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1. INTRODUCTION AND THE MAIN THEOREM

Suppose throughout that (8n)n30 is a sequence of complex numbers, and that
s(z) is a complex, Borel measurable function on [0,00). Suppose also that, unless
otherwise stated, a(z) is a real function of bounded variation on [0,1], that 8(z) is a
real function of bounded variation on [0, 00), and that 1 <r < ooand 1/r+1/r = 1.
Hardy’s inequality Hardy et al (7, #326] is:

co 1 n r r r 0O ,
2w o] < () Xl

and there have been many generalizations of it. We shall establish the following
unifying theorem concerning general inequalities of the Hardy type, and then show
how it and its variants can be specialized to prove many inequalities, some of which

hitherto have been proved by diverse ad hoc methods, and some of which we believe
to be new. '

Theorem 1. Let the functions 9(z), h(z), frn(z)(m,n = 0,1,.. .) be non-negative
and Borel measurable on [0,1] . Suppose there ezist positive numbers p,, g, (n =
0,1,...) such that

o0
men(m)gpmg(a:) br Bxedl, welia., (1.1)
n=0
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and -
Y frn(e) S guh(z) for 0< <1, n=0,1,.... (12)
m=0
Then
& - i ¢ " 1
Wi A ):smffmn(m)da(z) (/g )/ h(z)" |daz ) melsml (L.3)
n=0 m=0 0 0
and
o o) o0 1 r o0
> pn' (L f (@) ( [ ot h(m)"’lda(m)l) > dmloml". (14)
m=0 n=0 0 . m=0

Remarks about Theorem 1.

(i) Any integral of the form fj w(m)da(mj is to be interpreted to be the Lebesgue-
Stieltjes integral [, w(z)da(z) with a(z) := a(0) for 2 < 0 and o(z) := o(1)
for z > 1. The condition that a(z) be of bounded variation on [0,1] can be
relaxed provided the integral remains defined. This will be done in Example
5 (below) where we consider a(r) = logz so that da(z)= 27'dz. The above
theorem remains true with appropriate changes if the interval (0,1} is replaced
by any fixed finite or infinite interval.

(ii) The inner sum in the left-hand side of (1.3) will automatically be convergent
when the right-hand side is finite, and likewise in (1.4).

(iii) In Theorem 1 each of the indices m, n can be replaced by a continuous variable.
For each such change the corresponding sum must be replaced by an appropriate
integral. The following theorem is an example of such a variant of Theorem 1.

Theorem 2. Let the functions g(x) and h(z) be non-negative and Borel measurable
on [0,00), and let the functions f,.(z) (n = 0,1,...) be non-negative and Borel
measurable with respect to z on [0,00) for each t € [0,00), and Borel-measurable
with respect to t on [0,00) for each = € [0,00). Suppose there exist a positive Borel
measurable function p(t) on [0,c0), and positive numbers g, (n = 0,1,...) such that

Zf:n(r p(t)g(z) for ©>0, t>0

3

and
fomfz,n(x)dt < gah(z) for >0, n=0,1,....
Then i
> ot Df s(t)dt | fin(2)dB()

< (ot st Fatolscor
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( / y(m)""h(m)"'ldﬁ(x)f) 5~ gulon’

m=0

P / fnlea(o)| <

n=0

o

- >roof of Theorem 1. Write

(@)1= 3 Srnl@oms tni= [ sa(o)da(@) = 3 s [ fun(z)da(a).

m=0 m=0
By Holder’s inequality and (1), we have
s = | £, o)t fn(2)
: ;o e v oo '
< (E el ) (£, fme)
< (@@ ( £ fma(elonl)
m=0

1/

Hence

£ g~ Tlanla)l” < Ay E 2 fon(@)lsnl
= h( r/r ): Ismr 2 fmn(-'”)
< h(ﬂ:)r/r 9(17) mgopmisml .

Therefore, by a Minkowski type inequality (see Hardy et al {7, p. 148]),

= i » 1 ry 1/r
(E qnl"ltnl’) = (E @' [ sn(z)do(z) )
n=0 n=0

. 1/r
5 0 Mlsn(e))  lda()

n=0

0 1/r
(@) f(@) I lda(@)| £ pulsnl’)

This establishes (1.3), and ( 1.4) follows by an appropriate interchange of symbols. O

ct—.,...ot—-,..‘
/'—"\

2. EXAMPLES INVOLVING GENERALIZED HAUSDORFF
TRANSFORMS

Suppose that (A,) is a sequence of real numbers with A 20,A >0forn > 1.
Forn > m, let Apn(t) :=0,and for0 <n<m,0<t < 1, let

1 t* dz
mnll) i= —Xagr- - Ape—s y Ama(0) := Amn » 2
Cmn being a positively sensed Jordan contour enclosing A,,...,A,. Here and else-

where we observe the convention that empty products, like Anyy -+ A, when n =m,
have the value 1. Let Ay := [§ Ama(t) da(t), and, for 0 < ¢t < 1, m > 1, let

A() = i\ﬁ)\mn(t) and A% = my (2.2)

m m

S
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The triangular matrices (An,) and (X},,) are respectively the generalized Hausdorff
(see Borwein and Jakimovski [5]) and quasi-Hausdorff matrices. They have been
extensively investigated. It is known (see Borwein et al [2]) that An.(z) > 0 for
0<z<L,0<n<m,that ¥t odmn(z) €1 for 0€2z<1, m=01,...,

and (see Borwein [1]) that 357 A% (2) <1 for 0<2 <1, n=12,....

m=n

Example 1a. In Theorem 1 choose

o AmnlE) Am for m>2n>1,
fran(z) = { 0 otherwise .

Then we have

2 1 .Z 1
men(m)s:\'—ZAmn(x)sr for GSCESL m21,

n=0 m n=0

and - { .
Y faa(z) S — D A(z)<— for 06<z<1, n>1
m=0 /\“ m=1 /\""

Therefore the assumptions of Theorem 1 are satisfied with p, = ¢, = —Al—" forn >
1, f(z)=h(z)=1.It now follows from (1.4) that

> ﬁ Té St 56 (I [da($)|)r2 35;|s,,|' , 2.3)

m=1
This was proved in Borwein [1] under the additional hypetheses

0< <A <---<A, oo and =00,

Ingl
>—1,_.

2

I

-
3

It was also proved there that, subject to these hypotheses, the inequality is sharp
when a(z) is non-decreasing on {0,1] with a(0+) = «(0).
From (1.3) we get the companion inequality

r

i 1 o . 1 r oo 1 .
33 |2 Kt € ( / Ida(a:)l) I (2.4)

Example 1b. In Theorem 1 choose fmn(z) = Ama(z) . Assume that for some ¢ > 0
we have '

su An-H v A'rav\ ”
o= 0.
a ogngm.go.:.... (An46)...(Am-1+¢)

Then - .
Y fan2) = Y dna(2) S 1 for 0z <1,

n=0 n=0

Further, it was proved in Borwein [1] that

Z frnlz) = z_: Amn(z) Spz™ for 0<z <.

m=0

A Ger

It fOHOv
Hr—c ;.



n (1.3) of Theorem 1 with Pn=¢=1, g(z)=1 h(z)=

T

z Z/\mnsm

n=0|m=n

.4) that

n=0

<u([ e lda@)l) 3 lenl, (2.5)

5 T oo

5 S dwwsa| < ([ & lda@)) 3 Jaal (26)

Inequality (2.6) shows that the generalized Hausdorff matrix is a
bounded operator on [, with norm at most p!/r 01_3:“’/ "|da(z)|. This was established
by the proof of Theorem 1 in Borwein [1], although the statement of that theorem
had the condition Auy1 < Ay + ¢ for n > ng, which is strictly stronger than the
condition g < co. (See Borwein and Gao [3]). Hardy [6] established (2.6) for ordinary
Hausdorff matrices, i.e., A, = n, and showed that in this case the inequality is sharp
with ¢ = p =1 if a(z) is non-decreasing on [0, 1] with a(0+) = a(0).

3. AN INEQUALITY INVOLVING MOMENTS

Example 2. In Theorem 1 choose fy,(z) = (’"4"‘) z™(1 — )" . We have

zfmn(a:)—a:mZ(m-l_n) 1—z)“=£ forD <z <l m=0,1,...,

n=0 n=f

and

men(z)=(1~x)“z (m%—n)mm:; for0<z<1l,n=0,1,....

m=0 m=0 m l-z
Therefore the assumptions of Theorem 1 are satisfied for p, = =1 g(zj=1,

h(z) = 12 . Let p := [y 2™ da(z) for m=0,1,.... Then

ey

1
Aim= [[(1-2)'a™ do(s) for myn=0,1,,

and hence Theorem 1 yields:

oo | oo n+m\, . i 1 e o F..00 .
3] P e P B R ) L
n=0 |m=0 i 0 m=0

Taking o(t) = t we obtain the following inequality:

) e

oo}

2

n=0

o]

Y ot

moom+n+1
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4. AN INEQUALIT.Y INVOLVING BOREL TRANSFORMS

In this section we suppose that F(t):= [;7e™®df(z) for t> —¢,0 < ¢, whence

b2 )™

(-ra 00 @M =Tt
r f ze df(z) for t> —e.

Example 3a. Consider the functions fi.(z) := !ﬂl,s::l for 220, t>0, n=
0,1,.... Then

©o o n_ —zt

S @ =2t o320, 20,

n=0 n=0 :
and P i

je fe,n(a:)dtzfn Lf%zf—dtzz for z>0, t>0.

Hence
i > T i g FEE T E
Jstdt [7 fun(@)ase) = [eseyar [ T  apie) = [ SAEUNOPS
0 0 0 0 ’

From Theorem 2 with p(t) =1, ¢, =1, g(z)=1, h(z) = :1_: we get now
o0 i F
[ ——g—)-s(t)dt
()

Special cases.
L 1f f(z) =0 for 0 < o < 1 and f(z) = 1 for £ > 1, then F(t) = e~ and (4.1)

reduces to
00 co fRe—t -
z0 /'3 n! S(t)dt S'/(; |3(t)| dt . (42)

2.1 f(z) =1~e" for z > 0, then F(t) = 1/(t + 1) and (4.1) reduces to

2 (p (.})) [T Istrt. (4.3)

Example 3b. Consider the functions f, (z) := L’—’)::f—_ﬂ forz >0, t>0,m=
0; Lye < ALhEd

o0

2,

n=0

< ([ i) [Ciwra.

T

oo 10
]0 TEREROL

n=0

5] oo .n",‘t —.'x:t
Y fme(2) =Z =1 for >0, t>0,
m=0 m=0
and .
foe] [o's) t m _,—2 1
fm,t(a:)dt=] mf—dtw— for >0, m=0,1,....
0 0 m! T
Hence

m=0

i Sm]fm.t($) df(z) = i SM/(-:EL:fjdﬂ(m Z:( I (M)(t)sm —
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corem 1 with g(z) = 1, h(z) =1, we get now

s ([T @) el (48

=P (t)sm
m!

, the sequence-to-function [J, (=)} transformation ('se_.-e Jakimovaki [8])
.oferator from I, to L,[0, 00), with norm at most f5° z=Y/"|df(z)|.

ASES.

f B(z) = 0 for 0 <z <1 and f{z) =1 for z > 1, then F(t) = ™%, and (4.4)

f’ gy t—m,sm‘ i<y lsml . (4.5)
m=0 m: m=0

This means that the sequence-to-function Borel transform is a bounded operator from

I, into L.[0,00), with norm at most 1.
2. If B(z) = 1 — e7* for £ > 0, then F'(t) = 1/(t +1) , and (4.4) reduces to

K@ esCE) Zmr- w0

=0 m=0
This shows that the sequence-to-function Abel transform (written in the form A(t) =

T

8 (H_Ll)m) is a bounded operator from [, into L,[0,00), with norm at most
[(1/r"). Making the substitution z = t/(t + 1) in the integral we get

-/9‘(1 eyt ti ona™| ds < (r (:-)) 3 Jsml” - (4.7)

m=0 m=0

5. INEQUALITIES INVOLVING CONVEX FUNCTIONS

Example 4. Let w(z) be a non-negative, continuous and concave function on [0, 1],
and let

Poal ) = (r:):c"(l—m)m”" for ma=01-0, 0€z<1.

In Theorem 1 choose frn(z) = Pra(z)w (). We shall show that in this case (1.1)
and (1.2) hold with p, = ¢, = 1, g¢g(z) = w(z), h(z) = ﬂxﬂ Letting p, :=
Ja t"da(t), and applying Theorem 1 we will then obtain the following two inequalities:

i li (m) A.”"“unw (i) S

n=0 im=n n m

< ( j w(:c)::‘”"[da(:c)l) 3 lsml s (5.)

m=0

and

< (fw(x)z:'u'lda(a:)l) i lsml” . (5.2)

m=0

£ (7)ar e (2)




316 Borwein and Jakimovski

In particular, for the function a(z) = z these inequalities become:
o0

Z 0:: ;;%;—Iw (%) Sm ! < (/; w(x)m_l’r"dz)r i |8]", (5.3)

n=0 |m=n k=0

and _ ,
. oo 1 m i r i “1/ )

m) o = 'd b4

Y ne () e ([ eeeta) Swr. 6y

To pm\re that (1.1) and (1.2) hold we use the following results.
_ Since the function w(z} is continuous on [0, 1] the associated Bernstein polynomial
Bpn(z,w) := £24 fmn(z) tends uniformly on [0,1] to w(z) as m — co. (See Lorentz
[12]). Also, since w(z) is concave on [0,1], B, (z, w) increases with m. (See Temple [15]
and Stancu [14]; and Lemma 2 below). Therefore.(1.1) holds with p, = 1, g(z) =
w(z). :

It remains to show that (1.2) holds with ¢, = 1, A(z) = w(z)/z . This will follow
from the second conclusion of the following lemma.

The Meyer-Konig and Zeller approximation operator applied to the function w(z)
is defined by M Z,.(z,w) := ¥%_ 2P (z)w (%) » and the divided difference of w(z)
on three distinct points a,b,c € [0, 1] is defined to be

6B, i (w(a) —w(®) _w(b) - ;;v(c)) |

c—a b—a c—

Lemma 1. (i) Let w(z) be a bounded function on [0,1]. Then

m-—n n n+l nt1
MZn MZ szn [_y ) ]
#(zyw) — gﬂ 2(m-+-1) mm+1" m |,
forn=0,1,--- 0<z<1.
(it) If w(z) is non-negative, continuous and concave on [0, 1] with w(0) = 0, then
MZ,(z,w) increases with n and converges uniformly to w(z) on each interval [e, 1],
0 <e<1, and to 0 = w(0) for z = 0.

Proof. (i) It is easy to verify (see Jakimovski [9]) that, for 0 < n <m,0<z<1
we have

bl

' m + 1 m-—n+1 '
Pratinn(z) = mpmn(ﬂi) - —n__f_"i""'Pm-I-l,n(x)-

Hence

MZn+1(2:,w) = f lum,n+I($)w (n—-nli"!") = ‘E .’L‘Pm+1 n+1($ w (N- 1)

m=n+ 1

i L
= min TP (z) {—t-'w (;ﬁ?{ r1:+1 g ( )}

A QGer

and so
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and so
MZp11(z,w) —MZ£(I, w) =
5, wPun(@) {250 (22) - 250w (22) - w(2))

n ntl
- —En+ :I:Pm"(x)m:;mil) m’:n—t_l-’ m ]w :

Il

(i1) Since w(z) is concaveon [0, 1], we have [" ) ,’;L{_ll, i—] < 0 .Hence,for0 <z <1,
M Z,(z,w) increases with n. Also, since w(z) is continuous on [0, 1], and w(0) = 0,
MZ,(z,w) converges uniformly on each interval [¢,1], 0 < € < 1, to w(z) and to
0 = w(0) for z = 0 (See Meyer-Konig [13)). O
Example 5. Suppose that 0 < dg < Ay < -+ < X, /o0 and T2, 4 3o = 0.

Let apmy = (1 - An+1) (1 — ) for 0<n<m, aum=1,and define z\mn(:c)
and A’ _(z) by (2.1) and (2. 2) as before. Given a bounded function w(m) on [0,1]

write, for 0 < z < 1, B(z,w) := T0  Ana(2)w(oms) for m=0,1,--- ; and
oo o0 A
QHn(z,w) := Y M w(@no1m_y) = E = Amn{z)w(@m_10-1) for n=1,2,....

These are respectively the generalized Bernstein and quasi-Hausdorff approximation
operators applied to the function w(z). It is known that if w(z) is continuous on
[0,1], then B, (z,w) converge uniformly on [0, 1] to w(z*) as n — co and QH,(z,w)
converges uniformly on each closed interval in [¢,1], 0 < € < 1, to w(z) and to 0 for
z = 0 (See Jakimovski [8] and Jakimovski and Leviatan [10]).

We will show below that if the function w(z) is non-negative, continuous, non-

decreasing and concave on [0, 1], then the functions fia(z) := ﬁﬂﬂw(am_l'n 1),
m,n =1,2,..-, satisfy assumptions (1.1) and (1.2) of Theorem 1 with p, = ¢, = —"

forn > 1; g(z) = h(x) = w(z™). Therefore we will get from Theorem 1 with
afz) = log z that

We will also show that if the function w(z) is non-negative, continuous, non-increasing
and concave on [0,1], then the functions fnn(z) := A"’—A“ﬂ(ﬂw(amn), m,n = 1,2,...,
satisfy assumptions (1.1) and (1.2) of Theorem 1 with p, = ¢, = A, for n >

1; g(z) = h(z) = w(z™). In this case we will get from Theorem 1 with afz) = logz
the following inequality:

© & s "1 o), & )
e b A—w(aﬂm) < ()\_ ( )a':r) Y Anlsml™ (5.6)
m=1 “'m 150 T m=1

n=1
To prove (5.5) and (5.6) we need the following results.
It is known (see Jakimovski and Russell [11]) that

1 d 1 -
A —_——— < .
/0 )T =1 for 0<n<m, (5.7)

n
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and that (see Jakimovski [9]), for 0 <n<m,0<z <1,
An An
Amn(z) = TN i (2) + (1 — ) Amsin(z). (5.8)
Am1 Amt1

Hence, for 0 <z <1, m > 0, we have

B (z,w) — Bp(z,w)

m—1
S E—:u Am+1nt1(z) {i"—ﬂw(amn) ~ w(Cms1,n41) + (1 - ;_"ﬂ) w(am,n_‘.l)}

)‘m+1 m41
Ag
+,\m+j )‘m-i-lxo(‘r)
ML o2 i P =Rl
1\Am41 n+1)4q
e, IS ST )\m+1,n+l($) [amnaam+1.n+11am,n+1]
n=0 n+14m4a ok

+X£Q;/\m+l,0($)'

Since the divided difference [amn, Qm41,n41, ¥mnt1],, 15 negative when w(z) is concave
on [0,1], we obtain the following lemma from this identity:

Lemma 2. If the function w(z) is concave and bounded on (0,1], then Bn(z,w)
increases with m on [0,1]. If, in addition w(z) is continuous on [0,1], then By (z,w)
increases with m and converges uniformly to w(z*) on [0, 1].

Next, by identity (5.8), we have that, for 0 <z <1, n >0,

QHnyy (z,w) — QH,(z,w)

> Angy S

= X o Am.'r:+1(-‘"'5)w(’:’-’mgl,n) — :\_::'Amn(m)w(amﬁl,n—l)
m=n+1 m=n
=2, {2 nn(@) - 220 (2)} (e )
(=)
- mzn i\':)\mn(-r)w(am—l,ﬂ~1)

)

= 2, den(@) {wlam) — 2420(ap ) ~ 2wl )
el AI(A X 2_

= m/\":;ﬂm 1"/\m.n(a-') [Qm—l.n—ls amn>am-l.n]w-

m=n41

From this identity we get the following lemma:

Lemma 3. If the function w(z) is concave and bounded on [0,1], then QH,(z,w)
increases with n on (0,1]. If, in addition w(x) is continuous on [0, 1), then QH,(z,w)
increases with n and converges uniformly to w(z*) on [0,1].

Proof of inequality (5.5). Assume w(z) is continuous, concave and increasing on
[0,1]. Then we have, for fon(z) = Mw(am_mq), that

Am

b 2 Frof@) = Z dn(@)(am-101) € 5 A(a)u(erma

< 3 Ann(@)(ama) < wlah),




A Generalization of Hardy’s Inequality 319

by Lemma 1. Also

An i;; fmn(w) Z )‘ w(am 1,n—-1 ) < w(mh)a

by Lemma 2. Further, for a(z) = logz,
1 A m
j fmn(m)dcx(z)sm = w(am 1,n—- I)Smf —('{)‘dm = S—U)(O!m_lm,l).
0 x A

It follows, by Theorem 1 with p, = g, = 1/\,, g(z) = h(z) = w(z), a(z) =logz,
that

o0 T
mgn ﬁw(am—l,n—l)

f: 1
n=1 An

< (Jues) &
o z m=1 m
1 T oo r
’ (ﬂ@dx) 8 laal
a
Proof of inequality (5.6). Assume w(z) is bounded, non-increasing and concave

on [0,1]. Then we have, for

fmn(m) = AraAnm(1:)U-"’(O-’m.m): n>m2>0,

that -
Am n):_: fmn(m) = ﬂ; %ﬂ' nm(:‘n)w anm) = E )‘ ( )w(anm)
< £ Xn(@)w(@nima) < w(zh),

by Lemma 2. Now 3= 0 fma(z) = Lo Anm (2)w(om) < w(z*'), by Lemma 1.
Further, for a(z) =logz,

/01 fmn(z)de(2)sm = Anw(nm)sm ,/01 de = ’\_"smw(anm).

oz Am
It follows, by Theorem 1 with p, = ¢n = An, g(z) = h(z) = w(zM), a(z) = logz
that -
co r 1 )
21 An [t 2 smw(anm)‘ < (Of.‘ﬂilldx) E-l Noilaml
1 " o
= (%] 2as) & rmleal
0 m=1
Ll
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