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A high indices Tauberian theorem

DaAvID BORWEIN and WERNER KRATZ
Communicated by F. Méricz

Abstract.  We prove a Tauberian theorem concerning the summability
method Dy , based on the Dirichlet series Eane_)‘"m with any1 ~ an > 0
when the sequence (An) satisfies the ‘high indices’ condition Antl > e >0
with any ¢ > 1.

1. Introduction

Suppose throughout that () is a strictly increasing unbounded sequence of
real numbers with A; > 0, and that (a,) is a sequence of positive numbers. Suppose
also that

A=

Q) — 00,

[+

=
I

1
and define

oo
(%) = z ane” "
n=1

whenever this Dirichlet series converges.
Let s, 51, 82,... be complex numbers, and define

1 & 1 —
Oy 1= T Zaksk and o(z) = m 1;a&nsne_""z.

=1
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Bl1. S th
The weighted mean summability method M, and the Dirichlet series summability ibearem uppose that

method D) o (see [1]) are defined as follows: Ant1 ~ An,
& s s(Ma) if on — 55 %——-rl when iﬂ—»l,m)n—aoo,
i s(Dy o) if o(z) exists for £ > 0 and o(z) — 5 as z — 0+. 1 An
It is known (see [1]) that, since A, — 00, both methods are regular (i.e., s, — s liminf(sy, — 8,) >0 when ﬁ — 1, m>n— oo,
implies s, — s(M,) and s, — $(Dx,)), and that s, — s(M,) implies s, — An
$(Dyq). and that s, — s(D)y o). Then s, — s.

The purpose of this paper is to prove the following result:

We won't use the above two results, but will use another known Tauberian

Theorem 1. Suppose that the sequence (a) satz’sﬁ.es the condition result which follows immediately from Theorem 67 in [3]:

(1) An4+1 ™~ QAn,

Th H2. If (3) hold d s, M,), th :
and that the sequence (A,) satisfies the high indices condition - f(3) holds and sn — s(Ma), then sp — s

(2) Apr>chy with e> 1 We will also use the following Tauberian theorem due to Borwein [1, Theo-
Suppose also that s, — s(Dy ), and that the Tauberian condition rem 2J:

(3) Snp1—8n =0 (z_") Theorem B2. Let s, — s{D) o), let s, > —H where H is a constant, and let
holds. Then sn — s. lim almz) _ am >0 for m=2 and m=3.

z—0+ a(x)

Remark. Observe that conditions (1) and (2) imply that, for z > 0,
Then s, — s(M,).

A1

< e a el Ao
n+1 < 'ﬂ—+le (e 1};\,@__50,

Gne~An® e

For other Tauberian theorems of the type Dy, = M, see [1, Theorem 3],
from which it follows that the Dirichlet series a(zx) converges for all = > 0. [2, Theorem 7], and (for the case A, = n) [5, Korollar 4.2].
It is interesting to compare Theorem 1 with Theorem 114 in (3], namely:

Theorem H1. Suppose that (2) holds, and that 2. Auxiliary results
o
E(snﬂ —sple ™ s as -0+, Lemma 1. Suppose (z,,) is a non-increasing sequence of positive numbers such that
n=1 o(z,) exists. Suppose also that (1) and (2) hold, and that

Then 8, — s. )
,Sn'!"l - Sni S le w’lvth 6'.‘@. = a(mn)e)\ntn,

A known Tauberian result concerning sequences (A,) not satisfying the high n
indices condition (2) is the following theorem due to Borwein [2, Theorem 6] (see |, e, o

s a positive constant. Then |o(z,) — sn| < c1.
also Tietz [6, Satz 3.9] for the case A, = n):
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Proof. (Cf. the proof of [4, Theorem1].) We have

lo(zn) — su| = a(.‘zn

where

e o]

Zaklsk sale™, Ty = 1
J:n,) a(zn) ety

We have

21!

1 n—1 n—1 &
S ( ) E G,ke_/\k:r" E Cl_s_:r'
a
In) i1 i=k 7

n—1 e N F)
o e A Y apem ez pleimmn) M=)
i —A_—,'Q‘:j; k
afty) — 8 e o

n—1 1 i
—Ajz
—_— a;e” 1 "—Za e
Ty 2 a(z;) =

=1
and z; > =, when k < j < n. Next we have

IA

since A < A;

oo
Yo < g~ MeTn ch—

Bl x > Ot G RN

— i = k5 o(T5—2n ) (A —
TR Z are e

j=n k=j+1

oo o0
1 g~ dizn L ~Mzi O
= a(zy) 2 ¢ = afw)

j=n 77 k=j+1 o

since Ay > A; and z; < z, when n < j < k. Hence
o0

C1 =
< a e

=1

AjZn =0,

143

which yields the desired conclusion.

Zak(sk - sn)e AkZr < By + Bg,

E ak|sk — Sn S L

,e—ijn,

i)

f
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. Lemma 2. Suppose that (1) and (2) hold. Then

(i) Apy1 ~ Ap;

(ii) for all sufficiently large n, (1/e)An < a(l/A,) < c24,,
where ez := 1+ 322 e~ < 00 with ¢ > 1 from (2); and
(iii) for allt >0, (a(tz)/a(z)) = 1 as z — 0+.

Proof. (i) It follows from (1) and the regularity of M, that

A 1 Z
_n+1 =— |3 + ak“ak — 1.
An An k=1 93

Hence, for sufficiently large n and all k& > 0,

k=1
Aktn _ H Antjrt ok

dn 52 Ans;

(ii) Next we have, for sufficiently large n,

1 s 1
A, < Zake_)"‘/’\" <a (,\—) (1 + Z
k=1 n

m

—Ak/A,.)
k= n+1

oo A o0 i
S An (1 + Z —:1-}‘?1 eWAk+fl//\,L) S An (1 + Z €k6_c ) = CZ.An:
k=1

k=1 "

since (Ag4n/An) < €F and (Apgn/An) > k.
(iii) Since a(zr) decreases as z increases and ¢ > 1, we have, by (1), (2) and
the regularity of D) ,, that, for z > 0,

which implies (iii).
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3. Proof of Theorem 1

Put z, := 1/X, whence, in the notation of Lemma 1, 6, = ea(z,). Hence, by
parts (i) and (ii) of Lemma 2,

Qn Gn
Sn+1—Sn:O(A—n) =O(E),

and o{z,) — s because s, — s(D) o). Therefore, by Lemma 1, the sequence (sw)
is bounded, and so, by Lemma 2(iii) and Theorem B2, s,, — s(M,). It follows, by

Theorem H2, that s, — s.
]

Remark. The order of magnitude in our Tauberian condition (3) is best possible
in the following sense: if (v,) is any sequence of positive numbers with +,, — oo,
then there is a divergent sequence (s,) such that

Spy1 — 8, =0 ('yn%'l) and s, — 0(M,) (and hence s, — 0(Dj,q)).
This is certainly well-known and can be established by elementary means, but we
have not seen a published proof.

4. Examples

In the following two examples we consider the case s = 0 of Theorem 1, and
assume that each sequence ()\,) satisfies (2). The order of magnitude of a(z) as
z — 0+ is easily determined from the observation that, by parts (i) and (ii) of
Lemma 2,

1
_eAn < a(z) € c2Any1 ~ c2An  when An+1 An

(i) Suppose that A, > A" for some A > 1 and all sufficiently large n, and that
ar = k® for some a > —1. Then
n1+a

rVl—f‘cx

An

and, for z > 0 and some positive constant M,

a(lz) < M (Iog (%))—1-0.

A high indices Tauberian theorem 149

Thus, if

=1l-a oo
1 o, — AT
(log (z)) Zskk e 0 as z— 0+

k=1

and Sp41 — S, = O(1/n), then s, — 0. By putting t = e~®, we can transform this
into the following result involving power series with ‘Hadamard gaps’; if

1 —1l-a o0
(IOg (m)) ZSkkatxk -0 as t—1-—

k=1

and sp41 — Sn = O(1/n), then s, — 0.
(ii) Suppose that A, > exp(2™) for all sufficiently large n. As above, we now
have that if

1 o0
_.._..-_--.ngt’\" —0 as t—1—
log log (ﬁ) k=1

and s,41 — s, = O(1/n), then s, — 0. -
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