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Abstract. Using Fourier transform techniques, we establish inequalities for integrals of the form

/0011[ sin(axX) dx
0 k=0 KX .

We then give quite striking closed form evaluations of such integrals and finish by discussing various extensions
and applications.
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1. Introduction

Motivated by questions about the intedral

— (7T X
u._/o kl:[lcos<k)dx, (1)

we study the behaviour of integrals of the form
oo N H
/ sin(agX) dx.
0 k=0

In Section 2 we use Fourier transform theory to establish monotonicity properties of these
integrals as functions of. In Section 3, by direct methods, we give closed forms for these
integrals and for similar integrals also incorporating cosine terms. In Section 4, we provide
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1Through J. Selfridge and R. Crandall we learned that B. Mares discovered th%
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a very different proof of one of these results following an idea in an 1885 papeooh&t”
[2]. Finally, in Section 5 we return to the study of (1).

2. Fourier cosine transforms and sinc integrals

Define
sinx .
singx) = it x # 0
1 if x=0.
and, fora > 0,
1 if|x]<a
X) = - if x| =a
Xa .— E =
0 if|x|>a.

We first state some standard results about the Fourier cosine transform (FCT) which may
be found in texts such as [4, ch. 13]. .
The FCT of a functionf € L1(—o00,00) is defined to be the functioh given by

f(t) = f (x) cos(xt) dx.

=L

Observe that iff is also even, then so i and

f(t) = \/?/ f (x) cos(xt) dx.
T Jo

Further, if f is even andf € Li(—00,00) N La(—00,00), then f & La(—o00,00). If,
in addition, thisf € L;(—00,00), thenf is equivalent to the FCT of, that is

f(x) = f(t) cos(xt)dt fora.a.x € (—oo, 00).

1 o0
V27T /700
Hence, iff iseven,f € Ly(—o00,00) N La(—00,00), fe L1(—o00, 00), andf iscontinuous
on(—a, a) for somex > 0, then

f(x) = f(t) cos(xtydt forx € (—a, ),

1 o
A/ 2n \/—oo
since the right-hand term is also continuous(e,«) by dominated convergence.

Note that, fora > 0, the FCT ofy, is a\/gsino(ax), so that the FCT o4 %sino(ax) is
equivalent tgy,. (In fact it can easily be shown to be identically equajioeither directly
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or by appeal to a standard result about inverse Fourier transforms of functions of local
bounded variation.)

Note also thatiff;, f, are FCTs of even functionf, f, € L1(—o0, 00) N La(—00, 00),
then f, f, is the FCT ofﬁ fy % o, where

f1 % f2(X) :=/ fi(x —t) fo(t)dt for all realx.

o]

In addition, we have the following version of Parseval’'s theorem for such even functions:
(o] o0 N R
/ f1(x) fa(x) dx = f f1(x) f2(x) dx,
0 0
provided at least one of the functiotig f; is real.
We are now in a position to prove:

Theorem 1. Suppose thaa,} is a sequence of positive numbers. Lets Y ¢, ax and

oo N
Th = / Hsino(akx) dx.
0 k=0

(i) Then

1
0 < ——,
< Th = ao 2
with equality if n= 0, or if ag > s, when n> 1.
(i) Ifanyy <ag < sywithn> 1, then
1n

O<t1 <tTh < ——
+1 = In .
a 2

(i) Ifag < sh, Withng > 1, and) 2y a2 < oo, then there is an integern> ng such that
oo o0 oo OO0
— / [ [ sinqacx) dx > / [[siné(ax)dx>0 foralin=>ny.
0 k=0 0 k=0

Observe that applying Theorem 1 to different permutations of the parameters will in general
yield different inequalities.

Proof. Part (i). Thattg = %% is a standard result (proven e.g., by contour integration

in [1, p. 157] and by Fourier analysis in [3, p. 563]) with the integral in question being
improper (i.e. not absolutely convergent—the integrals in the other cases are absolutely
convergent). Assume therefore timat 1, and let

1 /= - 1 /=
Fo = %\/;XE‘O’ Fn = (\/ 277,’)1 nfl* fox...x f,, wheref,:= a\/;xan
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Then it is readily verified by induction that, for > 1, F,(x) is an even function which
vanishes orf—oo, —s,) U (S,, 00) and is positive orf—s,, $,). Moreover,Fn, 1 = J% =
* foiq, SO that

l o0
R— Fo(x —t) f t)dt =
@/_w =D T ) dt = 2

X+ans1
Frni1(X) = / Fn(u) du.
X

—an41

HenceF, . 1(x) is absolutely continuous of-o0, co) and, for almost alk € (—o0, 00),
2an01F) 1 (X) = Fn(X + @nt1) — Fn(X — @nt1) = Fn(X + @nt1) — Fn(@ni1 — X).

Since(X+any1) = max (X —any1), (@nr1 —X)} > 0Owhenx > 0, it follows that if F,(X) is
monotone non-increasing @@, oo), thenF, ,(x) < Ofora.a.x € (0, c0), and soFy1(X)
is monotone non-increasing df, co). This monotonicity property of, on (0, co) is
therefore established by induction for alk 1. Also

n
Fn is the FCT oby(X) = Hsino(akx), and o, is the FCT ofF,.
k=1

Thus, all our functions and transforms are even and ale{r-oco, c0). Hence, by the
above version of Parseval’s theorem,

 RoRodx= = /T M B0 d 2
rn—fo (0 Fo(x) X—@@fo 2() dx. @

Whenag > s,, the final term is equal tég\/g\/gon(O) = %% sinceo,(X) is continuous
on (—oo, 00); and whenag < s,, the term is positive and less th@% since Fr(X) is
positive and continuous for & X < s,. This establishes part (i).

Part (ii). Observe again thadt, ; = J% Fn * fn.1, and hence that, foy > 0,

y 1 y 00
/O Fasa00 X = —— /O dx /_ Falc=D a0t
1 y any1 1 ant1 y
= / dx/ Fan(x —t)dt = dtf Fn(x —t)dx
0 - 0

2a.n+1 ani1 2a.n+]_ —an41
1 a1 q y—t q y q 1
- t/ Fa(U) u:/F(u) u+ (11 + 1),
28011 J_a,, Jt " o 280, & C

where

any1 0 any1 y—t
|1;=/ dt/ Fawdu and |2:=/ dt/ Fo(w) du.
—any1 —t —an41 y
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Now I, =0 sincef?t Fn(u) duis an odd function of, and fory > a, 1,

any1 y—t 0 y—t
I, :/ dt/ Fn(u)du—i—f dt/ Fn(u)du
0 y —an+1 y

A1 y an+1 y+t
= —/ dt/ Fn(u)du+/ dt/ Fn(u)du
0 y—t 0 y
y

any1
=/ dt (Fr(u+1t) — Fp(u))du <0
0 y—t
sinceF,(u) is monotonic non-increasing for> y —t > y — a,.; > 0. Hence
y y
/ Fapa(X)dx < / Fa(x)dx  whenani; <y <s,. 3)

0 0
It follows from (2), and (3) withy = ag, that 0< 7,41 < 1, if any1 < @ < S, and this
completes part (ii).
Part (ii). Let p(x) := liMp_ o 02(X) = ]_[Eilsinc?(akx) for x > 0. Observe that the
limit exists since O< sinc(axx) < 1, and that there is a sétdiffering from (0, co) by a

countable set such that® sinc(axx) < 1 whenevex € Aandk = 1,2, .... Now

2

. 8 X
sindagx) = 1— 8¢, where0< —'; — —ask — oo,
ag 3

so that) 2, 8k <oo, and hence, by standard theory of infinite produetgx) :=
liMn_ 00 on(X) €Xists anar?(x) = p(x) > 0 forx e A. It follows, by part (ii), that

rnz/ O’nz(X)dXZ/ o(xX)dx >0
0 0

for all n > n;, wheren; > ng is an integer such that,;; < ag for all n > n;. In addition,
by dominated convergence,

lim 1, = /ooo(x)dxz /oop(x)dx,
0 0

n—oo

and this completes the proof of part (iii). O

3. Some elementary identities

In this section we prove some identities involving products of sines and cosines by straight-
forward methods not involving Fourier transform theory. We adopt the usual convention
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that empty sums have the value 0 and empty products have the value 1, and we define

1 if x>0
signix) :==4 0 ifx=0
-1 ifx<O.
Theorem 2. Let &, a, ..., a, be complex numbers with B 1. For each of the2"

ordered n-tuples’ := (y1, y2, ..., ¥n) € {—1, 1}" define

n
by i=a0+ Y wa & :=]]n

k=1 k=1
(i) Then
0 forr=1,2,...,n—-1
&b, =1 ony -
14 - —
e 2"n! l_[ak forr =n,
k=1
and
n ) 1
Hsm(akx) = — €, coy b, x — z(n +1) ).
o 2" \ 2
= ye{-11)
(i) Ifap, ay, ..., a, are real then
o B sin(agx .
/ 1_[ @) 4y — Z €, sign(b, ).
0 k=0 X 22 ye{ 1,10
If, in addition,
n
a0 > lal.
k=1
then

sm(akx) _
[TT1

k=0

I\)l';l

Proof: Observe that
n
eaOtl_[ (et — e7ad) Z €, e,
k=1 ye{—-1,)n

Sincee™! — e~&! = 2a,t + O(t?) ast — 0, the first summation formula in part (i) follows
on equating coefficients df in the above identity. Note that the formula also holds for
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r = 0 if we defineb) = 1 even wherb, = 0. Similarly

n

. ; 1 iagX —iagXx iaKX —iagXx
gsm(akx): (2i)n+l(elao _ g i )k:l(e'a —e A )

1 ib —ib
= —— €, (€% — (=D"e”™)
(2I )n+l yE[_lyl}n
1
== Z € co;(bkx T+ 1)),
2 ye{-L1n 2

and this completes the proof of part (i).
To prove part (ii) of the theorem, observe that

/ 1—[ S'n(akx) dX — in/ X—n—lCn(X) dX, (4)
0 k=0 2" Jo

X

whereCp(X) = Zye{_l,l}n €, cogb, x — Z(n+1)). BecauseC,(x) is an entire function,
bounded for all reak, with a zero of orden + 1 atx = 0, we can integrate the right-hand
side of (4) by parts times to get

© N sin(agx) 1 [>®dx .
/o I1 < dx=2nm/0 ~ > &b sin(b,x)

k=0 yel=11n

1 * sin(b, x)
= nnl Z Gyb;f _Xy —dX

Cyel-Lyn 0

1 .
> &b signb,).

nnl
M et

N

N
N

Since the additional hypothesis implies that> 0 for all y € {—1, 1}", the final formula
in the theorem follows from part (i). O

Corollary 1. If 2ax > a, > 0fork=0,1,...,n—1and

n n-1
da>a> ) a,
k=1 k=1

then

© L sin(agx r
/ 1_[ (ak)dx=£1_[ak forr =0,1,...,n—1,
0 ko X 21

while

/""ﬁsin(aKX)dx_g ”ak_(a1+az+-~-+an—ao)”
0 g X 2 2n-1n! '



80 BORWEIN AND BORWEIN

Proof: Lety’ :=(-1,-1,...,-1) € {—1,1}", Observe thab, :=ay—a; — --- —an
<0, thatb,, > 0 for every othety € {—1, 1}", and thak, = (—1)". It follows that

© 1 sin(agX) 7z 1 .
/O g . dx:Eznnl Z €, b sign(b,)

tyef=1an

T 1 .
== €,b) +¢,b0, (signb,) — 1))
2 2"n! sl 14 14
o L 2(—=b,)
= E{ kl:[lak - 2nn| ’
as desired. O
Remarks 1. (a) If ap, &, .. ., &, are real and non-zero, then, by Theorem 2(ii),
© N sin(agx) 7 1 i
rn:=/ dx == e, bl sign(b,)
0 kl:IO X 2 2"n! yegl}n s Y
T 1 n N
=S5 > b+ ) €, bl(signb,) — 1)
S\ re{-L1n b, <0

T 1
=—J1-— bt
2a0{ 2-Inlgzay - - - ap i <OEV V}
(b) Suppose further thak > 0 fork =0, 1, ..., n. Consider the polyhedra
Pn - Pn(a()v ala LI ) an)
k=1

n
=10, X, .. Xn) | —80 < )Xk < @0, —ak < Xk < & fork=1,2,...,n}.

Qn = Qn(a()v alv »an)

n
= L (X1, X2, -+, Xn) | —aogZ:akxkgao,—lgxkgl fork=1,2,...,n},
k=1

Hoi={(Xe, X2, ..., %) | —1<x <1 fork=12 ...,n}
(i) If we return to Eq. (2) we observe that

. 1 min(sn, 2) .
= - e X
a02”a1az---an/o Hou  Keo T e

7 Vol(P,)  m Vol(Qn)

T a0 Majay---a, 230 Vol(Hy)

Tn

Moreover, we now explain the behaviourgfwhen we note that the value drops precisely
whenthe constraintag < ZE=1 aXx < apbecomes active and bitesinto the hypercHhe
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(ii) We sketch a probabilistic interpretation. From (i) it follows that := 2agtn/7
may be regarded as the probability that independent random variahlés= 1,2, ...}
identically distributed in{1, 1] satisfy|Y p_, axXx| < a. Correspondingly

2ag /O" =
= — sing(axx) dx
T 0 g_

is the probability that the constraihZE‘;1 aXk| < agp is met. We have also shown that
decreases monotonically m,.
(c) Consider now the special case

n = Tn_1 =/ sinc'(x) dx.
0

In this case we havay = 1 fork =0, 1,...,n— 1, and it is straightforward to verify that

Z bn 1_ Z (— 1)r+1< )(n 2I’)n_l,

ye{-1,1}"1,b, <0 1<r<}

and hence that

_rli 2 s (Y aym
““_2{1 2 1(n_ 1)l 2. D (r—l)(n 20 ]

n
1<r<j

o 1 (=" (n—2r)-1
_§{1+2n—2 2 r—1! (n—1)! }

n
1=r<}

The following formula foru,, appears as an exercise in [5, p. 123]:

2”(n—1)' Z( 1)f< ) — 2"t

0<r<n

Mn =

To show that this formula for,, is equivalent to the one derived above, it clearly suffices
to prove that

Z (—1)f< >(n—2r)” L=2"tn—1! + Z( 1)f+1< i)(n—Zr)”l.

n n
0<r<3 1=r=}

Since

()-222) =5
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this is equivalent to proving that

3 (- (?)(n —2r)" = 2 1py,

n
0<r<}

which, by symmetry, is equivalent to proving that

1 . r n n__ »n
Hr2:(;(—1) <r)(n—2r) =2

But the left-hand side of this latter identity is the coefficient'bin
. n
> (=1 (r )emz”t =e"(1-e?)" = (2 sinht)".
r=0

Since 2 sinlt = 2t+0(t?) ast — 0, the coefficientis indeed 2and the desired equivalence
of the formulae fon,, is proved.
The next theorem extends Theorem 2 by adjoining cosines to the product of sines.

Theorem 3. Leta, ay, ..., an.m be complex numbers withn 1 and m> 0. For each
of the2"™™ ordered(n + m)-tuplesy = (y1, ¥2, . . ., ¥nem) € {—1, 1}""™ define

n+m n
b, :=ao+2ykak, ey:zl_[yk.
k=1 k=1
(i) Then
0 forr=12....,.n—-1
Z exb, =1 onempy ﬁak forr =n
ye{—1,1n+m .k:]_ -
and
n n+m 1 T
(H)sm(akx)) <k1_[ cos(akx)> = oo € cos(b],x -5+ 1)).
= =n+1 ye{—11n+m
(i) If ag, a1, ..., anym are real then
Sy gl sin(akx)>( gasll ) 7 1
cogaXx) |dx = = ——— e, bl sign(b,).
/0 (kE[o X kl:[+1 2 2rtmn ye{=1,1n+m Y Y
If, in addition,
n+m

20>y lal,
k=1
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then

o (I sin(aex) ntm n
fo (H < )( I cos(akx)> dx:%l_[ak_

k=0 k=n+1

Proof: By Theorem 2 we have that

n+m _ 1 / -
[ ] sintax) = onm > g cos(byx -5 (+m+ 1)) :
k=1 ye{—1,1n+m
where, for eacly = (y1, ¥2, ..., Yosm) € {—=1, 1J"M,
n+m n+m
b, = a0+ ) né, e, =[[n==1
k=1 k=1
and
0 forr=1,2,...,n4+m-1
6/ br _ n+m
- n-+m | _
e e T | 2! k]jl ac forr =n+m.
Differentiating these expressions partially with respe@ita, a2, ..., an+m Yields part

(i) of Theorem 3 with

m n m n
€y ZE;,kl:[an-&-k = (kljl)/k> !:[lynz-t-k = kl:[lyk

To deal with part (ii) of Theorem 3 we observe that, by Theorem&,ifay, . . ., anrm are
real, then
o0 T sin(akx) b 1
|| dx==—— "B sian(b.).
/o ko X 2 2+M(n + m)! ye{_zl;wm €5y gn(b,)

Differentiating partially with respect tan,1, ani2, ..., 8.m, We get

/0"0 (l—[Sin(ij)> ( ”li’[“ Cos(akx)> i

k=0 k=n+1

r 1 )
=S/ Z €, b signb,).

25 on+mpl
2 2n+mpl el “Tam

If, in addition,

n+m

arz ) la,
k=2
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then, by Theorem 2,

oo N+m n+m
sm(akx) b4
dx=—
f X []a

2 k=2
Differentiating partially with respect ta,,1, ani2...., anm, We get

o) n n+m n
f (1—[ sm(akX)> ( 1—[ cos(akx)) dx=%ﬂak. O

k=0 k=n+1

Corollary 2. If 2ax > a,4m > O0fork=0,1,....,.n+m—1and

n+m nfm-1
Z ax > ag > Z a,
k=1
then
o/ r+m n
/ <1—[sm(akX)) ( 1—[ cos(akx)) dx = %Hak forr=1,2,...,n—1,
0 k=0 X k=r+1 k=1
while
. N n+m
/ (HSIn(akX)) ( l—[ cos(akx)) dx
0 k=0 X k=n+1

- (@ +a+ - +anm—a)"
l_[ak B on+m-1p| :

Proof: The first part follows immediately from Theorem 3, and the second part can be
derived from Corollary 1 witm + m in place ofn by differentiating partially with respect
toany1, any2, ..., anim, @S above. O

4. An alternative proof

The next theorem is a restatement of the last part of Theorem 3 restricted to real numbers.
It appears as an example without proof in [5, p. 122] where it is ascribed to @anh&t”

[2]. Stérmer’s article does not contain the integral in question, but his proof for the series
identity

Z(—l)r”(]—[ Sm(rak)) (H cosire; )) ]_[ a,
r=1 k= k=1

n
provided Y " |a| + Z Icj| < .

k=1 i—1
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is readily adapted to yield a proof of the theorem which is radically different from the proof
of Theorem 3.

Theorem 4. Ifa, ai, as,...,a,, C1, Cp, ..., Cy, are real numbers with & 0 and

n m
a> >y lal+ Y lcl,
k=1 j=1

then

/oo 1_[ sin(axX) 1—[ cos(c; %) sin(ax) dx =~ 1_[ a. (5)
0 X j=1 X =

k=1

Proof: We prove the theorem by induction. Applying as before the convention that empty
sums have the value 0 and empty products have the value 1, we observe that formula (5)
for the casen = m = 0 reduces to the standard result

/ sin(ax) dx:z_
0 X 2

Formula (5) also holds for the case= 1, m = 0, by the case = 1 of Theorem 1 (which
can easily be proved directly).
Assume that the theorem holds for certain integers 1 andm > 0. First suppose that

m+1

a>Z|ak|+Z|cJ|

Then

n m
a>lag®cnal+ Yy lad+ Y Icl,
k=2 =1

and hence

® sin(ay & Cma1) [ — sm(akx) sm(ax)
e (fe) (Fleseen) =

=2
n

= %(al + i) [ [ - (6)
k=2

Adding the two identities in (6), we immediately obtain

o n m+1 . n
/ (l_[ sm(akx)> (1—[ cose X)) sin@x) 7 e @
0 j=1 X 2 ke

k=1
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Next suppose that

n+1 m

az= Y lal+ ) lcl,
k=1 =1

and lett lie between 0 and,,;. Then, by (7), we have

o sin(agx) m ' sin@x) 7w
/O (]_[ < )(Ecos{qx)) cogtx) x dx_Egak. (8)

k=1

Now integrate (8) with respect tdrom 0 toa,; to get

oo (2 sin(aex) m sin(ax) 7
fo (1_[ x jl:[lcos(cjx) ™ dXZEHak' 9)

k=1 k=1

Identities (7) and (9) show that if the theorem holds for a pair of integers with
n>1, m > 0, then it also holds for the pairs m+ 1 andn + 1, m. Since it holds for
n =1, m=0, the proof is completed by induction. O

Remarks 2. Parts of our previous theorems do, of course, overlap with Theorem 4, but
this latter theorem does not deal with cases where the identity in (4) fails, whereas the other
theorems do. Thus, for example,

/ sinax) dx =
0

/ sina(x) smc(—) dx =
0 3

OOsin X) sing| X sing| X dx =
[, s (3) (13> B

Dosin X sinc(x) sinc(X dx

_ 467807924713440738696537864469
~ 935615849440640907310521750000

N N N

yet

(10)

and this fraction in (10), in accord with Corollary 1, is approximately equal to
0.499999999992646. When this fact was recently verified by a researcher using a computer
algebra package, he concluded that there must be a “bug” in the software. Not so. In the
above example} + £ +-- -+ & < 1, butwith the addition ofs, the sum exceeds 1 and the
identity no longer holds. This is a somewhat cautionary example for too enthusiastically
inferring patterns from symbolic or numerical computation.
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5. Aninfinite product of cosines

We return to the integral, which we denote foyin (1). Let

T X
C(X) 1= nljlcos(n).

This product is absolutely convergent, since ¢os= 1 — 23‘—; + O(n—14) asn — oo. Here

and elswhere in this section we ignore the countable set of points on which individual terms
of such an infinite product vanish. Recall the absolutely convergent Weierstrass products
[4, p. 144]

, > x? = 4x?

n=1 =0

from which it follows that

o0 00 4X2 o0 4X2
Cx) = l_[l_[ ( 2n2(2k+ 1)2) l_[l_[ <1_ n2n2(2k + 1)2)

k=0 k=0n=1

kl:[smc<2k+ 1> (11)

Itis interesting to note that the alternative absolutely convergent product expan€igx)of
afforded by (11) can also be derived from the Weierstrass expansion ok stogether
with Vieta’s formula [3, p. 419] in the form

sing(2x) = l_[ cos(in>,
n=0 2

since every positive integer is uniquely expressible as an odd integer times a power of 2.
Now apply Theorem 1 and (11) to obtain

o0 ) X 7T
O<p= ; C(x)dx:NIE)n/ nsmc(Zk 1>dX<Z'

These sinc integrals are essentially those of the previous Remarks. Note that all parts of
Theorem 1 apply sinc® ., mipr < 00 = Y oq o1
We observe that Theorem 1 allows for reasonable lower bounds brileed, as céx >
1-x? > 0for0 < x < 1, we see—using the product form for sinc—t8&tx) > sino(x)
on the same range. Hence, by Theorem 1(iii),

T o 1 /" .
T / C2(x) dx > —/ sinax) dx ~ 5894898722
4 0 7 Jo
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We could produce a better lower bound, and indeed lower bounds for our more general sinc
integrals in the same way.
In fact

oo
/ C(x) dx =~ 0.785380557298632873492583011467332524761
0

while 7 ~ .785398 only differs in the fifth significant place. We note that high precision
numerical evaluation of these highly oscillatory integrals is by no means straightforward.
If C(x) is replaced by

o _ B X
C*(X) := cog2X)C(X) = COg2X) HCOS<”> ,

we similarly obtain

o = 2x
C*(X) = sina4x) r1:[ls|nc(2n — 1) ) (12)

It now takes 55 terms befor§+ % +---+ ﬁ > 2, so that the corresponding integrals
drop belowg. Indeed, lengthy numerical computation shows that

i ° 1
0<—- — C*(x) dx < —.
=8 /o (x)dx < 751
We finish by recording without details that (11) allows us to obtain the Maclaurin series for

log C(x). Itis

2 g4k — 1722k
logC(x) = —Z TCJT(ZK )xz",

k=1

with radius of convergenc%en. Thisin turn shows that the coefficienbd® in the Maclaurin
series forC(x), saycy, is a rational multiple ofr? and is explicitly given by the recursion

. R PR 4.3
Co =1, Ch = - ;(4 — 1)ch_k forn > 0.

Thus

1 11 233 1429
C X) = l = 2X2 o 4X4 _ 6X6 Tty
() 127 X T 2320" 5443200 * T 304819200

88x8 + 0Xx9).

Incidentally, as pointed out by David Bradley, the Maclaurin series ofGgg) can be
obtained without appeal to (11) via the Weierstrass product fopxgos
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Note

1. Through J. Selfridge and R. Crandall we learned that B. Mares discovered thd;.
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