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Two Tauberian theorems
for Dirichlet series methods of summability

JOCHEN BEURER, DAVID BORWEIN and WERNER KRATZ

Dedicated to Ferenc Mdricz on the occasion of his 60th birthday

Communicated by V. Totik

Abstract. We extend known Tauberian results concerning the power series
method of summability to results concerning the more general summability
method D) , based on the Dirichlet series ane”?n%,

1. Introduction

Suppose throughout that {A,} is an unbounded and strictly increasing se-
quence of positive numbers, that {a,} is a sequence of non-negative numbers, and
that the Dirichlet series

o0
a(z) := Z ane T
n=1

has abscissa of convergence o < co. Let {s,} be a sequence of complex numbers.
The Dirichlet series method D) , is defined as follows:

oo
Sp — 8(Da,e) if Z an.s;ne_)‘“z is convergent for x > o, and

n=1
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1
e A
o(z) : e ﬂg_l QApSne — s

as £ — o+ through real values. It is well known (and easy to verify) that if
a(z) — o0 as £ — o+ and if a, # 0 for infinitely many n, then Dj , is regular,
i. e. s, — s implies s, — s(Dy,). For A, = n the method D, o reduces to the
power series method J,.

Our primary purpose is to prove two theorems (Theorems 1 and 2 below)
concerning Tauberian conditions on {s,} under which s,, — s (Dy o) implies s, —
s. These theorems generalize Theorems 1 and 2 in [2] which deal with power
series methods of summability. The main tools for their proofs are results on the
asymptotic behaviour of the Dirichlet series and related integrals.

2. The first Tauberian theorem
In this section we prove the following Tauberian result.

Theorem 1. Suppose that the real functions g and X satisfy the following condi-
tions:

(g, A € Ca[zp,00) for some zg € N,

A(m),# ond G(e) = X0 (g_(xl)

o ) z) N \ V@)
are positive and non-decreasing on [zg,00), while
N (z) = ynd 1@y : .
& and L(z) := X' (z) (m) are non-increasing on [To,00).

Moreover, assume that

(1)

Let an ~ e 9™ asn — 00, A, = A(n) forn > o, and let ) =

G(z) — 00 and L(z) = 0 as £ — oo.

L_ Then

vV L(z)

) |Sm+1 — 8nl,

(2)

lim w(e) =0 with w(e) :=limsup  max
e—0+ n—oo n<mln+tel(n

and sp, — (D) q) imply that s, — s.
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Corollary . Condition (2) in Theorem 1 can be replaced by the (stronger) Tauberian

condition Sp — Sp_1 = O(\/L(n)).

Proof. Suppose |s, — sp—1| < M+/L(n), where M is a positive constant. Then,
for € > 0,

Y. VIO

n+l1<j<n+el(n)

Y

n+1<j<n+eb(n)
< Meb(n)y/L(n) = eM — 0 as € — 0+,

|35 =851l < M

max [ N

n<m<ntel(n)

and this implies (2). .

Proof of Theorem 1. Let a(x) := ;2 e ¢(®e=*(*)= By Lemma 3 (in Section 4

()
~¥@ <

oo and limg 44 @(z) = oc. Since a, ~ €79 and A, = A(n) for n > zq, the series
a(z) = Y g ake”*** has the same abscissa of convergence and lim,_,,4 a(z) =

below), the abscissa of convergence of this Dirichlet series is ¢ := limg_,

0.

We introduce a complex parameter v, and consider the following expressions:

oo (o0}
Go(z) = Z e~ (k) o~ AME)x _ Z e—g(k)'uk(a)e—)\{k)m with p () := e(l—a)g(k);
k::Ho =Ty
g'(n) A p ()7 (@)
(@) = _QW, Tn = Ta(l); An{e) i= dolmm(a))eM™™(®): and
1 oo

3 f o) = —m—— Ske—ag(k)e—)\(k}m(a)'
( ) ‘n-( ) aa(’rn(a)) kzzzn

Suppose now that the given sequence of complex numbers {s,} satisfies condition
(2) and s, — 5(Djq). By Lemma 3 (below) with ag(z) in place of g(z), we have
that @, has abscissa of convergence ac when o > 0, and, for such an «, Dys, isa
regular method of summability. Moreover, by Theorem A (below),

Ap = a(1a)eMM™ ~ V2mb(n)e 9™ ~ V278(n)an as 1 — oo,
whence, for € > 0,

1 3§ & 1 5 . TN S
€ Ay /2 n<kentel(n) Lk)  Ver

n<k<ntel(n)
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This is because, for n < k < n + ef(n},

£(n) < £(k) < £(n + ef(n)) <

ﬁ#ﬂ(n) ~ £(n) as n — oo,

since ’ A "
(m)_ (z) N, 0 as x — o0,

Tz N (z) VG(z)

by (C) and (1). We first establish the following basic inequalities:

limsup |sp, — fr(@)| < w(e) + die) j2n forall e >0, a > 0;
(4) n—oo € 8]
limsup |s, — o(m)] < w(1)(1 + V).

Note that the second inequality in (4) follows from the first by setting e = a =1
and with a,, instead of e=9(™ by using that a, ~ e~ 9. By Theorem A (below)
we have that
A g(n) 1
¢:= lim _A_”(al_ = lim Eg(n)e—ag(n}e—,e(a—l)g(ﬂ) = .

nooo Appn(a) noe ¥ V2ml(n) Va
Moreover, if £(n) := [ef(n)] € Ng, @n := an or e~9() then

1n+f(n)+1a 1 1
lim — Z _k—fl-=ﬁ:5forc::v21r>0.

To continue the proof of (4) we proceed now as in the proof of Lemma 1 in [4].

First we show that

(5) lim sup sup 15m = Sul

= = < w(e).
n—oo m>n 1+ %zk=n+1 fie L

Apa

Let 0 < 8§ < 1, @ > 0. Then there exists a positive integer N such that

An(a) <(¢+ 8)Anpin(c), max_ [Smt1 — Sn| S w(e) + 6,
n<m<n+€(n)
n+é(n)+1 i
and ¢ Z il > (1—é)eforalln > N.
k=n+1 Ag-1
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Now let m > n > N, and define integers r,ng, ny,...,n, by setting

ng:=n<ng :=no+g(ﬂo)+1<... < Np—q 1= Np_2 +E(TL—,-_2)+1
<m <Ny i=np_y +&ne_1) + 1.

It follows that

r—1 ‘
|Sm - S'”'! S Z Is'n-u - s"uwll + |Sm - S'ﬂ-r-ll
v=1

(6)

e n ap—1
< (w(e) + 6) (1 + (1-20)e kg_l Ak%) ’

and (5) is an immediate conseqgence. For n > N, we consider the following inequal-
ity:
|[fa(a) — sn| < B1 4+ Bp + B3 + Iy,

where N
1 ~1
B i P QR LA C PRI
RA) P Lt
1 N-1
Y, — —ag(k)=A(k)Ta(a) | g\ _
2 &.Q(Tn(a)) kggue ISN sn|,
1 n—1
) N e~ o9k =AR)mala)| g _ o d
S @) 2 S onl, 2
1 e o]
5, = = e=as MR (@) g o)
Rl 2, o5 =50

Since, by Lemma 3, To(a) N\, ac and @s(7n(®)) — oc as n — o0, it is imme-
diate that ¥; — 0 as n — 0o when ¢ > —oco. If ¢ = —o0, then a,(m(a)) =
e 29N e=AN)7n(@) g0 that By < Ce AN =-1=AM)m(®) _, 0 as n — oo, since C
is independent of n, A(N —1) < A(N), and 7,(a) = —o0 as n — co. Thus in either
case 233 — () as n — oco. Next, it follows from (6) that

Doty £ e +s E =g (W) -AR)rale) (1 4 __C X”: 1
= Ea(ma(@)) (1—8)e 51, Au

k=zo
and
w(e)+ 6 - _ & B B
24 e e ag(k)—A(k)mn(a) 1+ ~V 1 .
Sl =%, 2, Bt
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Hence, for large enough n, we get

|fo(a) — 8n] <6+ (w(e) + 8) + C—(MM)-(EE, + Xg), where

Ga(Tn(a))
Z e—29(k)=A(k) 7. () Z fiy- 1, aiid
k= vori1 B
Yg = Z e~ @9(k)=A(k)Tn (cx) Z a,,, 1.
k=n+1 v= n+1
Since 7, (a) < 7. (a) for v < n, we have
& i Ae) 3
Ve = - A)(ru(a)=mn(a)) —ag(k)=A(k)T (a)
5 P A Ay(oa)e k_z e x
T
eAW)=A(E)) (mn () =70 ()
= &
Z My Br(@) ¥ Z ~eg(v)- A(u)m(a)A_@(Hé)
e Au V=N I—Lu( By

< ba(tn()) + (¢ + 6) Z e~ 9= ()1 4 ),
v=N

and similarly, since 7,(@) > 7, (a) for v > n, we have

Gy A,,(a) AN

e
Il
g
I>t|
[
<
"

@@ 3 masth AR,
k=v+1
X e()\(”)_)\(k))('rﬂ(a)"rv(“))
o0
<Y emstIA ) Bl
v=n po(@)A,

o0
+6) Z e—ag(V)—A(v)Tn(ﬂ)(l +6).

v=n

1+6)

[A

It follows from the above estimates that, for large n,

@) = snl < 284000+ LD (5 4610 +6) +),

and (4) is an immediate consequence.
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Since s, — s{Dy,) and 7, — o+, we have that o(r,) — s. Hence, by (4),
the sequence {s,} is bounded, and therefore, since a,, ~ e~9( we have that

o0
Z e 9K g e~ k)T _, ¢ a5 7 — 0.

k:mq

a(x) =

&1 (Z)

Suppose next that 0 < o < 1. Then, by Theorem A (below), we have that, as

n — 0O,
_ . Jize L(1-) {g®O+Am) -2 &8
pin () o f w0° {s+ @ ) gt
(a—1)o /
- ] N dyo(w), u (1—a>§,§3 o= - a3,

where xo(u) is non-decreasing and absolutely continuous in [ug, (& — 1)o). Let

a"(@) = 3 ey (a)e P,

k=$0

and note that the abscissa of convergence of this Dirichlet series is oo and that
a*(z) — o0 as £ — ao + . Let § be an arbitrary positive number. Since §(z) — s

as £ — o+, there exists z; > o such that |§(z) — s| < § for ¢ < z < 1. Hence, for
some C > 0, ac < z < azy, and

e 9 * (o) s e~ MF)T

we have that

0" (@) 5] =

1
L —g(k)
g

k:a;o

1 (a—1)o
oyl
a‘* (:L') Ug

1 (a—1)o
o |6(z — u) — sla(z — u) dxa(u)

pi(@)(si — s)e =

oo
3 o) (5, — s)e=Mb

k=.'.c0

v dXa(u)

Il

<6+ E‘% /:‘wl |6(z — u) - sla(z — u) dxa(u)

0

< b0 i 1)—>685$—>a0'+,

a*(z)
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the change of order of summation and integration implicit in the first inequality
being justified because s, — s = O(1) implies that
[}
> e B pi(a)lsk — sle™H® < oo,
k=zo
Hence, o*(7,(a)) — s for 0 < o < 1. Since p’(a) ~ pn(a), s, = O(1), and
Tn(@) — ao+ as n — oo, it follows that

(7) nllrlgofn(a) =sfor0<a<l.

Finally, for M := sup,>, |sn| < o0, and & complex with 3 = Ra > 0, we have, by
Theorem A (below), that

G‘.G(T'n (ﬁ)) ‘ - @
aa(Tn(c)) B
where, in view of assumption (1), Ra2(n; @), R3(n;a), Ra(n; 3), Rs(n; 8) tend uni-
formly to 0 on compact subsets of the half-plane R®a > 0 as n — oo. Hence, the

functions in the sequence { f,,(a)} are holomorphic on compact subsets of some re-
gion U D (0, 00). Therefore, by (7), and Vitali’s theorem (see [4, Theorem 5-2-1]),

1+ Ry(n;a) + Ra(n; )
1+ Ry(n; B) + Ra(n; B) |

[fala)l < M

lim fp(e) =s for all @ > 0,
n—00
and it follows from (4) that

ale) —2;3: foralla >0,e>0.

limsup |8, — 5| S w(e) + =

Letting o — oo and then e — 04, we deduce from this and assumption (2) that

8y — S.
" ]

Observe that in the preceding proof we also established the following result.

Proposition. Suppose that the conditions (C) and (1) of Theorem 1 hold, and let :
an ~ e 9™ asn — 00, A, = A(n) forn > zo. Then s, = O(1) and s, — $(Dxq) |

imply that imy, . fa(a) = s for all a > 0, where f,(«) is defined by (3).

Remark. Theorem 1 remains valid if the condition L(z) — 0 as z — oo in (1) is
replaced by L(z) > é > 0 on [zp, 00), for then condition (2) reduces to 8,41 — 8, —
0, and Theorem 2 (below) becomes applicable. Theorem 2, however, establishes a
lot more than this in that it does not require L(z) to be monotonic or G(z) to be
unbounded on [, c0).
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3. The second Tauberian theorem

In this section we prove the following result to supplement Theorem 1.

Theorem 2. Suppose that the real functions g and A satisfy the following condi-

tions:
(g, A € Calzg,0) for some zy € N,
Alz) and EAAE:E::;) are positive and non-decreasing on [zy, 00),
(H) | M=)

is non-increasing on [zq, 0o),

Az)

and L(z) := N(z) (i:gg) >§>0 on [z, 00).

.

Let a, ~ e 9™ asn — 0o, A, = A(n) and A, := min (e"‘“,eﬁ") forn > xo, where
"(n—1
o+ = 9(n) = 9(n = 1) = (\(n) = A(n = 1) 23, and

o g'(n)
foz= gl 1) ~gla) +MB)—Ma — 1S

Then 8p — Sn—1 = O(An) and s, — s(Dy ,) imply that s, — s.
We require two lemmas.

Lemma 1. Suppose that (H) holds, that L(z) > n > 6 > 0 on [zg,00), and that

L= ) |sk — sule®®™, where h(k,n) = g(n) - g(k) — (A(n) - A(k))iig'

k=xg

Then, for n > zo,In < C if sp — sp_1 = O(An), and I, < Ce™ 37 4f
sp, = O(1), where C is a positive constant depending on & but not on n, and
~ := min (%, e—2A’<xo)/A(zo)) ,
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Proof. Observe that
(8) on = —h(n,n—1) and B, = —h(n — 1,n).
Let 2o < ¢ <& < { + 2. Then, by (H),

Q) L 1 MEHD) 0 XQOMCHD) _ (42
NE S MONC) DS NO VT S T <

NQ) oy N(E) 1 MO PN
50 > MONE ¥E 2 et - "(/4 X0 ""t)

e (“2 Af((ff))) |

and

We have thus shown, by the definition of v, that
A'(¢)
A(€)

By C and C(6) we denote constants which may depend on § but not on 7, and
which may be different on different occasions. We have I,, = £, + 39, where

(9)

27 > 0 whenever (,£ > g and | — €| < 2.

n—1 00
Y= Z sk — sp|e ™) Z |8k — s, | (Em),
k=xzg k=n+1

Suppose first that a, = O(A,). Then, for o < k < n,

n
s, —s. | < Z . g | < — —h(i-1,7)
|8k ~2a| < j=k+1|33 sj—1| < C(n—k) R 2X e , and

h(k, ﬂ)+k+qlax (—0(F —154))

/ f A(“} dtdu+k+rPg;c<n/jjl ] /;I,(())L(t)dtdu
/le )]\f:((i (/ N (u) du — j IA’(u)du) dt
.wkﬂf /J li\\:(q:)d di

2y Zf /2 i((;‘) dudt < ~8y(n— k- 1), by (9) .

J=k+2

IA
I
wmﬁ
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Hence
n—1
$1<C ) (n—k)erink-D < CZ (v +1)e~ 5" = C(6).
k=z¢ v=0
Next, for k > n,
k
R(jj—1
[sk — 8| < XELIISJ —s8;_1| < C(k— n)n+1'{léi;(<ke (3= and
j=n

h(k,n) +nﬁl~?f<k( h(j,5 — 1))

Nw) [N
td
- [ [ Fromace I, ] o as
k

< 3 [ 48[ xom- [ voa) a

j=n+1
k )
<-n Y f / Y0 du dt
j=n+1 7
k—1 _7+1
< - f dudt< —bv(k—n—1), by (9)
j=nt1vi—1j

Hence
o0 o0
22<C Y (k—n)e kD = 03 (4 1)em 0 = C(5).
=n+41 v=0

The first part of Lemma 1 follows from the above inequalities. To prove the second
part suppose that s, = O(1). If 2y < k < n, then, as above,

n

W) =— 3 /3-1 k X(U)L(t)d dt

d=k+1 XE)
)\() 1
< - dudt < n—k).
an / ey dude < —mz(n )

That is

(10) h(k,n) < —%'yn(n —k) forzp < k <m,
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and so

n-1 o=
;<Y o 3min—k=1-%mm < Ce‘%’WZe‘%"’ﬁ” = C(§)e 1.

k=x0 r=0

Finally, if k > n, then

h(k,n) = Z:f ]A%L@dﬁ

j=n+1
J N(u)
< nE:/ f dudt
j=n+1YI17 X(t
2 717 N (u) 1
< < —n=(k —n).
-1 Z f j O dudt < 'ynz(k n)
j=n+1vI7
That is
1
(11) h(k,n) < —-éfyn(k —n) for k > n,
and so
BeC 30 ebmbonboim < by e hi = (o).
k=n+1 v=0
This completes the proof of Lemma 1. -

Remark. Observe that I, > |sp — Sn— 1|e (n=11) = |5, — $p— 1le™# and In_ =
|8n — Sn— 1|ermn= D) = |s, — 8p—1|e”*". This shows that the condition sp — Sn—1 =

O(Ay,) of the first part of Lemma 1 cannot be weakened, and throws light on the
form of the Tauberian condition in Theorem 2.

Lemma 2. Assume (H) concerning only the function . Let p > 0, and define

Af
x(z) #p/ / ® dudt for z > xo.

Then

/OO exp (x(t) —x(z) + (M=) — )\(f)) Nt )) dt - C=C(p) >0 asx — o0.
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Proof. Assume first that ATr((-f—)) — 0 as £ — 0. Since

X'(z) T du
N@) P oy Nw)’

we have that

o (55) =0 58 (563) =+ () - o

Hence, by Theorem A (in Section 4 below),

27T
— as T — 00,

/mo exp (x(t) - x(z) + (A (z) — )\(t));(,g) dt — C =

which is the desired result in this case.
Now su that A42)
ppose that 575 "\, 6 > 0 as £ — co. Then, for = > zo,

MMz Y
log )\((xo)) = /xu /\((f)) dt > §(z — xp), and so A(x) > )\(mo)es(x_“’}.
Moreover
N (z) ~ 6A(z) = 6A(z0)e?F20) as  — 0.
Let
) = X(0) = x(&) + (@) - A0 K

t r
=pfzf )\’g ;dvduforxt>a:0

Note that, for z,t > xo,

N(t)  N(t) M) XN (v
M@) A V() P (f )\((v)) d”) =: (¢, @)elPHmN ),

Az
where 0 < 5@% <7(t,z) — 1 and 0 < €(t,z) — 0 as min(t,z) — co. Hence

en = [ [t

Vv t pu
" dvdu = —pj; /m v(v, u)ed+e@u)v=u) g gy

t—z pu
= —p/ f e~ B+ gy du,
0 0

where v :=y(u+z —v,u+z) > land e:=e(u+z —v,u+x) — 0 as £ — oo.
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Tt follows, using dominated convergence, that

/OO eh(t,n:) dt = / eh(:c-kt}:n) dt
* ; it pu
:f exp (—p/ f ye e dvdu) dt
0 o Jo
o0 t pu
—>/ exp (—p/ [ " dvdu) dt
0 o Jo

= pt P _ P —st) g —
:A exp(—?—i—gf—&—ze )dt—.Cl<wasm—am,

T =g
/ 6h(t,a:) dt = f eh(m—t,m) dt
zo 0
z—T -t pu
=/ 0exp (—p/ / ye~ (6 dvdu) dt
0 0 0
o0 -t pu
—>/ exp (#p] j e d'udu) dt
0 0 0

o2 t
=L exp(%+6%f6%e“) dt =: Cy < oo as T — 00.

Thus the assertion holds with C = C; + C2 in this case.

and

Proof of Theorem 2. Suppose that s, — s (D) and sn — Sn-1 = O(A4y). .Let
71 be a sufficiently large but fixed integer in [zg,00). Again C' will denote possibly

i ~ e—9(n)
different positive constants. Since z, = —g' (n)/N(n) — o+ and a, ~ "9, we
have that

limsup |s, — 5| = limsup |sp, — o(zs)| £ T1 + T2,
n—r0o0 n—rod
where
1 & 3
Ty := limsu ag|sk — sple” ",
: st i a(zn) kz=:1
and
1 = —A(k)z
T, = limsup —— arl|sk — Snle
2 wzses O(Ti) k=zm:1
Now

oo

- n —A(n)z.

a(zy) :Zake Aeon > g, A o
k=1
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Hence, by Lemma 1,

o0
Ty < Climsup E |8k — sn|e”®™ < C.
n—o0 k:;‘co

Also, by the proof of Lemma 1, we have that
sk — snle"® ™) < C(n - k)e=Yk=D for n >k,
whence 5,
T < Cliin_;solép Z |8 — 3n|eh(k’”)

k=1

T1
< Climsup Z(n — k)e~¥r(n—k-1) — g,

Hence T} = 0,73 < C, and, since a, ~ e~9(™ we get that

(12)  sp=O(1); and s, — s (D 5), where a(x) = Y e 9Me K=,

k=x,

We introduce a complex parameter o, and consider the functions:

z i Af(t)
= —_— — p—ax(k).
X("E} . f:r:o fmo A’(u) s dt’ “k(a) =X 3

do(z) 1= Z e~ 9k —ax{k) —A(k)z _ Z eﬁg(k)'uk(a)e_)\(k)x;

= k=z,;
_ g " odt
Zn(a) = /\'(’ﬂ,) [0 u A"(t)’
1 o
e — —glk)—ax(k) ,—A(k)zn(c).
(@) = ) 2 ‘ o
1 o
() v= @ Z spe— 9K g=Ak)z
k=x,

Then, by (12), fu(0) = &(2,(0)) — s as n — oo.
Suppose first that @ < 0. By Lemma 2, we have that

) ~ () =€) [ exp {-a (x0+ 0 -2 5D ) ] a
— ” A gy () e o X X(®0)
f% dralu), w= ey, w0 = —a37T%,

153
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where xo(u) is non-decreasing and absolutely continuous in [ug, c*), with

) x'(n) /CO dt
%o e e el
o* = lim —a = .a Yo € (0, 00

Proceeding as in the proof of Theorem 1, we consider

a(g) = Z e 95 x () s e RNz
where -
w'(@) = Y e (@),
k=x1

and note that the abscissa of convergence of this Dirichlet series is

g () Xf(z)} 5 i’%’zo)) _ iy f?: L(;?(j)a di
To z—00 Joo

*k 13 _ _
Ve ()
! T ¥

g'(zo) _ . / g g'(zo0)

< - -1 —dt < -
V@) e oy 2NE T V(o)
for @ > —£, by (H). Moreover, 6** > 0, a*(z) —00asy — o +.Let -2 <a < 0,
and let € be an arbitrary positive number. Since ¢(z) — s as £ — o+, there exists
%1 > o such that |5(z) — s| < e for ¢ < £ < &;. Hence, for some C >0, 0™ <z <

1 + o*, we have that

<0

j0°(2) — s = }—Ze-g“f’ (@)(sx — s)e™"

o*
<]
*(:r) ug
il

oo
Z e g(k)(sk s s)e k) {(z—u)

k=x,

dXa(u)

2

=

=rey o) /U |6(z — u) — sla(z — u) dya(u)

1 Tr—T1
adfials ]
a'* (J") Uo

<e+Ca(( ; —easT— o 4.
Since () ~ pnla), sn = O(1), and 2,(a) — o**+ as n — oo, it follows that
o*(2n(@)) — s for —36 < a <0, and hence that

G(z —u) —sl|a(z — u) dxa(u)

1
(13) lim f.(a) =sfor — 56 <a<0.
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Next we shall show that Vitali’s theorem can be applied to the sequence {fn(c)}.
To this end let

ha(t, z) i= g(x) + ax(z) — g(t) — ax(t) — (A(z) — A(t)) ( g'(x) af;c i) |

X (z) zo N (t)
so that
_ gn(a)
(14) | fa(e) = 32 ©
where . _
gn(@) = ) speh®™ and hy(a) = Y ehalhm),
k=24 k=xz;

Observe first that, for a > —%5, we have

() v (S s 0o

Since hn(a) > eh=(™n) = 1 for all real «, it follows from (12) and Lemma 1 [with
9(z) + ax(z) instead of g(z), and h4(t,z) instead of h(t,x)] that

(15) limsup |f () — 5| < Ce™ 27 for a > ——5

n—oo

C and v being positive constants depending on § but not on . We proceed as in
the proof of Lemma 1. We have that

haol(t,x) = — —
o(t,2) /t fu o (L0) + ) dvd,
where L(v) > & > 0 by (H). Hence, by (10) and (11),
1 1
ha(k,n) < —37(a+ 6)[k —n| < — 276k —n| <0,

for all integers k,n > z1, and all real o > —%6, Then, since s, = O(1), we obtain
that

lgn(a)| < C Z dbineb) g Z bt < 90 Vet = ()
k=x; k=n+41 v=0
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for all n > i, and all complex o with Ro > —%6. Moreover, 1 = ghalnm) <
hn(c) < C(6) for all n > x1 and all real o> —26. Next

et

)\'(u

D auf <3|

x (U) (L) + 6) dvdu

for all compler a with 3 = Ra > 4%6. Consequently, for such o, we have (since
ze—® < e~ %2 for z > 0) that

2 — Lha(k bv . 2
higledl] &—= X, ho(k,n)em*m) < = Z Atk & — Ze LR

k=x1 k=zy V—O

for all n > =;. Hence, if
1 Ck -1
G:={aeC |§Ra>——2~6, |Se] < C5 '}

we get that |hn(a)| > 1 for @ € G, n > z1. Therefore {fn(a)} is a sequence of

functions holomorphic and uniformly bounded in G. Hence, by Vitali’s theorem, it
follows from (13) and (15) that

limsup |s, — 8| < Ce™ 17 for all real a > ——6

n—00

Letting o — oo, we obtain the required result that s, — s.
Remark. The case X'(z)/A(z) > 6 > 0 is (at least partially) considered in [1].
4. Asymptotics

The following theorem and lemmas deal with the asymptotic results required
in Sections 2 and 3 in the form of strict inequalities which may be useful elsewhere.
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Theorem A. Suppose that the real functions g and X\ satisfy the following condi-
tions:

(g,\ € Calzg,00) for some zg € N,
zX'(z) N(z) (@)Y
P M O (&)

are positive and non-decreasing on [zg, o), while

410 and L(z) = X (z) (g’(m)

!
\ /\(m) m) are non-increasing on [zg, oo).

Letil(m) o= \/T let o be a complex number with § := Ra > 0, and let

I
fa(z E : e—ag(k) —)\(k}z 'UJ’Lth 2= Z(CE,Q) e _ag'l(-’b‘) .
k=xq A (E)
Then, for all x > 2xg,

Vo [ e {a (o0 + 0@ - xen§ih) ) ae = e (14 ma),
ful) = otz exp fa (N0 28 - g(m)) } Fafo)+
+ /: exp {a (—g(t) + A( i:g ) } dt,
f: exp {a (g(t) +A() )g\:g) } dt
= \/EE(x) exp {a (A(m)iﬁ%xg — g(m))} (1 + Ra(ﬁ)),

with |Ry(x)] < \/—Gﬁ, |Ra(z)| < E(a:)’ |R3(z)| < \/%, where \/a denotes the

principal branch of the square root, and the constants C1, Ca, C3 may be chosen as
follows:

32 |a|y/lal al  50v5 20
o= 32 lelVlel | 16 Vial 50vE il o]

Vvor B2 V2w 98 VBm 428vBy/G(xe) V2m 18]
cy— 2 Ial\/_
N

o= 32 |a|\/H+100\/' Vol
var yp? NN N e

5 18905/ {H (M)“%}

\/21r Gy 1600



158 J. BEURER, D. BorwEeIN and W, KraTz

where 7y := min {1, ZL)Q;}%OZ} € (0,1].
Proof. We use the inequalities

—e < |t—u

|emax(t,u)

g e < Bl oo, e

for real t, u and 3 = Ra > 0. Next, we define, for ¢,z > o,

ha(t, ) = g(8) — 9@} + (M) — A(E) S E %
halt, ) = 0(&) ~ 9(0) ~ (@) ~ A S,

and we write h(t) = h(t,z) for either function whenever the distinction between
the use of hy or hy is immaterial. We have, for ¢, > xo,

Ry(z) = \/ f 7 t) e*hita) gy
ahg(k 1:) ahz(t,m)
Ro®) =\ e 15 { 2 / ¢ dt} ’

=To

RB(”)=\/§ (1:::) -
hi{t,z} = / f N(v ( :u) dv du,
ha(t, z) = /[ N(u (i?’)) dv du.

From our assumptions and the mean-value theorem for integrals we find that, for
t,x 2 o,

e®h2(t2) g — 1 and

(2X(2) i = L)

@) NG’
o) = X0 (53 - £ o) = W@ =0,

R'(t) <0, h(t) <0, ift >z, R'(t)>0, h(t) <0, ift<z,

h(t) = —EML&')(E —1)? for some (, £ between t and z.

L 2X(9)

z2v>0, (A(@) = AB) 75

7)
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Next, let t,z > zy with

o] & Bi9) 1= f_o:((z)) = "16;\(( ))
Then g -
It —z| < E and -z <t < oo
Ift > x > xp, t —z < 6(x), then, by our monotonicity conditions, we get:
N <2052, N0 > 22 > Zx() > x),
1l
0 < A(t) - M) = f t N (w) du < (t — 2)A( )’V((;’:’)) < ﬁ,\(::),
so that
) < %)\(:c), N(t) < %A’(w) 0<A() - @) < (- z)%)\’(m),
X0~ (@) < 00 - A3 < Die- 30
and

x@ - ¥ <X (52) < (22) ¥ < e -0 5,

L(t)
L(z)

2
= ;(t — )

0<1-

LG (A
=17 %W («v
X()
o)

'(m(z))Z
@A®)/) =

Next, if z > t > zo, £ — t < (), then we obtain similarly:

X (t)

> At)

0< Az) —

X)) - V@) < (3-1)X@) <5

N(z)
Az)’

A@) zN(z) _ =z, 10 ,
2 < v < G X@),

A ) = t Mz) —t

_ft Mio)du < EA'(I)(z _t)< lx(m), Az) < g,\(t),

<(A
_ G

10
5 &= 050

( )

10 (sr: N(z)?

B0 s 2 L
A’(I)

(m)~x()>)\()_9

~ Glx)

A ()A(z) T Ty [T —
(A’(fv))\(t)) —ls (?)2 = (1+ ?) ( t t
190 N(zx)

. S 5

)

159
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Proof. Since £ is increasing, we have that — 2} - f
Thus we have shown that, for z,t > xo, [t — z| < 6(z), we have N (z) g ave that —5775 >0 € [—00, 0) for = > zp.
First, suppose that Rz > fo. Then £z > -3 % for z sufficiently large, and
r( )2 it suffices t 00 o=Bha(k,x)
A®) - 2@ < @it~ al, V() - N(@)] £ ot - 2l so it suffices to show that 372, e™#2() < oo for all 3 > zo. Put
9 9y A(z) % A\
(18) L(t) 190 N(z) _ 19 8 §:=6(z) = lﬂ, ¥:=%() = I—(x—),
5| et <5 YO 25¥E: 03G) )
(z) 2 ) and let t > z + 6. Then, by (C) and (17), 5 > 7 > 0,
i i 5 3 t oyt ' 5 ~
Moreover, if ¢, £ are between t and z, then it follows similarly as above that Al) T ( / A(u) i ) & z\'(z) Ny _(t t
il § v e v (F)=lz) &15) -
) =R o B, L0 3 ), b L /t M) o 2N(2) f” du  z N@)o 7
X(§) 8 9y Alz) T Mz + 59) o+is AMu) T A@) Jargse v T XA Alx) 27 307
AE) -1 30 40
. : ; ; < (1= /30 2 i P
and this together with (18) implies | 2O — Az + %5) = ( e ) =3 (1 + 30) =
and, by (19),
XUy <) ERIGLIGES] L 1
YOI | |T@ T I Y@ gt do_ | R I o 1H@) 8 v Ga)
190, 4 Afe) , 1009 DNy mﬁ'(“’) N+38) N@) Jo N T 2XN(@)2 40 Mz)
~ 8ly Az) 81 8 9y Az)’ Hence
t ' ’ t
ha(t, :—j X(u (g(“) fg(““)) d <_1G($)f ,
and hence 2b2) == | YOSy~ ¥@)) S TN Jorgs” O
N(O)L(E) 315 N(z) _ 4 N@) 1 < (2N gy 2 v \? ik
Sl P 3 R | 7 i S P = = Wl -] Gl =]
(19 ’x(s)L(x) Sg N <3N <2 (@) 93w < (@) @ (3
so that
We will now prove a number of lemmas involving inequalities in which the underly- y\2 eNF
ing hypotheses and terminology are those of Theorem A and its proof. Collecting (20) ha(t, ) < — (E) G(z) (E) , fort >z + 4,
t ill yi i ion i A :
the constants from Lemmas 4 to 11 will yield the desired conclusion in Theorem L and limy_,e0 ha(t, ) = —o0. It follows that the series in question converges abso-
lutely.
7 ) A Suppose finally that Rz < Bo < _ﬁﬂ;g.% for all z > zp. Then e—@9(k)=A(k)z
Lemma 3. Let 0 := — z1‘1m 3):-,1(%. Then the Dirichlet series 3 g oa(k)g—Atk)z does not tend to zero as k — oc, because
00 k::ﬂ
converges absolutely if Rz > fo where § = Ra > 0, and it diﬂergeso if Rz < fo. —Bg(z) — A(x)Rz + Bg(zo) + Mzo)Rz
> —B(g(z) — g(zo)) — Bo(A(z) — A(z0))
Z
Remark. The following proof of the lemma does not require the monotonicity OfL =-0 / N(t) (?\i(t) + cr) dt >0 for all z > xp.
and G. But this monotonicity is needed to derive the inequality (20) below, which zo (t)
will be used later on. Thus the series cannot converge.
m
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Lemma 4. For all x > xo,

Rl < L 3 e
k=xzo

Proof. Recall that, by (17), ha(t) = ha(t,) is increasing on (zo, ], decreasing
n [zo, oc), and always < 0. Hence, by (16),

\/gﬁ(z) | Ra(2)]

- k+1
3 cotha (k) _f oha () gy
k=zo k

< 3 |aly/lal 1

vor B lz)

k+1
aha(k,z) ﬁ./ eahg{t,:c) dt
k

IA

= i} Y. (eﬁhz(k-H) - eﬁhz(k)) +1+3 (eﬁhz(k) _ eﬁhz(k-‘rl))
'B oo<k<z k>x
< sl

In the following lemmas we suppose that z > 229 and use

v Az) =
= Bl = gy
6=8()= 3@ = 10
Lemma 5.
B_i_l_]$+6 coh(ta) _ g~ 3l@alt-2)?| gy < 32 lofy/la] 1
21 £(z) Joes var 82 /G(z)

Proof. We obtain from (17) and (19) that, for [t — z| < 6,

‘—SC?' ! 2
‘h(t)u(m)% _1 ;,ESL@ )+ I( )'——
! —563
O

and so

—z)? —-z
i (h(t),—L(m)(t . ) ) < -L(g;)(t_4)_2_
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Hence, by (16),

\/@E(I f:H-E
\/E\/T/HJ'? ii((;:))L(m)[t—x

3

|a |al\/— /‘” Nz) |yl —1u2_ du {u:

ah(tz) _ o~ jL(z)a(t-z)?

dt

|36_ 1 BL(z) (t—x)? dt

VBL@)(t - 2)}

\/ﬁL(w v/ BL(x)
la ia| Lu? g 32 |aly/]o] 1
8% v/G Ver 8% /G(z)
o
Lemma 6.
lof [***10 1 1Y\ ahee 16 Vo] 1
‘/;/z_e (E(:c) _@)e e U2 Tom B Jew)

Proof. By the proof above we have that hy(t) <

—IL(z)(t - z)2. M
(19), iL(@)(t - z) oreover, by

11| L= - L@
tz) £() L(z)

Again using the substitution uw = \/BL(z)(t — z), we get that

2

o N(z) [=+
ox 5 V@ / = ale b g

4t —z|N(z)
L(x)

L(z).

dt

A(z)
al f / X('T) i’u' 3 u? du
2wy Hle) )\(a:) /,@L(a: VBL(@)
16 /o 1

Var 8 /G(z)



Two Tauberian theorems 165
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Lewiia T Hence, using the fact that e™t < ﬁ for t > 0, we get
+6 / -
E__L ‘ e—%n:b(:::)(nﬂ—t)2 dt—1| < ]_0\/5_16..{._i ! ) M fw 4 Leﬁhl(f) dt
V 2 £(z) J,—s 18 /G(z) V or T
10 1 2=4
Proof. Since = ‘;—l——— Ry ()P ® gt
o o .2 2r3 T Y V/G(Zo) o
] e 2% du =4 —,
- * < ME L oG- < |Of\ 10 1 1
the above substitution leads to ‘ ™ BY \/G(=o) 7 BY /G(xo) 2v/—Bhi(z — 6)
|
o 1 z+6 Lol (a)( t,)z i oo o 2 513}/__ - AV |O£ 1
T o, —tal(z)(z— . — R -3 g 3
’\/ o £1%) 1w e dr=1 2\/ 21r\/3/';\/611{z)'e z u T v28+/BG(x0) /G (z)
20 [ |
ML e_%“2 du
2 VB Joy/5Li) Lemma 9.
|a| - -5 gy {since e i < - for u > 0} )
=t -~
févﬁL(x u 1/L‘fl_1_f Jhatia) gy < 100V5 Vol 1
Jal 1 . 21 U(x) Jgy T V31 426./BG(x0) \/C(x)
— 1032
78 VG Proof. Suppose that zo <t <z — 6. Then
i AMz) |
T B
= < o e
Lemma 8. ha(z —6) < 1000 ) and log === 0 ) =
\a s N el 50v/5 Vel 1 by the previous proof. It follows from (17) that
ePhi(tz) gy <
To E(t - m 72,6 V :6@ 350 \/
) A(u)
50 =N [ G5 du
Proof. Suppose 7o <t <z — 4. Then, by (17) and (19), A2 (u)
N (u) 1 1
: : > X060 [ 3o du= X060 (555 - 555 )
W — 6) = —2 2 peys? < —152L(a.~) _Eplels e N(u) M) Az)
2 N{E) ’\(37) 1 e~ /10 v )\’(t)
L) - - 22090 (55~ ) 2 %36 20
=150 L] = 1000 (),
A(z) TN (u ) )\'(5’3) )\'(93) Y and hence that
log —= = -t > = —, and by (17),
50 "L 3w 2005w 2w T 1 (
1 VION (@) A(t) 1 1 20 VLAY 20 yIHAE) 20 1
— e ! —
MG - IBHM@ -AE) M) -0 /GO | el 1 ’“(t)G‘(t) RO ORI
20 1
1 1 10 1 &
< & — ' < ;
T VGmo) e =17 v \/G(=mo) Y V/G(zo)
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Consequently
- -6
i fw a0 g < (1421 7 py (1) ay
or £(z) 2r v /G(x0) Jz
[ol20 1 1 ghnye-s) < flaof20 1 1 1
27 v /G(zo) ﬁ 21 7 /G (o) B 2+/—Bha(z — 0)
100\/' Vel i

= "VBr 16/BG(0) /G

Lemma 10.

Mf“’ L miea) gy 20 Vol 1
Vor Jors €0 = Var 18 /@)
Proof. Suppose t > z + 4. Then
N r z+6
log A(t) / (u (x / 1
Mz) s M) Je
z A'{z) ,_= A’(m)l @) _ v
“z+6 A(z) z+ & Mz) 10X (z) 1V

so that __)\(t)_ _ (1 m)) (1 _ 6_7/11)‘1 & ‘?E
A(t) — Az) M/ T 7

Hence, by (17),

. VLN ( )\(t} 1 _20 1
T~ 0 @) i ~ T 3E) VOO - 1 /em

This implies that
el loj20 1 [
2m 7 VG z+6

,‘101 f 1 ﬁhl(t
27 z+6 E
|af 20 1

o 57 VG@

—h (t)eﬁm(t) dt
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Lemma 11.

Bl__l_ 20 Bha(t,z) 1600 mr(l/ry) fG’YEG(;U ) 1_%
V 2m {(x) /a:+58 = Var B2 1+ (—ﬁ)o_o) } —G(:;—

Proof. Recall that

=1

~—

N (z)
A(z)

¥ =F(x) = 2 >0.

We obtain from (20), via the substitution v = 8 (1)2 (;‘f:-)'? G(z), that

40
\mz(lx) f Rl
\/7 A a:)f exp{ (%):YG(x)} d
\/7\/?{ 40 G(z } %./;::L)ﬂg(x) e~ ui 1 du.
If ¥ > 1, then

2 -3+35-1 poo
1< %\/G(m){ﬂ(%) G(a:)} /0 e du
la/ 1600 1

21 B2 \/G(z)

G(z) <1, then

If77<1andﬁ.(i%)2
rslvem o () ew) v (1)
V2@ v () o) " g

Finally, if ¥ < 1 and 8 ()° G(z) > 1, then

g

I< g\/@{ﬁ (%)QG(Q;)}_IP (i)

\/51;’301“ (1) é(m)

Collecting the inequalities from the three cases yields the lemma.
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