ON PRODUCTS OF SEQUENCES

D. BorwErINt.
[Extracted from the Jowrnal of the London Mathematical Society, Vol. 33, 1958.]

1. Introduction.

It is well known (Hardy [3], 288) that if k > —1, A> —1 and

E U, = O (C, k), % V=1 (C, A),
n=0 n=0

and if the sequence {w,} is the Cauchy product of the sequences {u,}, {v,},

ki
8.6, Wy~ =, U, then

v=0
% w, = ot (0, k+A+1).
=0
£ 7 ki
Now put g,=2Zu, t,=2%2v, W,=2Zw,.
= »=0 =0
?n n+1u:0 n-—v i + y=0

and, in consequence of this and a well-known property of Cesaro means,
we obtain

TaroreM A. If kx> —1, A> —1, k4+A>—1, and s,~>o (C,«),
t,—>1 (C, A), then
%
n——l-—l 8,_,t,—~>or (C, kA).
This theorem is concerned with the Cesaro method of summability

and the Cauchy product of the sequences {s,} and {t,}. The object of
this paper is to obtain results of this type involving other methods of
summability and products more general than the Cauchy product.

2. Notation, definitions and preliminary results.

Suppose throughout that o, 7 are arbitrary complex numbers and that
{8}, {ts} n=0,1,...) are arbitrary sequences of complex numbers.

Given two summability methods P and @, P is said to include @ and we
write P2 Q if s, >0 (P) whenever s,—0c (§). If P> and Qo P, Pand
Q are said to be equivalent, and we write P~ Q The method P is said
to be regular if s,—o (P) whenever s, —o.

t Received 2 Qctober, 1957; read 21 November, 1957,
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Given sequences a = {a,}, b= {b,} (n=0, 1, ...), we denote by a *b
the sequence {c,}, where

and we write (a#b), for ¢,. Further, we write

a(z)= X o,z
n=0
and denote the radius of convergence of the power series by p,; we also
use this notation with b and ¢ in place of a.
We define next two methods of summability of which the second is

new.

The power series method (J, a) (see Hardy [3], 79-81). Let o= {a,}
be a sequence of real non-negative numbers, not all zero, such that p, > 0.
We write s,—o (J, a) if, as x—p, in the open interval (0, p,),
1 @0
Z a,8,4">a.
(x)n 0
The generalized Norlund method (N, a,b). Let a={a,}, b= {b,}
¢ = {c,} be sequences of real numbers such that ¢, = (a#b), #0. Given
a sequence {s,}, we define the sequence {s,'} of its (IV, @, b) means by the
relation

1
Sn _E_E Upypb,8,;
and we write s,+o (N, a, b) if 8,/ > 0.

The method (N, a, b) reduces to the ordinary Norlund method (N, a)
(Hardy [3], 64) when b,=1, and to the method (¥, b) ([3], 57) when
a, = 1. Further, when a, = «*/n! and b, = "/n! (x>0, § > 0) we find
that (N, a, b) is equivalent to the Euler-Knopp method (&, «/8) ([3], 180).

We say that the method (X, e, b) is bi-regular if both (N, a, b) and
(N, b, a) are regular.

The following two results are consequences respectwely of Toeplitz’
theorem (Hardy [3], 43) and a simple extension of part of this theorem

(Knopp [4], 73).

L. Necessary and sufficient conditions for the method (N, a, b) lo be
reqular are

ki
(i) 2|a,_,b,| < H|c,|, where H is a positive number independent of n;
v=0

(ii) for each integer v >0, a,_,b,/c,—0 as n— 0.
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IL. If s,—>o, t,—>7 and the method (N, a, b) is bi-regular, then, as
n—> 0,

M=

1
c. By by Sp—pby—>0T.
n v=0

3. The main theorems.
TarOREMT 1. If

(i) @, b, ¢, ke, I, m are sequences of real nwmbers such that c=a#b,
m=k#*l,

(i) 6, 70, (k*a), £0, (#B), %0, (mwc), 20,
(iii) the method (N, k=a, I b) is bi-regular,
(iv) s,—o (N, k, a), t,—7 (N, I, b), then

1 =
Up=— Z @, b8, o7 (N, m,c).
Cn =0
Proof. Let
f:k*a’: g=l*b: h:f*g:
r 1 - ' 1 ’ﬁ‘_: L ’ r
Sp :f‘ 2 kn—uapsw by —— % ln—ubvtv! Uy = E.fn—vgvsn-vty .
n v=0 Inv=0 v=0

We now have the formal identities

o0 @ o0
e L ’
Zyat= X f.8, 2%, B gt ar
n=0 =0 n=0

o0 e} o o0
= 2 k,2". L a,8,2". X L a*. Th,t an
n=>0 n=>0 n=>0 n=0

a0 oD
= 2w, et X e, 1,
n=0 n=0

from which we deduce that

Similarly we find that
h, = (m#*c), £ 0.

Now, by hypothesis (iv), s, =0, t," =7 and consequently, in virtue of
IT and hypothesis (iii),
'vn/f&ﬂ—>0'r.

Hence, w,—>0or (N, m, ¢), and the proof is complete.

t Cf. Mears ([5], Theorem 2).

Mo e
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TuEoREM 2. If (i) @, b, ¢ are sequences of real non-negative numbers such
that ¢, = (a#b), >0 and p, = p, =p>0, (ii) s, 0o (J, @), t, > (J, b), then
n

U . Xa,,bs, t->or(J,c)
cﬂ

n =~y n—p *y
v=0

Proof. Note that, for |z| < p,
¢(x) = a(z)b(w),

so that, by a familiar result concerning the singularities of a power series
on its circle of convergence, p, = p.
Further, in view of hypothesis (ii), we have for |z| <p,

=¢] [cs] oo
L Cuu "= X a,8,a". Z b,t, 2"
n=0 =0 n=0

The theorem follows.

3. Special cases.

We proceed now to obtain corollaries of the main theorems by consider-
ing special cases of the methods (N, @, b) and (J, a).

For convenience we denote the binomial coefficient (HIB) by ¢,°.
Note that, if d, —e¢,%, d,’ = e,”, then (d=d’), = i+,

The Cesaro method (C, x). The definition of this method is standard
for the range x > —1 and various equivalent definitions have been given
for the range « << —1 (see Borwein [2] for references).

For k, = €572, a, = ¢,% we denote the method (N, &, a) by (C, , a).
We then have the following result (proved in [2]).

Lemma. If a> —1, kt+a>—1, then (C, k)= (C, k, ).
The next theorem generalizes Theorem A.

TeeEOREM 3. If (i) a>—1, B>—1, kta>—1, A+B>—1,
(i) s,—o (C, k), t,~>7 (C, A), then

n
: Ye

r=0

Up = W’ EL,'B 8h 5'y+0'1' (O, K+A)

%
n—y
Proof. Let a,=c¢,% b,=¢,f G, = e%tFt | — ek, 1, =l
#n,, = il go that
c=a*b, m==k=l,

1 =»
and Uy, = — z L— bu Sp—y tv'
Cn =0
Then, in virtue of hypothesis (i),
Cyp = 0, (k # a’)n = ":1+m >0, (‘l * b)n S .e}}.+ﬁ >0, (m # c)n == Eﬁ+ﬁ+K+A >0,
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and, by the Lemma,
(N, k,a)~ (C, k), (N,I,b)~(C,X), (N,m,c)~(C,x+A),
(N, kxa, l4b)~ (C, k4a+1), (N,1%b, kxa)~(C, A\+B+1).

Since k+a—+1 > 0, A+B+41 > 0, it follows from the final two equivalences
that (N, k#a, I+b) is bi-regular.
The theorem is now an immediate consequence of Theorem 1.

The Euler-Knopp method (E,A). Suppose that A>0, §>0, and
recall that the sequence {s,'} of (Z, A) means of a sequence {s,} is given by

s, = (A1)"" 5 (n) At ?s;

y=0 \V

TSR S S CL il

r=0 (n_gp)l j s
go that, if [, = (8A)*/n], b, =26"/n!, then (N, b)~ (&, A).

TuroreM 4. If (i) x>0,A>0,8>0, (ii) s,—>o0 (&, k), t,—>7 (&, A),
then

== (8+1)—ﬂ§J (’:) $au b >ar (E ’%?).

Proof. . Let. ios = inlashn—istinl, o =—={5-L1nl, JEe<i"nl,
I, = (BA)*[nl, m, = (k}3A)"/n!, so that

c=a*b, m=Fk#l,

s

and Uy, = W 078506

1
Cn v=0

i

Then
¢, >0, (bxa),= (k+1)"n!>0, (Ixb),= (BA+8)"/n!>0,

(m#¢), = (k-+0A-+641)"/n! > 0.
Further,

A M b, K--6A
(N, b )= (By), (N, L)~ (B,X), O, m,c)=(8," L),

and (N, kwa, 1s0)~=(B, 555), (N, 1xb, bva)~(E, e

Since (B, y) is regular for y > 0, it follows from the final two equivalences
that (N, k=a, l40) is bi-regular.
We now complete the proof by appealing to Theorem 1.

The method A,. Suppose that a > —1 and a, = ¢,% so that p, =1
and a(x) = (1—=x)*t1; and denote the method (J, a) by 4,. Then 4,
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is the Abel method. It has been proved elsewhere (Borwein [1]) that if
B=>a>—1,y=>0, then 4,24,2 (C, y).
The next theorem is a simple corollary of Theorem 2.

TaEorEM 5. If a>—1, B> —1 and s,—>0 (4,), t,>7 (4y), then

n
# Eﬂ €n—v Evﬂ Sppby =0T (Aa+ﬂ+1)'
The Borel exponential method B. Suppose that §>0, a,=1/n!,
n="0%n!, ¢, = (8+1)*/n!, so that c = a=*b, p, = p, = p, = 0 and a(z) = €=,
b(x) = €%, ¢(x) = e®12,  We recall that the Borel method B is in fact
the method (J, a). Clearly, B~ (J, b)~ (J, ¢).
Hence, as a special case of Theorem 2, we obtain

THEOREM 6. If s,—>o (B), t,—~7 (B), then, for any 8 >0,
(S+1)n ¥ (”) 54,4 o (B).
=0 \V
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