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ABSTRACT. We prove that if an infinite matrix A satisfies AC = CA where C is
either a Cesaro matrix Ca or a Holder matrix Hy each of order o = 1,2,3, or 4,
then the matrix A is triangular, and hence is a Hausdorff matrix. We prove also
that corresponding to each real o > 4 there exists a non-triangular matrix A with
rows in £; that commutes with Ha, and that corresponding to each integer o > 4
there exists a non-triangular matrix A with rows in #; that commutes with C,. In
addition, we prove results concerning infinite matrices that commute with H, when
@ is a fraction of a certain kind or with the Euler matrix (E, q).

1991 Mathematics Subject Classification: 40G05

1. Introduction and basic definitions.

Given an infinite matrix (ank) we assume implicitly that n,k = 0,1,..., and
that a;; = 0 whenever j < 0. The matrix is called triangular if e,z = 0 when-
ever k > n, and it is said to be normal if it is triangular and an, # 0 for
n =0,1,.... Given a function p(k) defined for k = 0,1,..., the Housdorff ma-
trix generated by the sequence (u(k)) is the triangular matrix (ank) with ang :=
(D)A™*u(k) where Ap(k) := u(k)— pu(k+1). The Cesiro matrix Cu, a > —1,
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is the Hausdorff matrix generated by the sequence (p(k)) with p(k) := 1/(;“}';“)_
The Hélder matrix Hq, @ > —1, is the Hausdorff matrix generated by the sequence
(u(k)) with p(k) = l/(k +1)=.

The matriz C = Cq, a > —1. In this case C = (cnk) is a triangular matrix given
by enk = (”jifz_l)/(”:a) In particular we have cno = a/(n + o). The inverse
C’ = (¢py,) of C is also a triangular matrix given by ¢/, = (”_i:z_l) ("F*). Note
that C' is row finite and column finite when « is a positive integer.

The matrizc C = Ha, @ > —1. In this case C = (cpk) is a again triangular matrix
given by cni = (§)A" *u(k) with p(k) := (k + 1)~°. In particular we have, for
a >0, chp = A™u(0) = fol(l — )" (log %)a_l dt. The inverse C' = (cl,;) of C
is also a triangular matrix given by ¢}, = (})A™ *u(k) with p(k) := (k + 1)~
Note that C’ is row finite and column finite when « is a positive integer, since then
Aplk)=0forr=a+1,a+2,....

It is familiar (see Hardy [1, Theorem 198]) that if a triangular matrix T commutes
with a Hausdorff matrix generated by a sequence (u(n)) with all terms different,
then T must be a Hausdorff matrix. The late Professor Brian Kuttner raised the
following question: If an infinite matrix A commutes with a given Hausdorff matrix
is A necessarily triangular, and hence a Hausdorfl matrix? Rhoades [3] considered
this question in the case that the given Hausdorff matrix is either a Cesaro matrix
of integer order or a Holder matrix of an integer order. In the next section we state
four theorems which show, inter alia, that a very restrictive condition imposed by
Rhoades [3] on the matrix A can be removed. In Section 8 we consider the case
when A commutes with certain Hélder matrices of fractional order, and in Section
9 we prove a result (Theorem 10) concerning A commuting with the Euler matrix
(E,q). Rhoades’ Theorem 3 in [3] is similar to our Theorem 10 but includes the
above mentioned restrictive condition.

2. Infinite matrices that commute with Cesaro or Hélder matrices.

THEOREM 1. Suppose a € {1,2,3,4} and A = (ank) is an infinite matriz such
that the product AC, exists and ACy = CoA. Then A is triangular (and hence is
a Hausdorff matriz).

Though the case a = 1 of Theorem 1 was proved implicitly in Jakimovski [2], we
give another proof of this case in Section 5.

THEOREM 2 . Suppose o € {1,2,3,4}, and A = (ank) is an infinite matric
such that the product AH, exists and AH, = HoA. Then A is triangular (and
hence it is @ Hausdorff matriz).
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Both Theorems 1 and 2 with the additional assumption that the matrix A satisfies
the bounded norm condition sup, > peg |ank| < co were proved in Rhoades [3].

We prove Theorems 1 and 2 in Section 5.

THEQOREM 3. Corresponding to each real o > 4 there exists a non-triangular
matriz A with every row in €1 that satisfies AH, = HaA.

Theorem 3 with the additional assumption that o is an integer was proved in
Rhoades [3].

THEOREM 4. Corresponding to each integer o > 4 there exists a non-triangular
matriz A with every row in £, that satisfies AC, = CLA.

Rhoades [3] dealt with the case @ = 5 of Theorem 4 using a very complicated
method.

We prove Theorems 3 and 4 in Section 7.

3. Some results about commutative infinite matrices.

We prove two general theorems in this section. The first theorem concerns the
associativity of certain products, and the second is the key result used in the proofs
of Section 5.

THEOREM 5. Assume that A = (anpm) 15 an infinite matriz, T = (tmi) 5 o
triangular matriz, and B = (bgy) is a Tow finite and column finite matriz. Assume
also that the product AT exists. Then (AT)B = A(TB) and B(AT) = (BA)T.

Proof. (1) Since in the following sums, for a given r, only a finitely many of the
numbers by, differ from zero, we get

(AT)BYwe = 3 () Somtuwicbas = Y o ¥, bruwbior = (A(TB) )i
k=0 m=0 m=0 k=0

Hence (AT)B = A(TB).
(ii) The above argument also yields (B(AT))nr = 3 poegibnm 3 peo Gmktkr
= ((BA)T )nr. O

THEOREM 6 . Assume that A = (anm) is an infinite matriz, that T = (tmg) is
a normal matriz, and that its inverse matriz T' = (t! ) is row finite and column
finite. Suppose that the product matriz AT erzists and AT = TA. Then AT’ = T'A.
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Proof. From AT = T A we get T'(AT) = T'(T'A). Applying Theorem 5 with B :=
T’ we get (T'A)T = (T'T)A = A. Multiplying both sides of the above equality on
the right by T’ and applying Theorem 5 again we get T'A = AT". O

4. Infinite matrices that commute with certain Hausdorff matrices.

THEOREM 7 . Suppose A = (anm) 15 an infinite matriz and o is a positive

integer. If C is a normal Hausderff matriz whose inverse C' = (cl,,) is given by

che = (DA™ *u(k) with p(z) a polynomial of degree o in z. Then (AC)nk =
o]

21:0 U’n,k—i-rc;_i.k’ka and {CIA)nk = Ef=n_a C;“«a-rk-

k+

Proof. We have (AC')nk = 3.720@nrCrk = 2opep GnrChp = Y oreo@n ktrCrik k-

This proves the first conclusion of the the theorem. To prove the second conclusion
n

we note that (C’A)nk = Y pep CrrGrk = Y oren—o Chrdrk- O

THEOREM 8 . Suppose o is positive integer and C = (cnk) is a normal Haus-
dorff matriz satisfying

(1) (n + 1)en,o is ultimately monotonic and lim (n + 1)eng # 0.

n—oo

Suppose its inverse C' = (c};) is given by

(2) = (:)An_kp(k) with p(z) a real polynomial of degree o in z.

Suppose A = (ank) s an infinite matriz such that the product AC exists and AC =
CA. Suppose that there is an integer n > 0 such that

(3) amk=0 for k=m+1,m+2,... and m=-1,0,1,...,n -1

Write by := ank and f(z) == Y pe, bxz®. Then f(z) is finite for |z| < 1 and
t 1-

(4) tlir{l f flu)du = f(u)du=L,

—1-Jo

0

where L is finite.
Further, if ¢ 1= et, 8 = d/dt, y = f(1 — z), then, for 0 < z < 2, y satisfies the
linear differential equation of order o with constant coefficients

(5) F(8)y := (u(8) — p(n))y = R(1 - &),

where R(z) is a polynomial of degree at most n — 1. If the associated auziliary
equation F(r) = 0 has simple roots ri,7a,... ,ro ¢ {0,1,... ,n — 1}, then

(6) f@)=c(l-z) " +ca(l—2)™+  +ca(l—2) + P(1l—z),
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where c1, ¢, ..., cq are constants and P(z) is a polynomial of degree at most n — 1.

Proof. Observe that, in view of (1), m is ultimately monotonic and bounded,

and that (AC)n0 = Y pep@nkCho = Y reobkck,o with the series converging by

hypothesis. It follows, by Abel’s test, that 3 -, k—bﬁ is convergent, and hence that

f(u) is finite for ju] < 1. By Abel’s theorem we have that lims;_ f(: flu)du =
1- ; . =,

fo flu)du =300 k—bﬁ This establishes (4). Since the matrix C’ is row finite

and column finite, we have, by Theorem 5, that AC’ = C’A. Hence, by Theorem

6 ind coridition (2?, we have, for k = n,n +1,..., that 3.7 jankerchipy =
Y e Cor@rk = Cnpank = p(n)ank. In other words we have that
o
(7) > Chpribrer = p(n)bx fork=n,n+1,... .
r=0

Suppose now that 0 < = < 2 so that, for z = e*, t < log2. It follows now from (7)
that

oo o
,Ll(n)f(l - et) = Z(I - et)k ZC’}c+r,kbk+r
k=n r=0
® = S S b (1 )
k=0 r=0

where p(z) is a polynomial of degree at most n — 1. Next, we observe that by
applying the relation p(f)e’® = pu(j)e’* |, Lemma 2, (2), and absolute convergence
we get

o] oo k
ZO) MNERLED 30 oY (IO
k=0 k=0 j=0 M
oo k
- Zbk Z(l s ghjke (i) ATplk — 1)
k=0 r=0

[™]=
V]38

be(1—e)F " (i)Nu(k -r)

..]
I
o
=
Il

r

k+r

r

I
NE
NgE

brrr(1 - et)k( )Aru(k)

.i
Il
o
-
1l

0

M=
NE

(]- - et) kC;c-q-r.kkar?"-

r=0 k=0
Whence, by (8),
p()f(1—e) +p(L—e) = p(0) > br(l—e')* = u(8)F(1 - e*) +q(1 — &),
k=0
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where g(z) is a polynomial of degree at most n — 1. Thus y satisfies the differential
equation (5) a particular integral of which is

1 , = Kt e ageft TN agat
——R(l—e") =1 — age’’ = — = =: P(z),
Fo = FE kzzo * Eﬂ F(k) ~ &2 F(k)

where P(z) is a polynomial of degree at most n — 1. It follows that the general
solution of (5) is given by

y=cre" 4 cae™ 4o 4 cqe™t 4 P(et)
=c1z™ + o™ + -+ coz"™ + P(z) = f(1 - z),

sothat f(z)=ci(1 —z)" +eo(l —z)2 4+ - +eo(l — )" + P(1 —x). O

5. Proofs of Theorems 1 and 2.

We shall use the following two useful lemmas.

LEMMA 1. Suppose thatae < —1,b> 0 and ¢ < a.
(1) If ¢; and cy are fized complex numbers and

t t
C]/ (1—m)a+ibdﬂ?+(;2] {17$)a_?’bd:r — L ast— 1—,
0 0

where L s finite, then ¢; = ¢p = 0.
(ii) If co, ¢1 and cg are fized complex numbers and

t t 7 ¢ .
cof (l—x)cdz-i-cl/ (1—z)3tdz +c2/ (1— )¢~ de — T as b=t 1—,
0 0 0

where L is finite, then cg = ¢1 = ¢g = 0.

Proof. (i) Let 0 <t <1, v=1—t Then f;(lf:c)“ﬂb dz = K (1—v°t1+%®) where
K =1/(1+a+ib). Hence

t t _ )
c1/ (l—m)a"'“’ das+02/ (17m)“71bdz =1 K + co K — ottt (Kclv +Kc2)
0 0

Suppose first that a < —1. Since in this case |[v®+1~%| — o0 as v — 0+, we must
have that K¢ v?® — —Kecg as v — 04, which is only possible if ¢; = ¢p = 0.
Suppose now that ¢ = —1. This case is more delicate. We have that

Kclfuib+f_{09v_ib-+—L—(Kc1+fzc:2) as v — 0 +.

Matrices that commute with certain Hausdorff matrices 233
If we take v = e~ 5 for k = 1,2,..., we obtain that
(—l)k(Kcl + Keg) = —L — (Key + Kecp) as k — oo

which implies that Ke¢; + Keg = 0. Likewise, if we take v = gt for k =
1,2,..., we obtain that

(=15 i Koy — Keg) — —L— [Key + Kea) as k — oo
which implies that K¢; — Kea = 0, and hence that ¢ =ies=10.

(ii) From (1 — 2)7°{co(l — 2)° + ¢1(1 — z)%F 4 ¢o(1 — m)a“_ib} —cpasz — 1—
we get co = 0. Applying now part (i) of the lemma we get cog = ¢1 = ¢g = 0. U

k k
k ; k
LEMMA 2. Cplg)ed = 1+zk—s(>Aspk— J
> (5)u) > (o (¥ atute -
Proof. Denote by E the shift operator given by Eu(k) = u(k + 1). Then

k k

Sra = (()ant - =3 (‘:)(1 ~ B)'((1 +2)B)*~*u(0)
= (1+zE)* Zk:( )M(J 0

j=0

Proof of Theorem 1. Suppose that ¢ = €, with o € {1,2,3,4}. We use the
notation of Theorem 8. The matrix C satisfies condition (1) of Theorem 8 since
tn0 = 755, and the inverse matrix C' satisfies condition (2) of Theorem 8 with
ulk) = (k+a) We shall prove by induction that apy = 0 for k > n = 0,1,2,.
Assume now the inductive hypothesis that for a fixed integer n > 0 COndltIOH (3
of Theorem 8 holds. The differential equation (5) now becomes

F()y =: ((eza) - (n:a)) y = R(1—e),

where R(z) is a polynomial of degree at most n — 1. Recall that y = f(z — 1), z =

0 =d/dt, by = ang and f(2) = Y po brz®. Observe that the associated auxiliary
equatlon is

(9) alF(r) = [Jtr+k) = J](n+k) =0,

k=1 k=1

and that F(r) < 0 for 0 < r < n.
We consider the cases a = 1,2,3 and 4 separately.
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The case a = 1. In this case equation (9) reduces to r — n = 0 of which the root
is r = n. Hence, by conclusion (6) of Theorem 8, we have, for 0 < z < 2, that
flz) =ci(1 —2)" + P(1 — z) where P(z) is a polynomial of degree at most n — 1.
Clearly (4) holds. Thus, subject to the inductive hypothesis (3) we must have
by = ank = 0 for k > n. But (3) is cléarly satisfied for n = 0, and so the proof is
complete by induction in this case.

The case a = 2. In this case equation (9) reduces to 7% + 3r — n? — 3n = 0 of which
the roots are r = n, —n — 3. Hence, by conclusion (6) of Theorem 8, we have, for
0 <z <2 that f(z) = c1(l —2)® + cg(1 — )™ 3 + P(1 — z), where P(z) is a
polynomial of degree at most n — 1. In order for (4) to hold we must have that
fo f(z) dz exists as a finite number which is only possible if ¢ = 0. Thus, subject
to the 1nduct1ve hypothesis (3), we must have by = anx =0 for &k > n. But (3)
is automatically satisfied for n = 0, and so the proof is complete by induction in
this case.

The case « = 3. Equation (9) now becomes r® + 672 + 11r — n® — 6n% — 11n = 0
of which the roots are r = n,—% — 3£ $v3n? 4+ 12n + 8 . It follows as in the case
a = 2 that, for 0 < z < 2,

f(z) =c1(1 — z)™ + co(1 — )~ F-3+3VIn +1In438
LR 63{1 _ x)—%—3—71/3n5+12n+ 4 P(l 3 :E),

where P(z) is a polynomial of degree at most n — 1. In order for (4) to hold we

must have that f(]l" f(z) dr exists as a finite number which, by Lemma 1, is only
possible if ¢y = ¢3 = 0. The proof of this case can now be completed by induction
as in the previous case.

The case o = 4. In this final case (9) becomes r* + 1073 4+ 3572 + 50r — n% — 1003 —
35n? — 50n = 0 of which the roots are r = n, —n — 5, —3 + £\/4n? + 20n + 15. As
before it follows that, for 0 < = < 2,

flz) =c1(1 — 2)® + ca(l — )"0 4 ¢3(1 — z) " HTFVINTFIONFTR
o 04(1 . m)ﬁ%—%v4n2+20ﬂ+15 4 P(]. _ .’L'),

where P(z) is a polynomial of deree at most n — 1. In order for (4) to hold we
must have that fol_ f(z)dz exists as a finite number. Lemma 1 now shows that
cg = c3 = ¢4 = 0, and the proof can be completed by induction as in the previous
cases. O

Proof of Theorem 2. Since Hy = C1, the case @ = 1 is known (and a proof was
given above). So suppose that C = H, with @ € {2,3,4}. We use the nota-
tion of Theorem 8. Since a is a positive integer, we have that, for 0 < ¢t < 1,
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1 a—1 _— a—1 - &
(log ﬁ) = (Ek:l ?) = 3 poiCkt®, where ¢ > 0 for k = 1,2,... . It
follows that
(n+ 1)cno = (n+1) o) Z g
mT e = AR 0 Ogl—t R k1

is positive and increasing, and hence that the matrix C satisfies condition (1) of
Theorem 8. Further, the inverse matrix €’ satisfies the condition (2) of Theorem
8 with u(k) = (k + 1)®. We shall prove by induction that anx = 0 for k > n =
0,1,2,... . Assume now the inductive hypothesis that, for a fixed integer n >
0, condition (3) of Theorem 8 holds. The differential equation (5) now becomes
F(8)y = ((0+1)* — (n +1)*)y = R(1 —e"), where R(z) is a polynomial of degree
at most n — 1. Recall that y = f(z — 1), z = €%, 8 = d/dt, by = an;, and f(z) =
> ome . brz®. Observe that the associated auxiliary equation is

(10) Fry=r+1)%=(n+1)%=0,
and that F(r) < 0 for 0 < r < n.
We consider the cases @ = 2,3 and 4 separately.

The case o = 2. In this case equation (10) reduces to (r + 1) — (n + 1)2 = 0 of
which the roots are » = n, —n — 2. Hence, by conclusion (6) of Theorem 8, we have,
for 0 < z < 2, that

flz)=a(l-2)* +e(l-z)™" 2+ P(1-2),

where P(z) is a pGlynomial of degree at most n — 1. In order for (4) to hold we must
have that fo f(z) dz exists as a finite number which is only possible if ¢3 = 0. Thus
subject to the 1nductwe hypothesis (3) we must have by = anx = 0 for £ > n. But
(3) is automatically satisfied for n = 0, and so the proof is complete by induction
in this case.

The case a = 3. Equation (10) now becomes (r 4+ 1)3 — (n + 1) = 0 of which the
roots are r = n, %32"—3:1: L@;ﬂ It follows as in the case o = 2 that, for 0 < z < 2,

1@) = e1(l = 2)" + el — &)~ H

ivE(n4l
{1 — )R

e P(]- - 3:)’

where P(z) is a polynomial of degree at most n — 1. In order for (4) to hold we
must have that fol_ f(z)dz exists as a finite number which, by Lemma 1, is only
possible if cg = ¢3 = 0. The proof of this case can now be completed by induction
as in the previous case.



236 Borwein—Jakimovski

The case a = 4. In this final case (10) becomes (r + 1)* — (n 4+ 1)* = 0 of which the
roots are r =n, —n — 2, —1 £ i(n + 1) . As before it follows that, for 0 < z < 2,

flz)=c1(1=xz)" +cao(l ~ z)_n_z +e5(l — z)_1+i(“+1)
+ el —z) 17D 4 p(1 - q),

where P(z) is a polynomial of degree at most n — 1. In order for (4) to hold we
must have that fOIA f(z) dz exists as a finite number. Lemma 1 now shows that
cg = cg = ¢4 = 0, and the proof can be completed by induction as in the previous
cases. O

Remarks. Note that the key formulae in the proofs of Theorems 1 and 2 are
(9) and (10), respectively. Though these formulae are essentially the same as
(10) and (15), respectively, in Rhoades’ paper [3], we derived them by & method
entirely different from Rhoades’. His proofs use the restrictive assumption that
SUPy, D peo lank| < oo and cannot work without some such restriction. Our ap-
proach, based on Theorems 5, 6, 7, and 8, allows us to dispense with the restriction.

6. Matrices with rows in ¢; that commute with Hausdorff matrices.

In the following (t) will denote a function of bounded variation over [0, 1].

For complex s with Re s > 0, let u(s fD t°dv(t), and denote by (H,v) the
Hausdorfl matrix generated by the moment sequence (p(k)), i.e., (H,7) = (hnk)
where

ik 1= (:) A= fol (:)tk“ — )" *ay(t) for 0 < k <,

0 for k > n.
We have
supme < f 47(8)] < oo.
2050

LEMMA 3. Let A = (ang) be an infinite matriz with each of its rows in £y, i.e.,
Yoo lank| < 00, Let ga(t) =3 gepank(l—t)F for0 €t < 1,n=0,1,..., and
let H = (H,v) = (hnk) be a Housdorff matriz. Then AH = HA if and only if
1 n—1
fo gn(tu)dy(u) = p(n)gn(t) + Y hnkgk(t) for 0<t<1,n=0,1,....

Proof. Let n,7 = 0,1,2,...,and 0 €< ¢t < 1. Suppose AH = HA which means
explicitly that

oo
(11) (AH)nj =Y ankhi; = Zh gk = (HA)nj,

k=0
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the convergence of the infinite series being guaranteed because
00 50 oo
> lanilltigl < [ 1701 lankl < .
k=0 9 k=0

Also

o0 k 1 oo
> land S lhigl(1 =1 < [ lanil1 = 1) lar(a)
= j=0 0 k=0
1. oo
< [ 1ar @) Jankl < oo,
/0 3

This justifies all the following interchanges of orders of summation and integration.
We have 322 (1 — ¢)7 3 52 g @nkhis = Yoaeoll =) % _¢ Bnkar;; and so

0 k n o0 n—1
D ank ) hig(L—1) = har 3 aki(1—t) = p(n)gn(t) + ) hnkgr(t).
k=0 =0 k=0 =0 k=0

Now
o0 1 k k ) 1
S =17 = 5 (Fu -0 - wpttan) = [ 0-wtanta)
i=0 0 j=o ]

Thus

5] k 1
an hii(l—t) = ank(l — tu)fdy(u) = n(tu)dy(u).
> k;} k /Z;] k( 7(u) fog( )d (u)

k=0 J

Hence
1
(12) | snteman) = utn +Zhnkgk

Since all the steps leading to (12) are reversible we get that (12) is equivalent to
(11) when (ank)k>0 € € forn =10,1,... . O

LEMMA 4. Let H = (H,v) = (hnk) be a given Hausdorff matriz with v(t) in-
creasing on [0,1] and v(1) — v(0) = 1. Suppose there is a complex or real sequence

(sr) satisfying so = 0, Re s > 0 for r > 1, and p(s,) = p(r) for r > 1. Then
there exists a triangular matriz (cnr) such that cpy = 1 for n > 0 and the function
gn(t) = 3 o cnrt® satisfies (12) forn=0,1,..., and0 <t < 1.
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Remark. Of course for any given value of r the choice s, = r satisfies the assump-
tion of Lemma 4 for that value.

Proof. We construct the matrix (c;r) by induction Suppose throughout the proof
that 0 < t < 1. We have sp = 0 and u(0) = fo dy(t) = v(1) — v(0) = 1. Choose
cop = 1. Then the function go(t) satisfies (12) for n = 0 Assume now c;, has been
defined for 0 < r < j < n so that g;(t) = 3 )_ cjrt® satisfies (12) for 0 < j < n.
We will now construct a function g, (t) that also satisfies (12) and thereby extend
the definition of ¢, to the range 0 < r < j < n. We have

n—1 n—1 n—1
Z hnkgr(t Z Bk Z Crt® = Z ¥ Z hnkCrr = Z dppt®"
r=0 k=r =0

where dpyr 1= ;:;i hnkckr for 0 < + < n. For the function

we have
1 n—1 d il
hp(tu)dy(u) = —m——tsT/ w®rdy(u)
f ) i = L
n—1 n—1 n--1
dnrps(r) i
= —— %" = u(n) + At s,
Y Tt e S e o

Therefore fo (tu)dy(u) = p(n)hn(t) + Zz;é hrkgk(t). Now define gn(t) := t°~ +
hn(t). Then

1 1 1
/O gn(tu) dy(u) :ts“fo us“d'y(u)+/0 B (tu)dy (u)
= p(sn)t* + p(n +Zhnfc9k

= pu(n)gn(t) + Zhnm

Hence g, (t) satisfies (12) and has the representation

=t 4+ Z 7= icnrtarn
r=0

'r'=0
where c¢pp = 1 and cnp = m%f-m—ﬂ when 0 < r < n. The proof can now be
completed by induction. ) 0O
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LEMMA 5. Let H = (H,v) = (hnk) be e given Hausdorff matriz with v{t) in-
creasing on [0, 1] and v(1) —~+(0) = 1. Suppose that to some positive integer m there
corresponds some number s., with the following properties:

(1) sm ts not an integer,

(i) Re sm > 0 and

(i) p(sm) = p(m).

Then there exists a non-triangular matriz A with every row in £1 that satisfies
AH =HA.

Proof. For each non-negative integer r different from m choose s, := r. Then, by
Lemma 4, there exists of a triangular matrix ¢ := (cp,) such that the function
gn(t) = 21;0 cnrt®" satisfies (12) forn = 0,1,..., and 0 <t < 1. We have, for
0.2 t€],

S "7y a-vr

k=0
Hence, for 0 < ¢t <1,

o0

(13) Fall) = Z“”k Yo LI

k=0
where anp = E:zo Civ (k S”—l) Observe that ( 1) ~ %(-_% as k — oo when
s #0,1,2,..., and hence that Y ., (k L 1)‘ < oo when Re s > 0. Since Re
s > 0, it follows that ZZO:O |ank| < oo, and therefore, by Abel’s theorem, that (13)

in fact holds for 0 <t < 1. Thus all the rows of the matrix A := (any) are in £,
and, by Lemma 3, AH = HA. Further

m-—1
k—s,—1 k— -1
e
=0
m—1
k—r—1 k—sm—1
r k k

r=

Since (k_;_l) =0 for £ > r + 1 and since s,, is not an integer it follows that, for
k > m,

k—sm—1 &y 1 sm+1 Sm+ 1
mk = = 1— = s - %
o= (70T = (-2 (1t (3 )

Hence the m’th row of the matrix A has an infinite number of elements different
from zero, and so the matrix is not triangular. O




240" Borwein—Jakimovski

LEMMA 6. To each integer r > 5 there corresponds some positive number M,
such that for each integer m > M, there is a complex number ss-m) satisfying:

(1) s{™ s not a real number;

(i) Re si™ >3

and

(i) 1/(747) = 1/ ().

Proof. For a given integer r > 5, write f(w) = w"™ — 1, pw) = (w + %)(w +
2).. (w+ ), and g(w) = p(w) — p(1) - f(w). We have

g(u:):(%+...+ )(wrf171)+(...+

o
m

Hence, for |w| <3, m > r,

s (e ()E)

(14) < =Ly 1ypn,
m

Denote by v; the circle {w : |w — w;| = €} where ¢ :=  min (sin Z, cos 2—“) and

;2m 3 %
wj = e* = 4. Then 7; includes exactly one zero of w™ — 1 = 0 in its interior. Also

6 .

min > 0.
wG’Yj,OSJ'<T|f(W)‘
From (14) we see that there exists a positive number M such that, for all m > M
and j =0,1,...,7 — 1, maXyeq,; |g(w)| < 6. Hence by Rouché’s theorem, for each
m > M, the functions w”™ — 1 and (w+%)...(w+i)f(1+#)...(1+-1%) have
the same number of zeros inside each of the circles «;, i.e., exactly one. Hence, for

each m > M, the solutions zlgm),... ,zim% of (z+1)...(z+r)=(m+1)...(m+r)
z“,s-m)/m—ei%ﬁj < €, Or \zj —mez_rﬁ'ji < em for j =0,...,r — 1. For
j =1 we get
sim .= zgm) = m(et¥ + nee'®)  for some 7 € [0,1).
Now
2 2 2
Re zgm) = m(cos—ﬂ- + necosf) > ".rn(cos—?r —€) > —-r';l(‘,os—?1 — 00 as m — oo
T T L
and

(m)

2 2
Im z; =m(sin—w+nesin9)) > m(sin—ﬂ-fe)
T r

> 9 .o bis 1 9 oo T 1 0
,sin — | cos — — — — fn e :
> 2m sin — — =) 2 msn— == 2] >

(m) .

Hence s;  is not a real number and so not a positive integer, and there is a positive
number M, > M such that Re sS—m) > 3 whenever m > M,. O
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7. Proofs of Theorems 3 and 4.

Proof of Theorem 3. Recall that, for o > 0, the Holder matrix H, is the Hausdorff
matrix (H,~) with v(z) = ___(,1_7 foz (log %)a_l dt, and that its generating moment

sequence (p(n)) is given by p(n fo t"dy(t) = Tffo tn (log f)"‘“l e n+11 _

Observe that, for @« > 0 and complex z with Re z > —1, we have (by applying
Cauchy’s theorem) u(z) = fo t3dy(t foo Pl g™ (zH)”du = ﬁ Hence, for
s:= (m+ l)ez_«? —1l,a> 4, m > sec -23— — 1, we have that s is not a real number
and so not an integer, Res > 0, and p(s) = m = p(m). The desired result

is now a consequence of Lemma 5. O

Proof of Theorem 4. Recall that, for o > 0, the Cesaro matrix Cy is the Hausdorff
matrix (H,~) with y(z) := fo 1—t)*~14dt, and that its genera.tmg moment sequence
(n(n)) is given by p(n) := fo tmdvy(t) = afo t"(1 — t)*"ldt = (n .-..)- Observe
that, for @ > 0 and complex z with Re z > —1, we have pu(z fo t*dy(t) =
@ fo t7(1— £)2-1dt = (—zh—) The desired result is now an 1mmed1ate consequence

of Lemmas 5 and 6. : O

8. Certain Holder matrices of fractional order.

Notation. Given an infinite matrix 4 = (apk) we write |A| := (lank]).

We require two additional lemmas. The proof of the first is quite straightforward.

LEMMA 7. Assume A, B and C are three infinite matrices such that |A||B||C|
exists (the order of mulplication is immaterial). Then (AB)C = A(BC).

LEMMA 8. Suppose that each row of a given infinite matriz A is in £, and that
H is a positive and conservative Hausdorff matriz such that HA = AH. Then, for
each positive integer m, we have H™A = AH™.

Proof. For each positive integer m the matrix H™ is a positive and conserva-
tive Hausdorff matrix. In particular H™ is triangular and each of its columns
is bounded. The proof is by induction on m. Assume that for a positive integer m
we have H™A = AH™. Of course this is true for m = 1 by the lemma’s hypothesis.
Since the products H(H™|A[), H(|A|H™) and |A|(H H™) all exist, it follows from
the inductive hypothesis and Lemma 7 that

H™A=(HH™A=H(H™A) =H(AH™)
=(HA)H™ = (AH)H™ = A(HH™) = AH™L.
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The proof can now be completed by induction. O
THEOREM 9. Suppose that a = 3 where p € {1,2,3,4} and ¢ € {1,2,3,...},
and that A is an infinite matriz with every row in £1 such that AH, = H A, H,

being the Hélder matriz of order o, Then A is triangular (and hence is a Hausdorff
matriz).

Proof. Apply Lemma 8 with H := H, to obtain that H94 = AH? But H? = Hy,
and, since p € {1,2, 3,4}, it follows from Theorem 2 that A is triangular. |

9. Matrices that commute with Euler matrices.

The Euler matrix (E,q), ¢ > 0, is the triangular matrix (enk) given by

1
Cnk = (Z)ak(l - a)"_k with a .= ——.

1+g¢

It is a regular Hausdorff matrix generated by the moment sequence (a™).

THEOREM 10. Let C = (cnk) be the Euler matriz (E,q),q > 0. Suppose A =
(ank) is an infinite matriz such that AC = C A. Suppose, in addition, that

oo
(15) Z anck™ converges forn=0,1,....
k=n

Then A is triangular (and hence is a Hausdorff matriz).

Proof. Note that condition (15) is equivalent to

(16) Zank (k(k —1)---(k—n+1)) converges forn=0,1,....

k=n

This is a consequence of Abel’s test since, for fixed n, k(k—1) - (k—n+1)k~"tends
monotonically to 1 as k — co. Observe that the product C4 automatically exists
since C' is triangular. Further

e 1/ a \*&
(AC)nk:me-c,.k:m( )Zam((r—l (r—k+1)(1-a),

l—a
r=0 r=k

the final series being convergent by (16). Thus the product AC also exists.

We prove the conclusion of the theorem by induction. Suppose that there is a an
integer n > 0 such that

(17) amek=0 fork=m+1m+2,... and m=-10,1,...,n—-1
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Let
by :=ank and f(z):= Z brz”.
k=n

Then, by (16) and Abel’s theorem, f(z) is holomorphic for |z| < 1 and
(18) lim F™ () Zbk(k(k—l (k—n+1)) =1L,

where L is finite.

Next we have

(e

(Ac)nk = Zanrcrk: = Zbrcrk and (CA)nk = chrarko

r=0 r=0

In view of (17), it follows that, for k=n,n+1,...,

o0
(19) > " brerk = Cnntnk = by
r=0

Suppose now that 0 < = < 1. It follows from (19) that

) oo 0o oo
z) = Z z* Zbrt’!rk = Z:ck Zbrcrk —p(z)
k=n r=0 k=0 r=k

where p(z) is a polynomial of degree at most n — 1. Consequently

a"f(z) +p(z) = Tiﬂb Zcrkz ibri() k() By"

k=0 =0 =
oo

=Y b.(1-a+az)" = f(1-a+az)+q(z),

r=0

where g(z) is a polynomial of degree at most n — 1. Differentiating n times with
respect to =, we obtain f(")(:c) = f(")(l —a+az), whence, for u :=1—z, (1 -
u) = f™(1—au). Replacing u by au successively j — 1 times in this equation yields
fi(z) = ™1 —u) = f(™(1 - a’u). Since 1 —a? — 1— as j — oo, we get, by (18),
that f(™(z) = L for all z € (0,1), and consequently that f(z) is a polynomial of
degree at most n. Hence

(20) b = ang = 0 for k > n.

Since (17) is automatically satisfied for n = 0, it follows by induction that (20)
holds for n = 0,1, ... . In other words, A is triangular. O
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Remarks. The proof of Theorem 10 is similar to Rhoades’ proof of his Theorem 3
in [3] but he has the condition sup, Y 7 |ank| < oo, which is neither necessary
nor sufficient for condition (15) (above) to hold. Rhoades’ proof of his Theorem 3
fails on the line 3 up from the end of that proof where he states that g (0)

Y rem @mk- This is false on two scores. The first is that his condition is not enough
to ensure the existence of the derivative at the origin. The second is more significant.
Since, for |1 — u| < 1, gmo(u) = 3 pegamk(l — u)¥, what he requires is that

gme (8) = (=1)™ 3" apmp (k(k — 1) - (k —m + 1)) (1 — u)*~™
k=m
—>(—1)miamk(k(k—l)---(k—m+l)) as u — 0+,
k=m

which condition (16) (above) ensures.
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