Surprise Maximization

D. Borwein, J. M. Borwein, and P. Maréchal

The Surprise Examination or Unexpected Hanging Paradox has long fascinated
mathematicians and philosophers, as the number of publications devoted to it
attests. For an exhaustive bibliography on the subject, see [1].

We examine and solve the optimization problems arising from an information
theoretic avoidance of the Paradox. These problems provide a very satisfactory
application of both the Kuhn-Tucker theory and of various classical inequalities
and estimation techniques. We assume some elementary knowledge of optimiza-
tion but recall the necessary convex analytic concepts in the course of the paper.
Readers unfamiliar with this background may simply skip a couple of proofs and a
few technical details.

1. AN INFORMATION MEASURE OF SURPRISE. The Paradox, as formulated
by Timothy Chow in this MONTHLY [3] is:

A teacher announces in class that an examination will be held on some day
during the following week, and moreover that the examination will be a
surprise. The students argue that a surprise exam cannot occur. For suppose
the exam were on the last day of the week. Then on the previous night, the
students would be able to predict that the exam would occur on the following
day, and the exam would not be a surprise. So it is impossible for a surprise
exam to occur on the last day. But then a surprise exam cannot occur on the
penultimate day, either, for in that case the students, knowing that the last
day is an impossible day for a surprise exam, would be able to predict on the
night before the exam that the exam would occur on the following day.
Similarly, the students argue that a surprise exam cannot occur on any other
day of the week either. Confident in this conclusion, they are of course totally
surprised when the exam occurs (on Wednesday, say). The announcement is
vindicated after all. Where did the students’ reasoning go wrong?

We study two optimization problems arising from an entropic approach to maxi-
mizing surprise. The idea of such an approach was proposed in outline by Karl
Narveson [3, p. 49]. We do not discuss here the various approaches to the logical
resolution of the paradox itself; the interested reader may consult [3]. Rather we
attempt to answer the question:

What should be the probability distribution of an event occurring once every
week so that it maximizes the surprise it creates?

In the first place, this requires us to define a measure of surprise. Let us start by
posing an information theoretic counterpart of the paradox: during a period of m
days an event (such as a test given by a teacher or a surprise tax audit) occurs with
probability p; on day i,i = 1,..., m. We wish to find a probability distribution that
maximizes the average surprise caused by the event when it occurs.
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We consider a measure of surprise analogous to the one used in the celebrated
definition of the Shannon entropy [6]. The surprise on day i is the negative of the
logarithm of the probability that the event occurs on day i given that it has not
occurred so far. As in the classical definition, —In p is used to measure the
surprise associated with an event of probability p, which is also a measure of how
much we learn if it occurs. The logarithm makes the measure additive, in the sense
that the information associated with independent events should sum up when they
both occur. The use of conditional probabilities introduces some causality in the
notion: it accounts for what is already known of the previous days.

The event ‘test occurs on day i’ is denoted by i, and its probability is denoted by
P(i) or p,. The event ‘test does not occur on day i’ is denoted by ~ i. The quantity
to be maximized can therefore be written as

—iP(i)lnP(iI ~1,...,~(i—1). (1)
i=1
Using Bayes’ formula for conditional probabilities, we obtain
P(~1,...,~(i—=Dli)P(i)
P(~1,...,~(i—-1))
P(i)
1= (P(1) + - +P(i - 1))
P(i)

P(i) + = +P(m) "’
We are led to consider the following optimization problem:

(£,) nf{S,(p)lp € R", 1 = (u,p)}. (2)

Here, u is the m-vector whose entries are all equal to 1 and S
function

P(il ~1,..., ~ (i - 1))

. 18 the surprise

m

S.(p) = L h
j=1

m

pj’% 2pi , pER”, (3)
i=j

where / is defined on R? by

x
xIn— —x ifx>0andy>0,

h(x,y) = (4)

0 ifx=0and y >0,
+ otherwise.

Figure 1 displays the graph of the function 4. For all p satisfying the constraint in
(2), S, (p) differs from the negative of the quantity in (1) only by a constant. The
factor m~' was introduced into (3) to make subsequent computations more
aesthetic and the limit analysis more harmonious.

We note that §,(p) can be regarded as a variant of the Kullback-Leibler
information measure of p relative to its (normalized) tail q:

1

m

Zpi, j=1,...,m. (5)

i=j

q= (ql""’qm) with qj =

The Kullback-Leibler information measure is an extension of the Boltzmann-Shan-
non entropy. It is also referred to as relative information measure, cross-entropy, or
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I-divergence. Given two probability measures P and Q on a probability space, the
relative information of P with respect to Q is

dP dP darP dpP
F(PlIQ) = f(—ln— - —) dQ = f(m@ - 1) ap

if P is absolutely continuous with respect to Q, and #(P||Q) = +co otherwise.
Those interested in the statistical meaning of this measure may refer to [5]. For an
extended discussion of the Maximum Entropy Principle, one may consult [4] and
references therein.

Also of interest is the following continuous time formulation of Problem (2).
Suppose that the event occurs at some point ¢ in the time interval [0, T'], with
probability density p(z). By analogy with the discrete case, it is reasonable to
consider the following optimization problem:

() inf{#(p)lp € Li([0,T]),1 = <u, p)}, (6)
in which the surprise function 7 is the functional defined on L ([0, T']) by

T 1 .7
F = | h t),— ds| dt,
(o) = [Th[ o0 [To5) s
and u denotes the function identically equal to unity on [0, T'].

2. SURPRISINGLY, SURPRISE IS CONCAVE. In this section, we establish the
convexity of (the negative of) our measure of surprise. An extended real-valued
function on R” is said to be closed (respectively, convex) if its epigraph (the set of
points that are above or on its graph) is closed (respectively, convex) in R"*'. If a
convex function is not identically equal to +o and is nowhere equal to —o (such
functions are said to be proper), then being closed is the same as being lower
semi-continuous. The domain of a convex function f is the set of points where it is
less than +o; we denote it by dom f. Given any function f on R" (convex or not),
the convex conjugate of f is the function

(€)= sup{dx, &) — f(x)lx e R}, EeR"
It is easily shown that f* is always closed and convex [7, Theorem 12.2]. Further-
more, if f is closed, proper, and convex, then so is f* and the bi-conjugate
f** = (f**is f itself [7, Theorem 12.2]. Even without this theoretical underpin-
ning, computation of f as a double-conjugate provides an accessible way of
establishing both convexity and semi-continuity.

Lemma 1. The function h defined in (4) is closed and convex.
Proof: One may show directly that /4 is the convex conjugate of the indicator

function

0 if(&,m)ecC,
+o otherwise,

where C is the convex set {(£, 1) € R?|n < —exp £). This proves that 4 is closed
and convex. u

Convexity of 2 can also be derived from the easily proven fact that, for any
interval /I, a function

(x,y) = yf(o™")

June—-July 2000] SURPRISE MAXIMIZATION 519

This content downloaded from 142.58.52.103 on Wed, 6 Nov 2013 18:50:56 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

is convex on [ X (0,) if and only if f is convex on I. [A bad way of proving
convexity of 4 is to compute the Hessian matrix and check that it is positive
semi-definite.]

Using Lemma 1, we deduce that S, and % are convex. Indeed, we have

m
m

$u(0) = Lh(plopl) and  S(p) = [THCp(0): LPN0))

in which J is the (m X m)-matrix whose entries are m~' on and above the

diagonal and 0 elsewhere, and 71 L([0,T]) — &([0,T] is the linear mapping
defined by
1 7
[71(0) = 5 [ p(s) ds (7

Composition of a convex function with a linear mapping is, of course, convex.

50

Figure 1. Graph of (x,y) = xIn x/y — x.

3. DISCRETE TIME ANALYSIS. Constrained optimization problems such as (2)
are traditionally approached using concepts from duality theory, which flows from
the theory of Lagrange multipliers. Roughly speaking, duality theory reduces
constrained optimization problems to unconstrained ones. A modern version of
convex duality theory is best posed in the language of Fenchel conjugation [7,
Section 31]. We recall some additional basic facts. Let f be a closed proper convex
function on R”, let 4 be an m X n matrix, and let y € R™. We consider the
linearly constrained optimization problem

() inf{f(x)lx € R",y — Ax = 0}. (8)
We denote the optimal value of (%) by V(%), the feasible set by F(%), and the
solution set by S(2). Thus, F(2) := {x|y — Ax = 0} and S(») = {x € F(P)|f(x)
= V(2)}. The Lagrangian of (8) is the function

F(N,x) = f(x) + N,y —Ax), AER" xeR".

520 ©THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 107

This content downloaded from 142.58.52.103 on Wed, 6 Nov 2013 18:50:56 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

For a given N, Z(A,x) can be regarded as a penalized version of f. Each
component of N fixes the price (positive or negative) to be paid if the correspond-
ing constraint is violated. [This is more easily understood if the constraints Ax =y
are replaced by Ax <y, which may be handled by introducing an additional
variable z > 0 and writing Ax + z = y.] Under favourable circumstances, it is
possible to find a particular value N of A such that minimizers of Z(\,-) also
solve (8). Such a N\ is then called a Lagrange multiplier or a shadow price. Now
minimizing Z(X, - ) is an unconstrained problem (save for any implicit constraints
imposed by dom f). We can now state the Kuhn-Tucker Theorem, which provides
necessary and sufficient conditions (on A and x) for x to be a solution of (8).
A proof may be found in [7, Corollary 28.3.1].

Theorem 1 (Kuhn-Tucker). Suppose that V(#) # — and that F(%) N intdom f
# (). Then, the following are equivalent:

(i) x € S(P), B B _
(i) sup Z(-,x) =Z(N\,x) = inf (N, ) for some \;
(iii) x € F(2) and A*\ € df(x) for some \.

In condition (iii), A4* is the matrix transpose of A4 and Jf(x) denotes the
subdifferential of f at x, i.e., the set of subgradients of f at x. Precisely, a vector
& € R” is a subgradient of f at x if the subgradient inequality

f(2) = g(2) =f(x) + (&2 —x)
holds for all z € R”. In the words of Rockafellar, the subgradient inequality says
that “the graph of the affine function g is a non-vertical supporting hyperplane to
the epigraph of f at (x, f(x))” [7, p. 214]. If f is convex and differentiable at
x, Vf(x) is the unique subgradient of f at x, and conversely. Points (\, x) satisfying
condition (ii) are said to be saddle points of #. The requirements in (iii) are a form
of the Kuhn-Tucker conditions. Notice that, in condition (ii), N appears as the
maximizer of the (concave) dual function
D(\) == inf Z(N\,").

Note finally that dom f may have an empty interior. Theorem 1 still applies,
however, with the weaker assumption that F(&) intersects the relative interior of
dom f [7, Section 28], that is, the interior relative to the smallest affine manifold
containing dom f.

We now return to the study of Problem (2), which must have a solution since we
are minimizing a closed function over a compact set. The Lagrangian of (2) is the
function

g(p, )\) = Sm(p) + )\(1 — <ll,p>), p e Rm’ A< R,
Theorem 1 tells us that p is a solution for (2) if and only if

()0 =1-u,p); _
(B) there exists A € R such that 0 € 45,,(p) + Ad[1 — (u, - )1(p).

Indeed, one can check that V(%) # —o and that (%, has a feasible solution in

m m

intdom §,, = {p € R”|p > 0}. Furthermore, S,, is differentiable in the interior of
its domain, and we have
a8, Py
(p) =Inmu — ), where gy = —~=—. 9)
py St W)
j=k
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Consequently, for a strictly positive distribution, condition ( 8) becomes

O=lnm/.Lk—Zy,,-—/\, k=1,...,m. (10)
i<k
Now, by definition, w,, = 1, so setting k = m in (10) gives A = In m — ¥ y,, from
which we obtain the recursion

m

Mo = 1’ My = exp(— Z /“Lj
Jj=k+1

, k=m—1,...,1. (11)

Since

’

Mi—y = exp(— 2w

j=k

ZCXP(_,U«k)eXP(_ i M

j=k+1
the backward recursion (11) can be rewritten as
M =1, gy ZMkeXp(_Mk)7 k=m,...,2. (12)

The values of the w,’s can be obtained as illustrated in Figure 2. Figure 3 shows
examples of optimal probability distributions, for m = 7 and m = 50.

1._
0.8
0.6
o4 S
0.2 i
0 02 04 06 08 1
Figure 2. Recursion for the w,’s.
LIgure 4. |moCuidIoL 1oL e e S.
0.04
0.2 '
0.03 -
0.15
011 ! 0.02 |
0.05 1 | 0.01 i P
07 2 3 4 5 6 7 0710 20 30 40 50
Figure 3. Optimal distributions for m = 7 (left) and m = 50 (right).
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Finally, from condition (a) and the values of the w,’s, we see that the
components of p must obey the following forward recursion:

, k=2,...,m. (13)

k—1
D1 = My D= My X (1* ZP,‘
j=1

The vector p defined in (13) satisfies conditions (@) and (), and therefore
uniquely solves Problem (£,) in (2). Indeed, if p. were a nonnegative solution of
(2), then (p + p.)/2 would be a positive solution, which must equal p since a
positive solution is uniquely determined.

Most pleasingly, the iteration is easy to handle both numerically and theoreti-
cally. For example, the components of p form an increasing sequence. Indeed,

Pe= (Pt +py) and  pe_y = o (Proy + 0 D),
from which we deduce, using (12), that

Pk il = py—y)
= = exp pe X (1 = py exp(— )
Pr-1 M1
=exp py — My > 1, (14)

since u, > 0. We recapitulate the prior discussion as:

Algorithm 1. The unique probability distribution p™ that maximizes surprise in

Problem (#,) (given in (2)) is strictly increasing and is determined as follows.
Compute

M =1, @y =/.Lj6Xp(—/.Lj), j=m,...,2, (15)
and then compute

P1= M1, Dp = My X

k—1
1- Zpi), k=2,...,m. (16)
i=1

Remark 1. As observed in [3, p. 50], the (optimal) conditional probability that the
event occurs on the ith-to-the-last day, given that it has not occurred thus far, is
independent of m. This is immediate from (12) and the equality

m -1
P(m—il~1,...,~(m—i—1))=pm_,-( ) pj) U

j=m-—i
Furthermore, as the u,’s are defined via a backward recursion, p,,_;/Pn—i-1 1S
also independent of m.

Remark 2. We may also obtain the solution of Problem (%,) of (2) via the
optimization problem

inf{S;,(p, @)1 = (1,p), q = Jp},
where S,,(p, @) = Lh(p;, q;). The corresponding Kuhn-Tucker conditions are
(@) 0=1—-<{u,p)and 0 = q — Jp;
(B") there exist A € Rand N = (A,..., A,) € R™ such that
0 € dS,(p,q) + Adf(p,q) + Adfi(p,a) + + +4,0f,(p,q)
with f and £ = (f,..., f,,) defined by
f(p,q) =1~ <u,p) and f(p,q) =q—Jp.

It is then easy to check that the A/’s derived from (@) and ( 8') coincide with the
w;’s of the previous discussion multiplied by m.
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4. HOW DOES THE DISTRIBUTION BEHAVE?. Some striking characteristics of
the optimal distribution are mentioned in Remark 1. It is also natural to consider
the asymptotic behaviour of Problem (%,) as m tends to infinity. We are now
ready to establish three key properties. First, we show that asymptotically the least
probability p{™ behaves like m~!. The nub is an analysis of the rate of conver-

gence of the Picard-Banach iteration

= 8(t,)

to the unique fixed point of a contractive (but not strictly contractive) self-map g on
[0, 1] when the fixed point occurs at a point where |g’(¢)] = 1. Recall that g is
contractive if

lg(t) —g(s)l < It — sl

for all ¢ # s in [0, 1]. In our case we use the map x — x exp(—x).
Proposition 1. The quantity mp{™ tends to one as m tends to .

Proof: We define a sequence {z,} by setting
o= i=1,...,m, m=1,2 ... (17)

Observe that ¢, is independent of m, that 7, = p{™, and that the sequence
satisfies the recursion

ty=1, t,. =t.exp(—1t,), k=1,2,....

We note that ¢, tends monotonically to a limit /, which must necessarily be zero.
Hence t;}, —t;' =t;'(expt, — 1), which tends to exp’(0) =1 as k tends to
infinity. Whence, since Cesaro averaging preserves limits,

1 1 m=le—1 1

_— = — e

m -1 e mt,

also tends to 1. [ ]

Next, we show that the ratio between the last (biggest) and first (smallest)
components converges.

Proposition 2.

(m)

. m . . ..
lim — exists and is finite.

m-—x pl

Proof: We have from (14) and (17) that

(m) m—1
lim 27— lim 1‘]( MY — ) = lim [T (e% - 1)) = 2.132079... .
m-—w p m-—w '= m—% le

The limit exists because of the inequality 1 < expt; —¢; <1+ ¢}, while X1} < o
by Proposition 1. We now appeal to the standard fact that I'1,(1 + |a,|) and X, la,|
converge or diverge together. ]

Finally, we show that in the limit our solution value approaches zero.
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Proposition 3. The optimal value V(2,) of (£,) tends to 0 as m tends to infinity.

Proof: To establish this, we show that limsup V'(%,) < 0 < liminf V(). The
first inequality is easily obtained from identifying a Rlemann sum:

1 1 In m!
( m) SSm(_7~--,_) = lnm - _
m m m
1 m k 1
=——)Ih——-1->—Intdt—1=0.
mkg m fo

To obtain the other inequality, consider

(m)
(m) pl(m)

- p(m)
and O "= Z m) nq(m) pl(’“) .

Z

t+1

We make two claims:

() 7, — 0, tends to 0 as m tends to infinity;

(i) 7, = —p{™ In m.

For (i), we recall from (5) and (9) that u{™ = p{™ /(mq™) and so

m—1

— ( (
Tm = On = — Z pim) ln(l - /’Lim))’
i-1
whence, as p{™ increases with i,

m—1 m—1

0< Tm = O = — Z p(m) ln(]' - t1+1) < _p(m) Z ln(]' l+1) - 07
i=1 =
since ¢, = 0 and mp{™ = O(1).
A proof of (ii) is deferred to Section 5 (Corollary 1), where it is a consequence
of a general integral inequality.
By design,

( '71) = U +p(’n) ln m _p(’")'

m
It follows from (ii) that V(%) > a,, — 7,, — p{™ and so, since p{™ — 0, (i) shows

liminf V() > 0 as needed. ]

m

The techniques of these three propositions allow us to make considerably more
precise assertions about the asymptotics of p™.

5. CONTINUOUS TIME ANALYSIS. In the discrete case, the distribution is
strictly increasing, with a sharp increase at the tip of the tail (see Figure 3). In
measure, this is washed out in the limit. Indeed, the optimal continuous distribu-
tion is flat, as the following theorem shows.

Theorem 2. For allp € L ([0, T]), we have

f (t)lni(—t)d > [p(e)
Tf, p(s)ds ’

or, equivalently, S(p) > 0, with equality if and only if p is constant on [0, T].
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Proof: We can assume that p is (almost everywhere) nonnegative, for otherwise
Ap) = . Let us put g(t) == [ #plt) = 1/T[ p(s) ds, as in (7). Observe that, on
integrating by parts,

Ap) = [ ( (1)l

p(1)

a(1)

= ["(p(0)n p(1) = p(1)) dt + T[q'()In (1) dt
0 0

p(t)) dt

T
= [ p(0)n p(1) dr = Ta(0)In q(0),
The theorem will therefore be proved if we can show that
[ p(0)1n p(1) dt = Tq(0)In 4(0), (18)
0

with equality if and only if p is constant. Now, applying the integral version of
Jensen’s inequality to the strictly convex function g := x = x In x — x yields

p(1) p(t)  p(t) B
P e s e -
from which (18) follows immediately. [ ]

Theorem 2 shows that the (unique) solution of Problem () given in (6) is the
uniform probability density on [0, T]. A consequence of Theorem 2, which com-
pletes to the considerations of Section 4, is the following:

Corollary 1. With the notation of Section 4, we have
T, = —pi In m.
Proof: Apply Theorem 2 with
T:=1 and p(t) =p™ifte (n—_—l,l](n =1,...,m).
m m
Observe that, for (n — )/m <t <n/m,n=12,...,m—1,

m
a0 % ﬂl””ﬁ Y pm=a,
k=n+1 k=n+1

and, for (m — 1)/m <t<l, q(t) = p{™(1 — ¢t). Hence 7, majorizes
m Z lp( ){ (”E ;) —1}dt
1-
ol ool 5] )
=L}mb%£%)—}m+mf1m@mu—o+nm

1— —
m

>0-p™Inm,
on evaluating the second integral and applying Theorem 2. ]
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This finishes the proof that the optimal value of (£,,) tends to 0 (which is also
the optimal value of (%)), as claimed in Section 4.

6. CONCLUSION. The entropic formulation of the Surprise Examination Prob-
lem provides a beautiful case study of the application of concepts from the
elementary theory of convex constrained optimization, probability, and classical
inequality theory. Its attractiveness comes in part from the very explicit recursive
nature of the (discrete time) solution, which derives from the Kuhn-Tucker
Theorem.
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