bounded below must be
convergent.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction and the main results

Suppose throughout that (s, ) is a sequence of real numbers, and thats, = ;_ai. Let

o >0, let
o0} xk
Pa(®) =) —,
k=0 (k1)
and let

— 14

]. 22 Sk k
‘ Oy (x) = x* forallx e R.
| = il ;; (k)
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Recall that the Borel summability method B is defined as follows:

o
sp — s(B) if Z %xk is convergent for all x e R
k=0

and

o1(x) —> s asx— o0.

For an inclusion result concerning the summability method based on o, (x) see [3, p. 29].
Our aim is to give a short proof of the following well-known Tauberian theorem for the

Borel method [6, Theorem 241] and [4,9].

Theorem 1. If s, — s(B), and if /nan = —c for some c 20 and all n € N, then sp — 5.

Our proof depends largely on the next result which is an improvement of Vijayaragha-
van’s theorem [6, Theorem 238]; see also [8,9] in that it specifies bounds in its conclusion.

Theorem 2. Let « > 0, and suppose that

liminf+/na, > —cy, where0<c) <00,

n—0oC
and

: o o

h}fgsolép Ou (n exp(zg))‘ =Cp <.
Then

limsup [s,] < c3 (cz + ¢ (28 + —1‘))

n—00 822w
forall

d > EJ—E with ¢ = (l — 2 )_1.

Ve 8y/am

2. An auxiliary result
We require the following lemma for our proofs.

Lemma. Let @ > 0,8 > 0, and let

1 x”

palx) (nh*
Moreover, suppose that M, N € N, x := y* with

cn(x) = forn € Np.

y=y(n)::nexp(§1;), M=M(pn), N=N(@) fornecN,

ey

(2)

3)
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and define
M fore] 00 k
Tu= ZCI(()C), X5= Z ck(x), and X3:= Z Z Ck(x)_
k=0 - - Vv
k=N k=N v=N
Then
1
(1) limsup X < wh =M+§ :
IS o MRy B M B
(i) limsup X < [ h >
n_mop 2\5~/23'r—0¢ whenever N 2 y +8./y;

(iii)  limsup T3 <

1
o S Baama TN 2TV

287

Proof. First, note that c (x) increases with k for 0 < k < y = x'/® and decreases for k > ¥,

and that, for0 <k <m < y,

(m@m—1) ... (k+ 1)*
ek }) < Cm(x)(m

X

e () = e (x) ’

m—k
) < o (x).

Hence, for y > M + 8~/ M with M large enough to ensure M < n < y, we have that

o NV a —1
ElSCM(X)Z(M—) Scn(x)(l—M—) g
v=0 * y“

where

5 o
nl_lglgocn(x)ﬁ: v/ o

since

o
x=n"exp| —
p(zn),

by [2, Lemma 4.5.4], [5, p. 55] or [7]. Moreover

1 MmNt 1 M =1
(1_ ) ‘<\/‘(]l NIT; )
NG y M (M + 8/ M )2
1 1
=—=(1-Q+sM V)5 = =
;—M( ( ) ) w3 as M — oo,
and this proves (i).

Next, we have that, for y =x/* <m + 1<k + 1,

xk—m

3 x k—m
Ck(X)_Cm(x)((m+1)(m+2).._k)a gcm(x)(m) < cm(x).

Hence, for N > y +8,/y, we have that

o . a5 =l
EZSCN(X)Z(%) Scn(x)(l— —L) ,
v=0 N N

“
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where

A
VAN L NV AN C R N

- 1
(- +8y ™) » —
as exp( s )
y:n
2n

ob
and this together with (4) implies (ii).
Finally, we see that, for N = y +§./y,

! §|~

o0,

0 (%) R e
23:_];; ch(x) ZCJf (1—%) gﬁ(p%) gcv(x).

Hence, by what we have shown before, we have that

; 1 1
limsup 23 € — -

n—00 ad 3\/21105’

which establishes (iii)). O

3. Proofs of the theorems

Proof of Theorem 2. Leta > 0and § > 2+4/2/./am. Given £ > 0, choose Ny € N so large
that

1
—(c1+e&)— foralln = Ny

n

and
sy >S+(M)y—e and —sy>S_(N)—¢
for infinitely many integers M and N with M = Ny and N > Ny, where

Sy(m):= max s and S_(m):= miix (—s1) form = Ny.

h<k<m Noghksm

Note that the sequences (S (m)) and (S_(m)) are nondecreasing, and that max (S (m),
S_(m)) = |sx| for Ny < k < m. We consider two cases which exhaust all possibilities (cf.
[6, pp. 308-311]).

Case 1. S (m) = S_(m) for infinitely many integers m.

Then there are infinitely many integers M = Ny such that
sy =S (M)—¢ and S (M) = S5_(M). &)

We choose such M, and then integers n and N satisfying
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{M+6méy:=nexp(2'fﬁ)<M+8m+2,
YHOSTEN <y +8/5+2,
and we put x := y*. Then +/N < v'M + 6 + 2/+/M, because
<(\/)7+5+i)2 and y<(¢ﬁ+5+i—)2.
2/ 2 UM

We split o, (x) as follows:

(6)

4
oa (%) =Y T(x),

v=I

where
No M
T1(x) =) se(x), n) = ) sa),
k=0 k=Nop+1
3(x) 1= Z Spcklx), Ta(x) == Z (s% — spr)ee(x).
k=M+1 k=M-+1

We see immediately that
T1(x) =0 as M — .

In what follows we use the notation of the lemma. By (5), we have that —s; < §_(k) <
S_(M) < 54.(M) < sy + e for 0 < k < M, and hence that

2(x) 2 —(sm + &) 1.
Next, we observe that

13(x) = sy (1 — X).
Finally, we see that

00 k
T4(x) = Z Z aver(x) z —(c1 +¢€) Z Z Ck(X)

k=M+1v=M+1 k=M+1v=M+1
= —(c1 + &) (ta,1(x) + Ta2(x)),

where
00 mm(kN)C(x)
T4,1(x) == Z Z £ Ck(x)f
k=M+1 v=M+1 k=M+1 Vi
- 4
— 2N Vi) Y ck(x)gz(a-t-)
k=M+1 ‘\/11—4
and
o0 k

T42(x) = Z Z Ci/(;)éc‘?}



290 D. Borwein, W. Kratz / J. Math. Anal. Appl. 293 (2004) 285-292

Collecting the above results, we see that

4
ou(x) = T1(x) +sp(1 —2X1) — X1 — (c1+€) (28 + - + 23)-

Since ¢ is an arbitrary positive number, and

liminfsy + &= lim S.(m) = 11m mdx(S+(m) S_(m)) = limsup |sp|,
M—o00 m—-oe m— 00

it follows from (7) that

Liminfsyy (1 — 2lim sup 21) < limsupag (x) + ¢ (26 + lim sup 23)

M—co M—00 M—00 M—o0

and hence, by the lemma, that

li | !( V2 )<c +c (25+ - )
1m sup | S s 1
m—>oop s Jam 822w

which yields assertion (3) in Case 1.

Case 2. S, (m) < S_(m) forallm = N, = Np.

(7

We choose integers M, n, N to satisfy (6) as in Case 1. In addition, we choose N = N
such that —sy > S_(N) — &, which is evidently possible for large N. We now split oy (x)

as follows:
6

aa(x) =) wx),

v=1
where

Ny M

71(x) == Z‘”‘Cf‘(x)’ 1(x) == Z Skep(x),
k=0 k=N;+1

o0 N—1

73(x) = Z syep(x), T4(x) 1= Z (s — sw)ek(x),

k=M-+1 k=M+1

o0

()= Y (~2sn)er(x), () = ) (sk +sw)er(x).

k=N k=N
We see immediately that

71(x) >0 asN — cc.

In what follows we again use the notation of the lemma. In this case we have that s¢ <
Sy (k) <8, (N)<S_(N)for0< k<M with N > M > Ny, and hence, since —sy + € >

S_(N) >0, that
T (x) € (—sy +8) 2.
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Next, we observe that
3(x) =sy(1 — X)),

Further, we see that

7 (x) = Z Z( —a,)ce(x) < (e1 +£) Z Z Ck(x)

k=M+1v=k+1 k=M+1v=M+1
o0 N o0
<lite) Y ck(x)f%=2<c1+s)(«/ﬁ—~/ﬁ) Y a)
k=M+1 M ! k=M+1
£2(cl+£)(6+&)

and that
T5(x) = =25y 5n.

291

Finally, we observe that, for k > N = N; = Ny, either s < §.(k) < S_ (k) =

maxy, <v<k(—5y) = —sn for some m € (N, k], in which case we have that

Sk + SN SN — S = Z (—ay) <(c1+e) Z f

v=N+1 v=N+1
or sy < S_(N) < —sy + e. It follows that

x
T5(x) < (c1 + &) Z Z k( ) +eXy=(c1+e)X3+eXs.
k=N v=N
Collecting the above results, we see that

Ga(r) < 71 (6) + sy (1 — 251 — 255) + 2(c1 + ) (a+ \/iﬂ_d)

+c1+e)Zs+e.

Since ¢ is an arbitrary positive number, and

ljivminf(—sN)—f—5> lim S (m)= l1m max(S+(m) S_(m)) = limsup |5y,
— 00

m—>cC

it follows from (8) that

11m1nf( sN)(lﬁthsupEI 211msup22)

N—oo N—oo
< limsup(—cru (x)) + (25 + lim sup 23),
N—oo N—=oo

and hence, by the lemma, that

24/2 1
limsup [sy|( 1— £ er bl D ————— ).
s ’”'( SM) ’ 1( azam)

which vields assertion (3) in Case 2. 0O

(8)
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We now discuss consequences of Theorem 2. The corresponding two-sided result is
[2, Lemma 4.5.5] and [7, Lemma 5], and the arguments from now on are much the same
as those in the references.

==

Proposition 1 (Cf. the o-Tauberian theorem [2, Corollary 4.3.8]). Suppose that s, —» 5(B),
and that iminf,,_, oo /na, = 0. Then s, — s.

—ef

Proof. We may assume without loss of generality that s = 0, so that limy o 01 (x) = 0.
Then Theorem 2 can be applied with ¢ = ¢; =0, @ = 1, and any § > 2+/2/./7, to vield
limsup,_, .. Is:|=0,ie,s, = 0. O

Observe that we did not need the full proof of (4) in [2] or [7] which involved asymptotic
approximations valid for all & > 0. For the case & = 1, only Stirling’s formula is used.

Proposition 2 (Boundedness). Suppose that o, (x) is bounded as x — 0o for some o > 0,
and that condition (1) of Theorem 2 holds. Then the sequence (s,) is bounded.

Proof. The result follows from Theorem 2 with any 8 > 2+/2/./ax. O

Proof of Theorem 1. We may again assume without loss of generality that s = 0, i.e., that
sn — 0(B). Then, by Proposition 2, (s,,) is bounded, and it follows from [2, Theorem 4.5.2
and Proof of Theorem 4.5.1 on p. 200] (see akso [7] and [1]) that

Oy (n”' exp(-zoi)) —0 asn— o0
n

for all @ > 0. Hence, by Theorem 2 with ¢; =0,

D o5 (1 %08 N~ gy, 1 )
imsup |s - ") ¢ —_—
n_wop B 8o : o270

foralle > 0 and é > 2x/§/dom. Letting § — 0, @ — oo, subject to §,/a — 0o, we obtain
the required conclusion that s,, — 0. 0O
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