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1. Introduction

Stimulated by our recent prior work with one dimensional sinc integrals we study a class
of multivariable sinc integrals. In Sections 2 through 5 we obtain results concerning the
relationship between such a multi-variable sinc integral o (S) (defined in Section 2 below)
and the volume of an associated symmetric convex polyhedron. Section 6 is devoted to
establishing a partial fraction decomposition to be used in Section 7. In Section 7, we derive
(Theorem 4) an explicit algebraic (determinant) formula for the computation of o (S). This
formula entirely generalizes that given in [1], wherein more motivation and references may
also be found.

2. Sinc and polyhedron spaces

As is quite usual we set .
) sin?
sinc(t) = -
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by the Canada Research Chair Programme.



190 BORWEIN, BORWEIN AND MARES

Given x := (x1,X2,...,x,) and y = (y1, y2, ..., ¥n) in R, we use the notation xy :=
X1y1 + x2¥2 + - -+ 4 X Vi to denote the dot product.

We first define the classes of sinc integrals and of polyhedra we will study and identify
them with certain spaces of matrices. We define the sinc space S™" to be the set of m x (m-+n)
matrices S = (51 2 ... Syuan) Of column vectors in R” such that

and a function o : S™" — R by

m+n

1_[ sinc(sgy)

k=1

dy < oo,

m+n
o(S) = / [ ] sinc(siy) dy.
" k=1

Note that S"™" ¢ R™*m+m) and that (by Lemma 2 below) when n > m > 1 a sufficient
condition for S € S™" is that two completely disjoint m x m submatrices of S be non-
singular. In fact, a little more work shows that the condition is necessary and sufficient for
the integrand to be Lebesgue integrable. Hence a typical non-absolute example is

/ / sinc® (x — y)sinc(x + y) dy dx.
RJR

Note that when n > m = 1, the condition is satisfied as soon as all entries are non-zero.

We correspondingly define the polyhedron space P™" to be R"*"+") Thus an element
P e P™"isamatrix (p; pa ... Pm+n) of column vectors in R”. Next, we define a function
v:P"™" — R by

v(P) :=Vol{x e R" : |pyx| < 1fork =1,2,...,m+n}.

The integral o (S) will be our primary object of study. Observe that v(P) is the volume
of a convex polyhedron with the symmetry x — —x. The polyhedron has dimension n
and represents the region between m + n pairs of parallel n-planes. Note that any such
symmetric convex polyhedron may be represented as an element of P™" and vice-versa.
But to evaluate all symmetric volumes we would need to consider improper integrals and
we choose not to do so.

In the case studied in [1], we have m =1 and are ultimately making the following
association:

o 7 Vol(P,) 7 Vol(Q,)

l_[ sinc(ayx)dx = — = — .

0 ko 2a9 2"aya; . . . a, 2ay Vol(H,)
Here ay, ay, ..., a, >0, and we denote the polyhedra P, := {(x1,x2,...,X,) | —ag <
Yo Xk < ag, —ap < xp < apfork =1,2,...,n}, Qy = {(x1,x2,...,%,) | —ap <
ZZZI axy < ag,—1 <x;y <lfork=1,2,...,n},andthe cube H, := {(x1, x2, ..., x,) |

—l<x,<lfork=12,...,n
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3. Two duality theorems

Of the two theorems stated in this section, the first is elementary while the proof of the
second requires some results about Fourier transforms.

Theorem 1. Let M be a non-singular m x m matrix and S € S™". Then
o (S) = |det(M)|o (MS).

Similarly, if N is a non-singular n x n matrix and P € P™", then
v(P) = |det(N)|v(NP).

Proof: Both of these statements follow from the change of basis theorem for Lebesgue
integrals [3, p. 391]. O

Theorem 2. Suppose that n > m and that the matrix A := (a; a; ... a,) € R™*" has
at least one non-singular m x m submatrix. Then

nm
o(I" | A) = Z—nv(I" | AT) < =™
with equality if and only if maxi<j<y Y+, la; j| < 1 where a; ; is the j-th component of
the vector a;.

Here and subsequently I” denotes the r x r identity matrix, AT the transpose of A, and
(C | D) the appropriate concatenation of matrices C and D. We defer the proof of Theorem 2
until the end of Section 5. Observe that Theorem 2 shows also that the integral is positive.
As an immediate consequence of Theorems 1 and 2 we have more generally:

Corollary 1. Ifn > m, A is a non-singular m x m matrix, and B is any m X n matrix
having m of its columns linearly independent, then
a(I™| A7'B) (" (A7'B)T)

|det(A)]  2» |det(A)|

o(A|B) =

Further, if n > m, C is a non-singular n x n matrix, and D is any n x m matrix such that
C~'D has m linearly independent rows, then

v(I" [CT'D) 2" o (I" | (CT'D)T)

VD) = =GOl T jdenO)|

4. Further definitions and basic Fourier results

Fora € R™, define the Borel measure §, to be the linear Lebesgue measure restricted to the set
g :={x eR" :x =ta,—1 <t < 1}, ie., for any Borel set B C R™, §,(B) = §,(B N,),
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and for any locally L;-integrable complex Borel measurable function f on R”,

1
/f(X)5a(dx)=/ f(ta)dt.
R™ -1

Hence
. 1 1
/ ™8, (dx) = _/ "™ dt = 2sinc(ay).
m 71

Further, for b € R™, and the convolution measure A := §, * &, we have, by definition and
application of Fubini’s theorem [3, p. 352], that

/f(X)A(dX)=/ Saldx) | f(x +w)dp(dw),
R™ R” R”

so that

/ e (dx) = / 84 (dx) i YT, (dw)

= / €8, (dx) 5 €™ 8, (dw) = 4sinc(ay) sinc(by),
and in general, if a1, ap, ..., a, € R" and
Woi=8g, % g, * -+ %y,
then
/ e pu(dx) = 2" ﬁ sinc(agy). (D
" k=1

Also, for any Borel set B in R” we have that
/ A(dx) = / x5 (x) A(dx) = / Sa(dX)/ x8(x + w)dp(dw)
B R" R" R
1 1 1
— [ 8@ [ gt ebrdn= [ dn [ gata+nbyar,
R —1 ~1 —1
2/ xg(tia + tb) dt
HZ
andsoifay,a,...,a, e R", t =(t,t2,...,1,) € R"and pu = 84, * 84, * - - - % &4, then

/ p(dy) = / X1y + oty + -+ tuan) i @)
B n
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and so, for the hypercube H™ := [—1, 1]" in place of B, we have that

/ p(dx) = / xun(hay + hay + -+ + tya,) dt = v(I" | AT), 3)
in the notation of Section 2 with A the m x n matrix (a; a ... ay).

Lemma 1. Suppose thatn > m and a;, ay, ..., a, € R"™ with the m X m matrix A :=
(ai ...anw) non-singular. Let {1, := 84, * 84, * - - - x 8,,.. Then, for any Borel set B C H",

() pn(B) = [ 2,
(i) w,(B) = f 5 $n(x)dx, where ¢, is bounded real-valued non-negative Borel measurable
function supported on a bounded set in R™.

Proof: Part (i) follows from (3) with m = n by the change of basis theorem for integrals.

For part (ii), observe that the result is true with ¢, (x) := % Now define

1
Gmy1(x) = / b (x = ¥)8a,., (dy) = / b (x — tap1) dt
Rm™ -1

which is evidently non-negative, bounded and of bounded support. Further, for any Borel
set B in R™,

/ o1 (1) d = / 25 ()1 () dx = / 8, (@) [ xa(x + wm(w) dw
B Rm Rm

Rm

- / 500 | x5 (& + Wt (dw) = / 25 ()t (d)
R R -

= / Mm+1 (d'x)7
B
and this establishes (ii) whenn = m + 1.
Continuing in this way we find that (ii) holds in generality. O
Lemma 2. Suppose that ay, as, ...,a, € R™ with n > m, and that the m x m matrix
A= (a) ap ... ay) is non-singular. Then

/ l_[smc (ary)dy < oo.

Proof: By the change of basis theorem for integrals, we get that

n m 1 m
/m g sinc®(ary) dy < Am g sinc?(a y) dy = / detA| g sinc? (xy) dx < 00.
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5. Fourier transforms and sinc integrals in R™

We first state some standard results about the Fourier transform (FT) which may be found
in texts such as [3, pp. 358-362].
The FT of a given function f € L,(R™) is the function f that is the L,-limit as p — oo of

m

1 . A
= — Y dy, i.e. — Zdx - 0 .
o) i= = /[M]m FOYe ™ dy, e / lep) = F ()l dx — 0as p — oo

This function fAexists, is unique apart from sets of zero Lebesgue measure, and f € Ly(R™).
Further, if f1, f> are FTsof fi, f> € L,(R™) and fi, f; are real, then we have the following
version of Parseval’s theorem:

A fox) dx = A; fio o ds.

Rm

Lemma 3. Suppose that a\, as, ...,a, € R" withn > m and the m X m matrix A =
(ay . ..ay) non-singular. Let

£ =[] sinc. £y = ] sincay).
k=1 k=1

Then, for (L := 84, * 84, * -+ - % 84, and H™ :=[—1, 1]",

(1" | A) = f AR d =20 ua.
R H"

Proof: By Lemma 1 and (1) we have that

/ e (x) dx = (\/;n)zn f2(y) where ¢ € Li(R™) N L>(R™),

———— f2(y) = p(—y) fory e R™.

1
(V2m)m

n

T

It follows, by [3, p. 362, Exercise 13(w)], that fz = 27"(/27m)" ¢, and likewise we get that

fl = 27"(/2m)" where ¥ (y) = xpgn(y). Since fi, f» € L,(R™) by Lemma 2 or [3,
p- 362. Exercise 13(w)], we can apply Parseval’s theorem to get that

m

A ) dy = / v ="- [ ua.
Rm Hm

O

Proof of Theorem 2: Combining (3) and Lemma 3 we obtain that

m

m T n T
o(I" | A) = Z-v(I" | AT).

The rest of the theorem follows readily from the definition of v(I" | AT). O
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6. A partial fraction decomposition

Before evaluating the sinc integrals, we need to introduce some multilinear algebra so as
to derive an appropriate partial fractional decomposition. Our precise goal in this section is
to prove Theorem 3 so as to obtain Corollary 3 below. Theorem 3 is a multilinear analogue
of Cramer’s rule that computes a change of basis for tensors. It reduces to the traditional
version of Cramer’s rule in the case n = 1.

Let I denote the set of (" T/~ 1) integer sequences k = {k1, k2, . . ., k) satisfying k| =
l<ky< - -+ <ky <m+n,andlet I’ denote the set of integer sequences k' = {Ki, /cé, e,
K, } satisfying 1 <«] <k} < --- <k, <m + n. Let «° denote the complement of « in
{1,2, ..., m + n}. Note that the complement operator ¢ is a bijection between I and I’.

Fort),to,...,t, ER™, S = (51 82 ... Spin) € R™™HM and y € R™, let

2o det(t; s, ... S
,BK(tl,tz,...,tn)::H (‘] 2 Km) fork € 1,

il det(s,{}- Sy e sKm)
B(t]7t27‘-'atn) = {Zﬂk(tl7t25”"tn)<l—[ S‘K y )} H(t])’)
kel j=1

Observe that B is a symmetric n-linear form.

Lemma 4. Ler k' be a fixed element of 1', and let the matrix S = (s; $2 ... Spin) €
R"™X0m+m have every m x m submatrix non-singular. Then, for all k € I,

n det(sK< Sy - s,(m)
Be = Belsi)s -0 8) = 4 = 8’ ke
‘ a “ ) 11:[1 det(s,(;: Ser e Sey) o
Proof: Clearly, 8, =0 ifK} =k; forsome je{l,2,...,m}andi € {2, ..., m}, since this
will cause s,, to be repeated in some numerator determinant. More precisely, 8, # 0 if and
only if k" = k€. This is because k¢ is the only n-element subsequence of {1, 2, ..., m + n}

which is disjoint from «. Consequently, no vectors in the numerator determinants are re-
peated, and since each m-element subset of S is linearly independent by hypothesis, the
numerator determinant is non-zero. Moreover, when k¥’ = «¢, the numerator determinant
and the denominator determinant are equal and so 8, = 1. This establishes that 8, = &, ..

O

Corollary 2. Forallk’ € I', B(sc;, ;s -+ -5 85¢) = 0.

Proof: By Lemma 4,
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Theorem 3. Let the matrix S = (5182 ... Span) € R™<H have every m x m submatrix
non-singular. Then, for any n vectors ty, ta, ..., t, € R" and any y € R",

ﬁ(tjy) _ Z ﬁ det(; se, .. Si,) li[(s,(;;y).

izl ol \joi det(s,(; Se - Sky) i

Proof: It suffices to prove that B(ty, 2, . . ., t,) = 0. We do this by expanding each of the
n variables sequentially in terms of column vectors of S as follows:

m—+1
B(ti,t,....t,) =B E CLiySips 2, -y by
i1=2
m+1
= E Cl,ilB(Si],tz, "-7tn)
=2
m+1 m+2
= E cri, B si, E C2,i8iys 135 -+ s Iy
i1=2 i2=2
ir i
m+1 m+2
= E E Cl,i1C2,igB(Sipsi2a B3,..., tn)
i1=2 i2=2
ir i)
m+1 m+2 m—+n n
= E E E Cj,i,- B(s,-l,siz,...,sin)=0,
=2 =2 in=2 j=1
ip#i] iy iy
inFin-i
since each B(s;,, i,, . .., si,) vanishes. This is a consequence of the symmetry of B com-
bined with Corollary 2, because the vectors s;,, Si,, . . . , §;, are all distinct and are a permu-
tation of Sic)s Sicys s Sk for some k' € I'. O

We may now specialize this result to obtain the partial fraction decomposition needed in
the next section.

Corollary 3. If every m x m submatrix of the matrix S = (s) 83 ... Spin) € R™X+M
is non-singular, then, for every y € R™,

m-+n

[T =™ > ] 6y)
j=1

i=1 kel



MULTI-VARIABLE SINC INTEGRALS 197

where
v det(s,{I Sy - s,(m)"
£ H;=1 det(s,(;- Sy oo s,(m)'
Proof: Takingt =1, =--- =1, = s; in Theorem 3, we get the identity
oo =5 e
1Y) = m )
= \IT= det(s,(jc R A
Divide both sides by (s;y)" [/} (s;y) to produce the desired identity. O

7. Evaluating the sinc integrals

In all that follows let g, ; denote the characteristic function
8r,s += X(=r,—slUls,r)

forO <s <r < oo.

Lemma5. Fora,ap,...,a, € R0<n<p<oo,0<v<p<ooandn >0,

/‘ 1 cos(a1u1 +auy + -+ apy — 5(m + n))
R U} Uil ... Uy
X 8pn(U1)8pv(U2) ... 8pv(Um) duy duy ... duy,

! - sin(a;u)
= (/Rmcos(alu — %(1 +n))gp,,,(u) du) <E/l;gp,u(u)% du).

Proof: Observe that all the integrals are absolutely convergent, and that the result is
trivially true for m = 1. Further, for m > 2,

/ 1 cos(ayuy + ayuz + -+ - + amityy — % (m 4 n))
R

n
m Uy ujuy ...uUy

X gp,n(ul)gp,v(MZ) ce. gp,v(um)(um) duy duy . .. duy,
_ /‘ 1 sin(amum +ajuy +axur + -+ @yt — F(m— 1+ n))
R

n
m Uy ujuy...Uy

X gon(U1)&pvM2) ... 8p v (Uy) duydusy . . . duy,

_f igﬂ,n(ul)gp,v(MZ)~~g,o,v(um—1)
Rm—1 urlz ujuy ... Uy—1

st] duz .. .dum_]

sin(a i, +ajuy +axtty + -+ ap_1p—1 — >(m — 1 +n)
X f ( 2 )gp,v(um)dum
R

Um
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_/ 1 cos(alul+a2u2+~-~+am_1um_1—%(m—l—i—n))
o Rm—1 urll Uiy ... Uy
X gp,n(ul)gp,v(MZ) v gp,v(umfl) dul dM2 e dl/t,,,,l
sin(a,, u,
X / Mgp,v(um) dum
R u

m
since cos(amtty)8p,v (Um) /Uy is an odd function of u,,. Continuing in this way we obtain
the desired result. O

For our central result of the section we need some further notation:

Notation. Given a matrix (s; § ... Sppm) € R with all its m x m submatrices
non-singular, we denote I' := {—1, 1123 mtn} and for each y € I', we define

m—+n m—+n
Sy :=s1+Zyjsj, €) 1= Hyj.
Jj=2 j=2
For each « € I, denote the matrix (s, S, ... Sx,) by S and the j-th component of S lsy

by s, ;. We then have that, for any y € R™,

m
Syy = ZSK,y;j(SK/y).
Jj=1

and

v det(s,(l Siey + e - sKm)n
P 1—[?:1 det(sK§ Siy - - s,(m) ,

is as in Corollary 3.
Our aim now is to prove the following surprisingly explicit closed form evaluation in
which

1 ift >0
sgn(?) := {0 ifr=0
-1 ifr <O.

When m = 1 this reduces to the evaluation obtained in [1].

Theorem 4. Fix notation as immediately above, and suppose that n > m > 1. Suppose
that S = (518 ... Sppm) is in R0 - and that every m x m submatrix of S is non-
singular. Then

m+n
a(S) = / l_[ sinc(s;y) dy, dy, . .. dy,,
R

m o
i=1

1 a\" oy W T
- 2——1n'<§) 2 |detS, | 2 ertsepn)” [ [sentsersy).

kel yell j=1
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Proof: Observe that, by Lemma 2, the integral is absolutely convergent, so that S € S™".
By Corollary 3, we have that

m+n m

o(8) = f > e ( [ sm(w)) (s13) ™" ( (56, ) dy, dy, ... dy,.
" kel j=1

We don’t deal directly with this integral, but with its better behaved approximant

m-+n
oy (S) = /R ZO‘K( 1_[ sin(s; y)) (s1y)™~ ng 2(51Y)

" kel i=

x (]_[ (sxjy)_lgpk,u(sx,y)) dyydy; ... dy,,

j=2

where 0 < 1 < p < 00,0 <v < p < oo and g, is the characteristic function defined
immediately above Lemma 5. Let

m—+n m
Fenn () = (S1y)‘”‘1gpk,n(sly)( I1 sin(s,-y)> (]_[ (sK,y)_lng,u(sij)>.
i=1 =2

Since | fie. .0 (V)| < | fie,n.0(»)|, while the latter has bounded support, it follows that

/ | fenw M dy < oo forv > 0,

so that

Oy, W(S) —/Mzakfknv(y)dy— Za’(/ fknv()’)dyy

kel kel

and, by dominated convergence,

p0(S) =1 v(8).
07,0( ) v_l)I(I)1+O',]q ( )

By [1, Thm. 2(i)], we have that

m-+n
1_[ sin(s;y) =2'""" Zeycos(syy — =(m+ n))

j=1 yell

and hence that

fenpdy =2"""" ", (sly)‘”“gpx,n(sly)COS(syy - %(m + n))

Rm yer Rm

(1_[ S;(y ng SKJ ))dyldy2dym
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Make the change of variables u; := s, y. Observing that s, y = s, .11 + e, y2u2 + -+ - +
Si,y;mUm, WE Obtain

1—m—

2
AIII fk,n,v (y)dy = |detS | / ()™ gpx ﬁ(”l)

T
X cos(s,(,y;lul + Si,p22 + ot S ymly, — E(m + n))

X (H(uj)_lgpkyv(uj)> dui dus . . . du,,

j=2

Zl—m—n 1
- |det S| ZE (/R un +1COS<SKV = —(1 +n))ng (u)du)

yell

X (l_[/ gpk.u(u)ism(s‘;y;ju) du>,
j=2"R

by Lemma 5. Letting v — 0+, we see that

/ fenolpdy = 23 / : 2 4+m ) g d
" = € ———cos| s, u — = n u) du
e 7Y T e s ] 2 g wrt rillt Ty Bpeon
i sin(s, . ju)
X H 8p,0() —————du .
i=2'R .

Denote the m-dimensional hypercube [—p, p]" by U,. We fix a reference member A € I,
and a corresponding parameter p;, which we will later increase to infinity. Define

-1
= (S}T) UP»\'
Then, by what was proved above, we have that

lmn

[mex,n,u(y)dy—ldmz f (1) ™" goon (u1)

T
X cos(sm,;lul + Sap2Us ot Syl — E(m + n))

X (n(uj)lgoo,v(uj)> duy du; . . . du,,.

j=2

Now for each k € I, let

Vs =Sy,
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Observe that V, ; is a parallelopiped with shape that does not vary with p,. Thus there must
be a number ¢, ; > 1 (independent of p; ) such that, for
P

P = Ci A Pr> Px = s
CK,A

we have that
U;, CVerCU,,
and hence that
Y, = (S")"'U, DY,

[Here and elsewhere we use the fact that each of the finitely many matrices {S, : k € I} is
invertible. ] U
Observe next that

/ W)™ gooun (1)
UﬂK\UﬁK

X (l_[(uj)lgoo,v(uj)> duydus . . .du,
j=2

- —1

- * duy L e duj Czqkzm '™ (CK,A)

- | n+1 l_[ - - :
=2

X n
pe Uy . U np;

T
cos(sK,yglul + SieyoUs + A Syl — E(m + n))'

It follows that
1—m—n
_ —n—1
/):px f/c,r;.u(y)dy — |detSK| § €y (ul) goo,r](ul)

yel Vi

T
X COS(SK,V:,IMI + Sky2Ua + o0 Sk pimlm — E(m + ”)>

x (H(uj)_lgoo,v(uj)> duy du, . . . du,

j=2
21—m—n |

=—"-) € (u1)™"" oo (1)
|det S| V; V/Um =

T
X COS(SK,V;WI + SeyoUs + o F Sk yimlUm — E(m + n)>
X (l_[(uj)lgoo.u(uj)> duy duy . . .du,, + 0(,0)\_")
j=2

J=
21—m—n

1 b4
= dets,| ],26]/(/1; Wcos(sw;lu — 5(1 —i—n))gpw,,(u) du)

el

x (]_I/ gpu sy 22Cer:0) du) +0(p").
j=27R "
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and therefore, on letting v — 04, we get

217m7n 1
/ fKnO(y) Yy = |dtS | Z (/]R ’1+1COS<S’(VIM__(]‘+n)>ng n(“)du>

yel

X (Hfmdu)w )+0( »)-
j=2 /R u

Consequently
| Sactnotndy
Yo, kel
m+n m 1
/ D (1) g, n(w)( [l sm(w)) (]_[ (5:,5) ) dy
Yo, kel Jj=2

m+n m-+n
= / 8ooun(s1y) [ | sinc(siy) dy — / Zoon(519) | | sinc(siy) dy ®)
Y, i=1 R i=1

Py

as p; — 00.
But we also have that

/ ZaKfKnO(y)dy
Y,

% keI

21 m—n 1 T
- Z “Tdets] Ze (/1; 1 €08 (s,m,;lu — E(l +n))gpkq,7(u)du)

kel

x (1_[ / ool 22er: ) du) +0(p")
j=2R "

1 m—1
*7(%) Z|detsk|Z (Hsgn(s“”)>

yel

1
x / un+l COS<S"*7’?1u - 5(1 + n))@'oo,n(”) du (6)
R

as p; — 00.
It follows from (5) and (6) that

m+n ' 1 T m—1
/R Zoon(s1y) [ ] sinc(siy) dy = 2—(5> Z dors| 2 (]_[sgn(sxy 1)>

i=1 yell

1
X / prEs) cos(s,(y \u — (1 —}—n))goo,,,(u) du. (7)
R
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By one-dimensional partial integration, it is now easy to establish that

1
Cey () :=Aun+1605<sw i — —(1+n)>goo,n(u)du
——Z< ¢WM)MMW/%mwwd
: n

n! u

where

2

. b4 " T
= sin| S¢;11 — En) + (=D"sin{ s, ,;1m + En ,

T n+1 T
G,y (M) = cos| sep;in — (1 +n) | + (=D"" cos| s, .11 + 5(1 +n)

whence

¢(” () = (sK,y;l)”_r{sin<sK,y;m - %r> + (—1)’sin<sx.y;m + %r)}

2(s.:1)" " (= 1)sin(s, . 11) if ris even
26y T (=D cos(s,eam) if ris odd.

It follows from (7), by dominated convergence of the left-hand integral, that
1 P m—1 o m
lim —{ T € sgn(Si.y:j) | Cieoy ()
n—>0+2”<2) ;ldetSH ; V(jll g Vf) v
m—+n
=[]1mmmw=a&
" =1

and hence that
O'(S)—# T WZO[—KZ (s 1)”1_[sgn(s ) = llm Fm). (8
2-ni\2 ) L idets | o T LT
where

P = 3i(5) " Dy D [encen) o - 2
D=5\ 2 |detS| 1 Bty

yell

(n r)

= Z (,(),(VZ(V - 1)' Ky (n) == in Z Wy, y i(n —r—= 1)'¢,§’,;(’7)’7r

yelrel m , errer =0

It follows from (8) that the meromorphic function (1) can have no pole at the origin and
so must in fact be entire provided F(0) := lim, o F(n).
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To complete the proof of Theorem 4, it remains only to show that F(0) = 0. Evidently
we can write

1 & ;
Fop= ) .
j=n
where the power series is convergent for all n € C. Now

1. (dY',
F)=a, = ﬁ%ﬁo(d?) n"F(n),

and, by Leibnitz’s rule [3, p. 378],

d n n—1 r ) )
(—) n"F(n) = Z W,y Z(n —r—1! Z <n.>¢£fy+”‘”(n)n""
dn r=0 0 \J

yelkel j=
n—1 n

= > w0y n—r- 1)!( )¢>£’7;(n>+0(n>
yelkel r=0 r

— 0asn — 0,

since

(1) = 2(sicpi1)” SIN(Sic 1)

We have thus shown that the limit in (8) is zero, and this completes the proof. O
The quantities in Theorem 4 can all be expressed as determinants. For example by

application of Cramer’s rule

det(sy Sy« s,(m)
det Sy

Sk,y;l =

and the sgn term is similarly expressible.
We note that in Mathematica or Maple, it is possible via Theorem 4, to compute inte-
grals/volumes with m = 5 and n = 6, for example, quite rapidly.

Example. (a) Let V denote the volume of {x € R : |p;x| < 1,i = 1...11}, where p; is
the i-th column of the matrix

10 0 0 O
0 10 0 O
10 0

9 0o -1 -3 7
-2 -1 -8 2 -6
0 7 =5 5 1
0 5 -2 -9 -8 -9
0 0 0 0 10 -10 -2 -3 6 —4
o o o o0 O0 100 -8 9 2 7 -10

o © o ©
© o o o o
[
©
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By definition, V = v(P). Then, using Theorem 2 and Corollary 1,

(P)=10"° P 10*626 S =10~ s (9),
v = V| — = —0 —0
10 75\ 10

where
10 0 0 0 O 9 -2 -9 5 -—-10 -8
o 100 o o o 10 -1 7 =2 =2 9
§=10 0 10 0 0 -1 -8 -5 -9 -3
o 0 0 10 0 -3 2 5 -8 6 7
o o0 o o 100 7 -6 1 -9 —4 -10
Thus

where s; is the i-th column of §.

Performing the calculation from Theorem 4 for o (S) on a work station, we determine
that v(P) equals

1783555333298996761896629034429151640987432075715436721335976340904268
30954976107932353821685447822038731283351005300285791701641123713818
20826358461393954862567727

divided by

127179803760852868833702250085427961 1 126999889183337607935819035761877
62830324849292543701198920841061437021681539693375054209434572479321
674998957268149032759500800000000

which is approximately 1.4023888074656644090660969336515301763 x 1075 . . ..

This entailed computing the various intermediate quantities defined above Theorem 4.
(b) For illustration, we go through the following smaller computation in detail.

We wish to evaluate

Rl . . _ y 1 01 —1
/ / sinc(x)sinc(y)sinc(x + 2y)sinc| —x + = | dxdy = o E
-0 J—00 2 0 1 2 5

This involves the following sub-matrices

S_lO S_ll S_l—l
1,2_015 1,3_027 ],4_0 %7
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1 1 0 o1 1 -1 1 1 2
1,2 — 0 1’ 1,3 — O % ’ 1,4 — 0 2 ’

The corresponding determinant ratios are

with inverses

‘01 02 8

_|1 oI 0|_ ST I 5
2 1L 1201 2

o 3

djyg=— = ——.
0 —1][1 —1 6
|1 ||2 %|

1
2

The remaining intermediate quantities are best given in tabular form:

4 €y Sy

+1, 41,41 +1 1,1

+1,4+1,-1 -1 3,3

+1,-1,41 -1 -1,-1

+1,-1,—-1 +1 1,-3

-1,+1,+1 -1 1,3

~1,+1,-1 +1 3,1

—1,-1,+1 41 —-1,-3

-1, -1,-1 -1 1,-1

and

B y € Seyk=1,2) s5.,k=173) SK,V(K=1,4)_
+1,+1,+1 +1 1,7 -3,7 8,7
+1,+1, -1 -1 3,; 1,2 8,5
+1,-1,+1 -1 ~1,- -3, -1 -2.1
+1,—-1,—-1 +1 1,—% 1,-3 -2,-3
—1,+1,+1 -1 1,3 I3 4,3
—1,+1,-1 +1 3,% g 4,1
-1, -L4+1 +1  —1,- -3 -6, -5
-1 —-1,-1 -1 1, ; g -z -6, -7

The composite calculation of

m

j:
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can now be completed, for the «’s below:

-1
k=12 ¢,=—(HI?=32 (=D’ =1> -1’43+ (-D*+1» =0.

1
8/5(— (=32 —=T7>— (=32 -7 - 1241172 - 124+ 117 31
k=13 ¢ =— =,
2 16 5
€=14 o= /2 (48— 8 — (22 + (-2 — & + 4 1 (=6 — (—6)°) = 0.
Hence

1 72 3172
T =55 L=
Thus, by Theorem 2,

2" 31 1 0 1 2
a0 &) =on=v )

o \o 1 -1 1}

as is confirmed by the picture in Fig. 1 of the right hand quantity, in which the area of the
inscribed hexagon is indeed ;—(1).

N (1/4,1)
h \ (1/2,0)

(3/5, -2/5)

v

Figure 1. The corresponding polyhedron (n = m = 2).
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Remark. Implicitly above we have used the evaluation

*° sin T
0 y 2

There are several well-known proofs [1]. It also follows on taking the limit, via Binet’s
mean value theorem [3, p. 328], of the absolutely convergent integral

/°° sinyd o sec(%e)
0

v Y T O T+ ey

It seems worth recording the following Mellin transform based proof.

Proof: Maple happily evaluates the second integral to a form which simplifies to that we
have given. A conventional proof follows by using the I"-function to write

/msmyd : food/oo'() (—x0)t® di
ldy=— X sin(x) exp(—x .
o ylite Y Ce+1) Jo 0 P

One now interchanges the variables and evaluates the inner integral to #° /(> 4 1). The outer
integral now evaluates precisely to the claimed form. O

Finally, we note that many others have researched expressions and algorithms for comput-
ing volumes of polyhedra determined by their linear inequalities. In particular, Lasserre [2]
derives a nice expression, implemented by the computer program VINCI, currently available
online at www.math.uni-augsburg.de/enge/vinci/manual/manual.html.
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