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Abstract. We derive the [, version of the classical Blaschke-Santalo inequal-
ity for polar volumes as a consequence of more subtle convexity estimates for
the volume of the p—ball in Euclidean space. We also give analogs for the
(p, q)-substitution norms.

1 The problem

Take a convex body C' in R” and define its polar body to be the set
C° = {yeR": (y,xz) <1lforall z € C}.

Denoting the n-dimensional Euclidean volume of a set S C R™ by V,(S), the
Blaschke-Santalo inequality says that

Va(C) Va(C®) < Va(B) Va(E®) = Vu(Ba(2))? (1)

where E is any ellipsoid and B,(2) is the unit ball with respect to the Euclidean
norm, see [6] or [5].

In this note, we investigate this inequality in the case of the unit ball with respect
to the || - ||,-norm in R”,

Bu(p) == {z €eR": Y |l <1}.
=1

We have B, (p)° = B, (p') where 117 + z% =1.

Is there a direct proof of (1) when C' = B,(p)? What, in this special case, is the
underlying reason for the inequality (1)? It will turn out that the volume function
Va(p) = V(B (p)) satisfies a much more general set of inequalities which amounts
to a modified form of log-convexity for this function. This modified convexity (with
respect to two arbitrary means) is of the type investigated by J. Aczél in [1] and
later by J. Matkowski and J. Rétz in [3] and [4].
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The volume of the unit ball in the ||-||,-norm, V;,(p), was first determined by Dirichlet
by explicitly evaluating the iterated integrals. He obtained

cf. [2], Section 1.8. The following Maple code derives this formula as an iterated
integral for arbitrary p and fixed n. The intermediate steps give beta function values.
It can easily be converted into a human proof valid for arbitrary n.

vol := proc(n)
local f,x,i,ul,u,j,t; global p;
p := evaln(p);
if n=1 then 2 else
f := (1-add(x[i]l"p,i=1..n-1))"(1/p);
for i from n-1 by -1 to 1 do
f := subs(x[il=t,f); f := int(f,t);
ul := 1-add(x[j]l"p,j=1..i-1); u := ul~(1/p);
f := subs(t"p=ul,f); f := subs(t=u,f);
f := map(normal,f); f := simplify(f);
od;
2°nx*f;
fi; end:

# The volume of the p-ball in R"3 is: V3 := vol(3);
# The volume of the Euclidean sphere is : eval(V3,p=2);

Also, from Euler’s product formula

o0

%z) = ze”* H [(1 + Z) e’z/k]

k=1
we get the representation
V) = 2" [] — %
1
k=1 (1 + k_p)

For n = 2 and n = 3, this reduces, quite elegantly, to

= = 3pk + 1
4 -
,El( pk+1)> and Vilp 8H< pk+1))

3/2

W fOHOW.

In particular, explicit evaluations of these products such as V5(4) =
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2 Generalized Convexity and the Main Results

I(1+ 1)
Theorem. For every o > 1, the function V,(p) := 2“% satisfies
P
A 1-A 1
Va(p) Va(Q) < Vi (A u) ) (2)
P q

where p,q >0, p # q, and X € (0,1).
It is trivial that inequality (2) can be iterated finitely to give

[Tvate™ < Ve (ﬁ)

for all A; € (0,1) with ) . A; = 1, and all p; > 0 with not all of them equal. In
particular, when o =n, \y = Ay = 1/2 and 1/p; + 1/p, = 1 we recover the p—norm
case of the Blaschke-Santalo inequality (1).

We will now develop a proof for the theorem, with some digressions.

If we define U, (p) := — In(V,(p)/2%), then inequality (2) is equivalent to
1
Ua (E) < AUq(p) + (1 = X) Ual(q) (3)
p q

for the asserted values of p,q, A. This is a modified form of convexity, where the
(weighted) arithmetic mean in the argument of U, is replaced by the (weighted)
harmonic mean. This deserves closer attention, because such a modified convexity
can be defined at least for more general quasi-arithmetic means. Thus, take a
continuous, strictly monotonic function ¢ : I — R. Then

M(z,y) = ¢! (M)

is called a quasi-arithmetic mean, M : I? — I, and similarly,

Mz, y) = o 'Aep(z) + (1 — Ne(y))

for A € [0, 1] is the weighted version of M. Here, A € (0,1) and z < y always implies
x < M(z,y) < y. The function ¢ is called the Kolmogoroff-Nagumo function of M.
Of special interest are the power means M, on R, , defined by

o if a # 0,
#alz) = {ln(:c) if a =0.

They satisfy M,(z,y) < My(z,y) for a < bif z # y. For a = 1, we get the arithmetic
mean A = M, for a = 0 the geometric mean G = My, and for a = —1 the harmonic
mean H = M_,.



For any two quasi-arithmetic means M, N (with Kolmogoroff-Nagumo functions ¢, 1
defined on intervals I, J), a function f : I — J can be called (M, N)-convez if it
satisfies

FMPD(z,y)) < NV(f(2), f(y)) (4)
for all z,y € I and A € [0, 1], and strictly M -convez if the inequality is strict except

forx =y or A =0,1. If N is the arithmetic mean, N = A, we just say that f is
M-convex.

We remark that for power means M,, M, with a < b we have the implications

f My-convex and f increasing =— f M,-convex,
f M,-convex and f decreasing =— [ Mj-convex.

Since for differentiable f, usual convexity gives rise to characterizations in terms of
the derivatives of f, one may ask if the same is true for (M, N)-convexity. However,
it turns out that things are much simpler than they appear on first glance. Assume
for convenience that 1 is strictly increasing. Then simply set s := ¢(z) and t := ¢(y)
in (4) to obtain after some manipulations the equivalent inequality

P (f (e s+ 1 =N1))) < MW(fle () + 1= Ne(fle (1))

for all s,¢ € ¢(I). Thus f is M-convex on [ if and only if 1o fop ! is convex on o (I)
in the usual sense. This was probably first observed by J. Aczél in [1]. In particular,
if f and ¢ are differentiable with ¢'(x) # 0 on I, then f is M-convex if and only
if (o™1)(z) f'(¢~'(z)) is increasing; f is strictly M-convex if the monotonicity is
strict.

This concludes the brief excursion to the realm of modified convexity, except for the
remark that one can, of course, consider an even wider notion of convexity by taking

two strict means M, N (not necessarily quasi-arithmetic) and calling a function f
(M, N)-midpoint-convez if it satisfies

f(M(z,y)) < N(f(z), f(y))

for z,y € I. Such convexity appears to be more difficult than the special case
discussed above, and it might be interesting to study this in more detail.

In this setting, log-convexity of a function is precisely (A4, G)-convexity. For example,
the Gamma function I' is (A, G)-convex. As another example, the theorem says that
1/V, is (H,G)-convex. Since 1/V, is decreasing, it is also (A, G)-convex, and the
arithmetic-geometric mean inequality implies that 1/V}, is both (H, A) and (A4, A)-
convex.

On the other hand, V,, itself is neither convex nor concave for n > 3. In fact,
V3(p) has an inflection point at p = 1.0823906.., V,(p) at p = 1.6369256.., V5(p) at
p = 2.1925855.., and these seem to increase with increasing n.

We can now apply these findings to the function U, on R, with M as the harmonic
mean, i.e., M is generated by the function ¢(x) = 1/z. We employ the psi function

b(z) = (InT(z)),
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and we note the identities

, . > 1 _/°° U e
P'(14+2x) = Zi(k%—x)Q =/, 1¢ du,

k=1

valid for all z > 0 (see [2]). In order to prove inequality (3) and thus the theorem,
we must prove that the function

Wo(z) == Us(1/z) = In(T'(1+ ax)) — aln(l(1 + x))

is strictly convex on R, for every o > 1. This is true if and only if W/(z) =
a?Y'(1 4+ ax) — ay!(1 + z) is strictly positive on R, . Multiplying by z/a, we see
that this is true if the function z — x9'(1 + z) is strictly increasing on R, . This is
what we will now show to conclude the proof of the theorem. In fact, we shall show
more.
d
Lemma. The function p(z) := d—xw'(l + ) is completely monotonic on [0,00),
x
i.e., (=1)¥p®)(2) >0 forx >0 and k=0,1,2,....
Proof. We have that, for x > 0,

u
et —1’

P'(1+z) = /oof(u)eu"'C du, where f(u) =
0
so that - N
= ULy — —uzT Jo
o) = [ fedu—s [ ufteau

Integrating the final integral by parts yields

x/ooo uf(u)e “du = /Ooo{f(u) +uf'(u)}e ™ du.

Hence, for z > 0,
plx) = —/ uf'(u)e ™ du,
0
and consequently

pM(z) = —(—l)k/ uFt f (w)e ™ du  for k=1,2,....
0
Since ( 0 )
u—1)e* +
—f,(U) = W > 0 for u > 0,
it follows that p(x) is completely monotonic on [0, 00). A detailed study of completely
monotonic functions can be found in [7]. ©



Comments and Extensions

. We remark that we can also give a positive lower bound on (%, oo) for the
function p(z), namely
1 1

0 < —— —
222 3z3

2
< p(x) forall z > 3 (5)
To prove (5), we use a variant of the formula on p. 29 of [2] for n =1,

1 1 1
Inl'(1+2z) = (x+§>ln(x)—a:+§ln27r+ﬁ (6)

2 /°° /t 22 dt
- — dz .
z Jo 0o T2+ 22 e2m — 1

For notational convenience, we define an operator L by (Lg)(z) := ¢"(z) +
x ¢g"(x) and note that p(x) = L(InT)(1 + z). Now

1 1
L(first line of (6)) = 57~ 3.3
and
(%) = —4 122° 4 3222 4 42%2" 4 2°
x (22 + 22) 23 (22 + 22)* ;
which shows that L applied to the second line of (6) is positive. Thus
1 1
plz) = LInD)(1+2) > 55—

. Now one might ask the question of whether the surface area S, (p) of the £’-ball
in R™ satisfies similar convexity conditions. We do not know the answer. The
area S,(p) in general does not have an explicit representation; it can, however,
be expressed via the integral

n—1 2p—2 1/2
Sn(p) = 2”/ (1 + Zi:ll i (2p—2)/p) dLL‘l ce dl‘n_l.
Bn-1(p) (1 > xf)

Evaluating this integral numerically for n = 2, it seems that neither log(S>(p))

nor log(S2(1/p)) are convex or concave on [1,2], but that S, itself is concave
on [2,00].

. A most useful generalization of the P-norms are the substitution norms:

1(@1; 22, - =5 ) llp,q = [z 1llgrs [[22llgs - [12n]lg) o

where q = (q1,...,¢n) and where each z; lies in some Euclidean space R™:.
Denoting by V;,.m(p, @) the volume of the unit ball B, m(p, q) with respect to
this norm (with m = (my,...,m,)), we again have a closed form:

m Vi) T TA+%5) [~

Vn,m(pa q) = VZmi(p) : H Vmi(p) = F(l +]_132?21 mz) : HVmZ(QZ) (7)
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If ¢; = g and m; = m, this reduces to

Van(®,0) = Vam(p) (:;:EZ;)R = Va (%) (Vm;q))n,

which exhibits hidden symmetries and pretty special cases. The simplest case
is that of the volume V,, ¢(p) of the #’-ball in C" where all ¢; and all m; equal 2.

To prove (7), we first remark the identity

e g o P Y™ TA+5T0+T)
Awnqg (= lle) ™ de = 2 T(l+2)  T(1+ 42 (8)

for all p > 0, which follows by restricting the integration to the positive orthant
and then using Theorem 1.8.5 in [2] with f(¢) := (1 — #?/9)#/?_ The resulting
integral in that theorem can be reduced to a beta function.

The volume formula (7) follows from this by induction over n. In fact, using
homogeneity of volume and Fubini’s theorem, the volumes are easily seen to
satisfy

P En:llmi/P *
Vam(p,d) = < (1= |lzl2 )= dz - Vo_1m-(p,a)  (9)

where a* = (ay,...,a,_1) for a vector a = (ay,...,a,). Now, (7) is true for
n = 1, because then the substitution norm is just the ¢;-norm in R™ | and the
induction step follows by (8) and (9).

To extend and recover the Blaschke- Santalo inequality in this case, we note
that By, m(p,q)° = Bum(?',q’) where 2 —|— 1 =1and 1 q— = 1. Similarly
to the considerations in Section 2, the 1nequa11ty follows if we prove that the
function 1)V, m(p,q) is (H, G)-convez in every component.

Since the volume (7) depends multiplicatively on the p- and the ¢g-components,
and since (H, G)-convexity of the g-components is precisely the content of our
main theorem, all that remains to be proved is that the function

Wym(z) == InT (1 + xém,) — ﬁ:lln L1+ xm;)

is strictly convex in x on R, for all vectors m of positive reals. This is true if
and only if

n 2 n n
W) () = (Z mi> v <1+x2mi) =S m2'(1+ zm;)
=1 i-1 i-1

is strictly positive on R, . But this again follows from the strict monotonicity
of the function x — z¢'(1 + ), because we can estimate

mi- P (1 +xm;) < domi- ' (142> m).
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