A LOGARITHMIC METHOD OF SUMMABILITY

D. Borwein*.

[Extracted from the Journal of the London Mathematical Society, Vol. 33, 1958.]

1. Introduction.

Suppose throughout that $\{s_n\}$ is a sequence of complex numbers and let $\{s_n^{\lambda}\}$ be the sequence of associated (C, λ) , means, *i.e.*

$$s_n^{\lambda} = {n+\lambda \choose n}^{-1} \sum_{\nu=0}^n {\nu+\lambda-1 \choose \nu} s_{n-\nu} \quad (\lambda > -1).$$

We shall be concerned with methods of summability L and (A, λ) defined as follows:

If
$$\frac{-1}{\log(1-x)} \sum_{n=0}^{\infty} \frac{s_n}{n+1} x^{n+1}$$

tends to a finite limit s as $x \to 1$ in the open interval (0, 1), we say that $\{s_n\}$ is L-convergent to s and write $s_n \to s$ (L).

If
$$(1-x) \sum_{n=0}^{\infty} s_n^{\lambda} x^n \to s$$

as $x \to 1$ in (0, 1), we say that $\{s_n\}$ is (A, λ) -convergent to s and write

^{*} Received 11 September, 1957; read 21 November, 1957.

A LOGARITHMIC METHOD OF SUMMABILITY.

 $s_n \rightarrow s(A, \lambda)$. (A, 0) is then the ordinary Abel method which we denote by A.

In this note we investigate some of the properties of the L method. In particular, we consider its relationship to the (A, λ) method and also establish a result about the iteration product of L with any regular Hausdorff method.

2. Translativity.

In this section we prove

THEOREM 1. The L method is translative.

By this we mean that $s_{n+1} \rightarrow s(L)$ if and only if $s_n \rightarrow s(L)$. We require

LEMMA 1. If α is a real number and $\{s_n\}$ is an L-convergent sequence, and if $(n+\alpha)$ $u_n = s_n$ for n = 0, 1, ..., then $u_n \to 0$ (L).

Proof. Let

$$\phi(x) = \sum_{n=m}^{\infty} \frac{s_n}{n+1} x^{n+\alpha-1} \quad (|x| < 1),$$

where $m > |\alpha| + 2$. Then $\{\log (1-x)\}^{-1} \phi(x)$ tends to a finite limit as $x \to 1$ in (0, 1) and $x^{-1} \phi(x) \to 0$ as $x \to 0$. Hence $\phi(x) = O\{|\log (1-x)|\}$ for $0 \le x < 1$, and so, as $x \to 1$ in (0, 1),

The lemma follows.

Proof of Theorem 1. Suppose that $s_n \rightarrow s(L)$, and note that, for $0 \le x < 1$,

$$\sum_{n=0}^{\infty} \frac{s_{n+1}}{n+1} x^{n+1} = \sum_{n=1}^{\infty} \frac{s_n}{n+1} x^n + \sum_{n=1}^{\infty} \frac{s_n}{n(n+1)} x^n,$$

$$\sum_{n=1}^{\infty} \frac{s_{n-1}}{n+1} x^n = \sum_{n=0}^{\infty} \frac{s_n}{n+1} x^{n+1} - \sum_{n=0}^{\infty} \frac{s_n}{(n+2)(n+1)} x^{n+1}.$$

Applying Lemma 1, we deduce from the first identity that $s_{n+1} \to s(L)$ and from the second that $s_{n-1} \to s(L)$. The theorem follows.

3. Relationship between L and (A, λ) methods.

We commence this section with some results concerning the (A, λ) method. We use the notation

$$\sigma_{\lambda}(y) = \frac{1}{\Gamma(\lambda+1)} \frac{y^{\lambda}}{1+y} \sum_{n=0}^{\infty} s_n^{\lambda} \left(\frac{y}{1+y}\right)^n \quad (\lambda > -1, \ y > 0),$$

so that $s_n \to s(A, \lambda)$ if and only if $\Gamma(\lambda+1)y^{-\lambda}\sigma_{\lambda}(y)\to s$ as $y\to\infty$.

From the known identity

$$\frac{y^{\lambda+\delta+n}}{\Gamma(\lambda+\delta+1)} s_n^{\lambda+\delta} = \frac{1}{\Gamma(\lambda+1)} \frac{1}{\Gamma(\delta)} \sum_{\nu=0}^{n} {n \choose \nu} s_{\nu}^{\lambda} \int_{0}^{y} (y-t)^{n-\nu+\delta-1} t^{\nu+\lambda} dt$$

$$(y>0, \ \lambda>-1, \ \delta>0),$$

it is easily deduced that

$$\sigma_{\lambda+\delta}(y) = \frac{1}{\Gamma(\delta)} \int_0^y (y-t)^{\delta-1} \sigma_{\lambda}(t) dt \quad (y > 0, \ \lambda > -1, \ \delta > 0), \tag{1}$$

provided only that $\sigma_{\lambda}(t)$ is defined for all positive t. For $\lambda \ge 0$ this result is due essentially to Kogbetliantz ([7], 37) (see also Lord [8], 243).

In virtue of a familiar theorem on Cesàro limits of functions, an immediate consequence of (1) is that

$$(A, \lambda + \delta) \supseteq (A, \lambda) \quad (\lambda > -1, \delta > 0),$$

[i.e. $s_n \rightarrow s(A, \lambda + \delta)$ whenever $s_n \rightarrow s(A, \lambda)$].

For $\lambda \geqslant 0$ this result was given by Lord ([8], 243) and for $\lambda > -1$, by Amir [1].

Little additional difficulty is involved in proving the stronger inclusion result

$$(A, \lambda + \delta) \supset (A, \lambda) \quad (\lambda > -1, \delta > 0),$$
 (2)

the notation signifying that $(A, \lambda + \delta) \supseteq (A, \lambda)$ and that at least one $(A, \lambda + \delta)$ -convergent sequence is not (A, λ) -convergent.

Suppose $\lambda > -1$ and let $\{s_n^{\lambda}\}$ be the sequence such that

$$\frac{1}{1-x}\sin\frac{1}{1-x} = \sum_{n=0}^{\infty} s_n^{\lambda} x^n \quad (|x| < 1).$$

The sequence $\{s_n\}$ of which $\{s_n^{\lambda}\}$ is the sequence of (C, λ) means is given by the relation

$$s_n = \sum_{\nu=0}^n \binom{n-\nu-\lambda-1}{n-\nu} \binom{\nu+\lambda}{\nu} s_{\nu}^{\lambda}.$$

For this sequence $\{s_n\}$, $\Gamma(\lambda+1)\sigma_{\lambda}(y) = y^{\lambda}\sin(1+y)$, so that, for y > 0, $\delta > 0$, we have in virtue of (1),

$$\begin{split} \frac{\Gamma(\delta)}{\Gamma(\lambda+1)} y^{-\lambda-\delta} \, \sigma_{\lambda+\delta}(y) &= y^{-\lambda-\delta} \int_0^y (y-t)^{\delta-1} t^{\lambda} \sin(1+t) \, dt \\ &= \int_0^1 (1-u)^{\delta-1} u^{\lambda} \sin(1+uy) \, du. \end{split}$$

Hence, by the Riemann-Lebesgue theorem, $y^{-\lambda-\delta}\sigma_{\lambda+\delta}(y) \to 0$ as $y \to \infty$; and so $s_n \to 0$ $(A, \lambda+\sigma)$. On the other hand $\{s_n\}$ is not (A, λ) -convergent,

since $\sin \frac{1}{1-x}$ does not tend to a limit when $x \to 1$ in (0, 1). This establishes (2).

The next theorem extends the known result that $L \supseteq A$ (Hardy [5], 81; see also Borwein [4], 347-8).

THEOREM 2. For $1 \ge \lambda > -1$, $L \supset (A, \lambda)$.

Proof. Suppose that $s_n \to s$ (A, 1) and let $t_n = s_n^{-1}$. Then $t_n \to s$ (A) and consequently $t_n \to s$ (L). Further $s_{n+1} = t_{n+1} + (n+1)(t_{n+1} - t_n)$, so that for 0 < x < 1

$$\begin{split} &\frac{1}{\log(1-x)}\sum_{n=0}^{\infty}\frac{s_{n+1}}{n+1}x^{n+1} \\ &= \frac{1}{\log(1-x)}\sum_{n=0}^{\infty}\frac{t_{n+1}}{n+1}x^{n+1} + \frac{1-x}{\log(1-x)}\sum_{n=0}^{\infty}t_nx^n - \frac{t_0}{\log(1-x)}. \end{split}$$

In view of Theorem 1, it follows that $s_{n+1} \to s(L)$ and hence that $s_n \to s(L)$. We have thus proved that $L \supseteq (A, 1)$. The full result is now a consequence of (2) and the following theorem.

Theorem 3. There is an L-convergent sequence which is not (A, λ) -convergent for any $\lambda > -1$.

Proof. Let $\{s_n\}$ be the sequence such that

$$(1-x)^{-1-i} = \sum_{n=0}^{\infty} s_n x^n \quad (|x| < 1),$$

in which case $\sigma_0(y) = (1+y)^i$. Hence, by (1) we have for $\lambda > 0$, y > 0,

$$\begin{split} \Gamma(\lambda)\,y^{-\lambda}\,\sigma_{\lambda}(y) &= y^{-\lambda}\int_{0}^{y}(y-t)^{\lambda-1}\,(1+t)^{i}\,dt \\ &= \frac{\Gamma(\lambda)\,\Gamma(1+i)}{\Gamma(\lambda+i+1)}\,y^{-\lambda}\,(1+y)^{\lambda+i} - y^{-\lambda}\int_{-1}^{0}(y-t)^{\lambda-1}\,(1+t)^{i}\,dt. \end{split}$$

Since the final term tends to zero as $y \to \infty$, it follows that $y^{-\lambda} \sigma_{\lambda}(y)$ does not tend to a limit as $y \to \infty$. Consequently $\{s_n\}$ is not (A, λ) -convergent for any $\lambda > 0$ and a fortiori for any $\lambda > -1$.

On the other hand, as $x \rightarrow 1$ in (0, 1),

$$\sum_{n=0}^{\infty} \frac{s_n}{n+1} \, x^{n+1} = \int_0^x (1-t)^{-1-i} \, dt = o\{|\log{(1-x)}|\},$$

so that $s_n \to 0$ (L). This completes the proof.

In order to prove the final theorem in this section we require a lemma.

LEMMA 2. If $\lambda > 0$, then, as $y \to \infty$,

(i)
$$y^{-\lambda} \int_{0}^{y} (y-t)^{\lambda-1} \cos(1+t) dt \to 0$$
,

(ii)
$$y^{-\lambda} \int_0^y (y-t)^{\lambda-1} \cos(1+t) \log(1+t) dt \to 0$$
,

(iii)
$$y^{-\lambda-1} \int_0^y (y-t)^{\lambda} (1+t) \sin(1+t) \log(1+t) dt \to 0.$$

Proof of (i). The result is well-known and is an immediate consequence of the Riemann-Lebesgue theorem.

Proof of (ii). Suppose $0 < \lambda \le 1$. In virtue of the inclusion theorem for Cesàro limits of functions no loss of generality is involved in so restricting λ . Let

$$I(y) = y^{-\lambda} \int_{0}^{y} (y-t)^{\lambda-1} \cos t \log t \, dt \quad (y > 0).$$

Now, as $y \to \infty$,

$$I(1+y) - (1+y)^{-\lambda} \int_0^y (y-t)^{\lambda-1} \cos(1+t) \log(1+t) dt$$

$$= (1+y)^{-\lambda} \int_{-1}^0 (y-t)^{\lambda-1} \cos(1+t) \log(1+t) dt = o(1),$$

so that it is enough to prove that $I(y) \to 0$ as $y \to \infty$. We have, for y > 0,

$$\begin{split} I(y) &= \int_0^1 (1-t)^{\lambda-1} \log t \, \cos ty \, dt + \log y \int_0^1 (1-t)^{\lambda-1} \, \cos ty \, dt \\ &= I_1(y) + \log y \, I_2(y), \end{split}$$

say; and by the Riemann-Lebesgue theorem $I_1(y) \to 0$ as $y \to \infty$. Further*, for y > 1,

$$\begin{split} |I_2(y)| &\leqslant \left| \int_0^{1/y} u^{\lambda - 1} \cos \left(1 - u \right) y \, du \right| + \left| \int_{1/y}^1 u^{\lambda - 1} \cos \left(1 - u \right) y \, du \right| \\ &\leqslant y^{-\lambda} \, \lambda^{-1} + y^{1 - \lambda} \left| \int_{\xi}^1 \cos \left(1 - u \right) y \, du \right| \quad (y^{-1} \leqslant \xi < 1) \\ &\leqslant y^{-\lambda} (\lambda^{-1} + 2). \end{split}$$

Consequently $\log y I_2(y) \to 0$ as $y \to \infty$; and the proof of (ii) is complete.

^{*} See Hobson ([6], 565) for a similar result.

A LOGARITHMIC METHOD OF SUMMABILITY.

Proof of (iii). It is readily verified that, for y > 0,

$$\begin{split} y^{-\lambda-1} & \int_0^y (y-t)^\lambda \, (1+t) \sin{(1+t)} \log{(1+t)} \, dt \\ & = (1+\lambda) \, y^{-\lambda-1} \int_0^y (y-t)^\lambda \cos{(1+t)} \log{(1+t)} \, dt \\ & + y^{-\lambda-1} \int_0^y (y-t)^\lambda \cos{(1+t)} \, dt \\ & + \lambda (1+y) \, y^{-\lambda-1} \int_0^y (y-t)^{\lambda-1} \cos{(1+t)} \log{(1+t)} \, dt \, ; \end{split}$$

from which, in view of the results (i) and (ii), result (iii) follows.

THEOREM 4. There is a sequence which is (A, λ) -convergent for every $\lambda > 1$ but is not L-convergent.

Proof. Let $\{s_n\}$ be the sequence such that

$$-\log(1-x)\cos\frac{1}{1-x} = \sum_{n=0}^{\infty} \frac{s_n}{n+1} x^{n+1} \quad (|x| < 1).$$

This sequence is not L-convergent.

On the other hand, differentiation yields

$$\cos\frac{1}{1-x} + \sin\frac{1}{1-x} \frac{\log(1-x)}{1-x} = (1-x) \sum_{n=0}^{\infty} s_n x^n \quad (|x| < 1),$$

so that $\sigma_0(t) = \cos(1+t) - (1+t)\sin(1+t)\log(1+t)$. In view of (1) and Lemma 2, we have for $\lambda > 1$,

$$\Gamma(\lambda)\,y^{-\lambda}\,\sigma_{\lambda}(y)=y^{-\lambda}\int_{0}^{y}\,(y-t)^{\lambda-1}\,\sigma_{0}(t)\,dt=o(1)\ \ \text{as}\ \ y\to\infty.$$

Consequently $\{s_n\}$ is (A, λ) -convergent for every $\lambda > 1$, and the proof is complete.

To sum up the main results in this section, we have shown that $L \supset (A, \lambda)$ for $1 \ge \lambda > -1$, but that, for $\lambda > 1$, the methods L and (A, λ) are not comparable.

4. Product of L and Hausdorff methods.

In what follows suppose that $\chi(t)$ is a real function of bounded variation in the closed interval [0, 1] and let

$$h_n = \sum_{\nu=0}^n \binom{n}{\nu} s_{\nu} \int_0^1 t^{\nu} (1-t)^{n-\nu} d\chi(t) \quad (n=0, 1, \ldots).$$

If $h_n \to s$ we write $s_n \to s(H_\chi)$. It is known (Hardy [5], §11.8) that the Hausdorff method of summability H_χ so defined is regular [i.e. $s_n \to s$ (H_χ) whenever $s_n \to s$] if and only if

$$\chi(0+) = \chi(0), \quad \chi(1) - \chi(0) = 1$$
 (3)

If $h_n \to s(L)$ we write $s_n \to s(LH_\chi)$; thus defining the product method of summability LH_χ .

The main result in this section is:

Theorem 5. If H_{χ} is a regular Hausdorff method, then $LH_{\chi} \supseteq L$.

Similar theorems with other methods of summability in place of L have been obtained by Szász [9] (see also Amir [2], 376, and Borwein [3], 321-2).

We require two lemmas

LEMMA 3. If

$$s(t) = \sum_{n=1}^{\infty} \frac{s_n}{n} \left(\frac{t}{1+t}\right)^n$$

and the series is convergent for all $t \ge 0$, then, for $y \ge 0$,

$$\sum_{n=1}^{\infty} \frac{h_n}{n} \left(\frac{y}{1+y}\right)^n = \int_0^1 \{s(yt) - s_0 \log(1+yt)\} d\chi(t) + s_0 \log(1+y) \int_0^1 d\chi(t).$$

Proof. For $y \geqslant 0$,

$$\sum_{n=1}^{\infty} \frac{h_n}{n} \left(\frac{y}{1+y} \right)^n = \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{y}{1+y} \right)^n \sum_{\nu=1}^{n} \binom{n}{\nu} s_{\nu} \int_0^1 t^{\nu} (1-t)^{n-\nu} d\chi(t)$$

$$+s_0 \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{y}{1+y}\right)^n \int_0^1 (1-t)^n d\chi(t)$$

$$= \int_0^1 d\chi(t) \sum_{\nu=1}^\infty \frac{s_\nu}{\nu} \left(\frac{yt}{1+y}\right)^\nu \sum_{n=\nu}^\infty \binom{n-1}{\nu-1} \left(\frac{y-yt}{1+y}\right)^{n-\nu}$$

$$+s_0 \int_0^1 d\chi(t) \sum_{n=1}^\infty \frac{1}{n} \left(\frac{y-yt}{1+y}\right)^n$$

$$= \int_{0}^{1} d\chi(t) \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} \left(\frac{yt}{1+yt} \right)^{\nu} - s_{0} \int_{0}^{1} \log \frac{1+yt}{1+y} d\chi(t);$$

all the inversions being legitimate since $\int_0^1 |d\chi(t)| < \infty$ and, for $0 \le t \le 1$, $y \ge 0$,

$$\sum_{\nu=1}^{\infty} \frac{|s_{\nu}|}{\nu} \left(\frac{yt}{1+yt}\right)^{\nu} \leqslant \sum_{\nu=1}^{\infty} \frac{|s_{\nu}|}{\nu} \left(\frac{y}{1+y}\right)^{\nu} < \infty.$$

The lemma follows.

LEMMA 4. If f(t) is a continuous function for $t \ge 0$ which tends to a finite limit l as $t \to \infty$, and if χ satisfies (3), then, as $y \to \infty$,

$$F(y) = \frac{1}{\log(1+y)} \int_{0}^{1} f(yt) \log(1+yt) d\chi(t) \to l.$$

Proof. Suppose first that $f(t) \to 0$ as $t \to \infty$, and let $m(x) = \sup_{t \ge x} |f(t)|$; so that m(0) is finite and $m(x) \to 0$ as $x \to \infty$. Then, for $y > \alpha > 0$,

$$|F(y)| \leqslant \int_{0}^{1} |f(yt)| |d\chi(t)| \leqslant \int_{0}^{\alpha/y} |f(yt)| |d\chi(t)| + \int_{\alpha/y}^{1} |f(yt)| |d\chi(t)|$$
$$\leqslant m(0) \int_{0}^{\alpha/y} |d\chi(t)| + m(\alpha) \int_{0}^{1} |d\chi(t)|.$$

Since $\int_0^1 |d\chi(t)| < \infty$ and, in virtue of (3), $\int_0^{\alpha/y} |d\chi(t)| \to 0$ as $y \to \infty$, it follows that $F(y) \to 0$ as $y \to \infty$.

To complete the lemma it remains only to prove that, as $y \to \infty$,

$$\frac{1}{\log(1+y)} \int_{0}^{1} \log(1+yt) \, d\chi(t) \to 1.$$

For $0 < \epsilon < 1$, we have

$$\begin{split} \overline{\lim}_{y \to \infty} \left| \int_0^1 \left\{ 1 - \frac{\log (1 + yt)}{\log (1 + y)} \right\} d\chi(t) \right| &\leq \int_0^\epsilon |d\chi(t)| + \overline{\lim}_{y \to \infty} \left\{ 1 - \frac{\log (1 + y\epsilon)}{\log (1 + y)} \right\} \int_\epsilon^1 |d\chi(t)| \\ &= \int_0^\epsilon |d\chi(t)|. \end{split}$$

The required result follows, since, by (3), $\int_0^\epsilon |d\chi(t)| \to 0$ as $\epsilon \to 0$ in (0, 1) and $\int_0^1 d\chi(t) = 1$.

Proof of Theorem 5. Suppose that $s_n \to s(L)$. Then by Theorem 1, $s_{n+1} \to s(L)$ so that, in the notation of Lemma 3, $\{\log(1+t)\}^{-1}s(t) \to s$ as $t \to \infty$.

Recalling that, in virtue of the hypothesis of the theorem, χ satisfies (3), and appealing to Lemma 3 and Lemma 4, with

$$f(t) = \{\log(1+t)\}^{-1}s(t) - s_0 \ (t > 0), \ f(0) = s_1 - s_0,$$

we can now prove that $h_{n+1} \to s(L)$ and hence, by Theorem 1, that $h_n \to s(L)$. Consequently, $LH_{\chi} \supseteq L$.

References.

- A. Amir (Jakimovski), "On a converse of Abel's theorem", Proc. American Math. Soc. 3 (1952), 244–256.
- 2. ——, "Some relations between the methods of summability of Abel, Borel, Cesàro, Hölder and Hausdorff", Journal d'Analyse Math., 3 (1953-4), 346-381.
- 3. D. Borwein, "On a scale of Abel-type summability methods", Proc. Cambridge Phil. Soc., 53 (1957), 318-322.
- 4. ——, "On methods of summability based on power series", Proc. Royal Soc. Edinburgh, 64 (1957), 342-349.
- 5. G. H. Hardy, Divergent series (Oxford, 1949).
- 6. E. W. Hobson, Functions of a real variable, II (Cambridge, 1926).
- 7. E. Kogbetliantz, Sommation des séries et intégrales (Mém. des. Sci. Math. No. 51).
- R. D. Lord, "The Abel, Borel, and Cesàro methods of summation", Proc. London Math. Soc. (2), 38 (1934-5), 241-256.
- O. Szász, "On the product of two summability methods", Ann. Polon. Math., 25 (1952), 75–84.
 - St. Salvator's College, University of St. Andrews.