A LOGARITHMIC METHOD OF SUMMABILITY

D. Borwgin*,

[Batracted from the Jaurnal of the London Mathematical Society, Vol. 33, 1958.]

1. Imtroduction.

Suppose throughout that {82} is a sequence of complex numbers and
let {s,*} be the sequence of associated (C, A), means, i.e.

A1z A—1
A1 Ty VORI
We shall be concerned with methods of summability L and (4, A)

defined as follows:
_1 o0 Sﬂ, mn%—l

1 log (l—x),Eon—i—l

tends to a finite limit s as x—>1 in the open interval (0, 1), we say that
{8} is L-convergent to s and write 8,8 (L).

If (1—x) B 8 " —> s
n=0

as z—1 in (0, 1), we say that {s,} is (4, A)-convergent to s and write

* Received 11 September, 1957; read 21 November, 1957.



213 D. Borwem

8,—~>8(4,A). (4, 0) is then the ordinary Abel method which we denote
by A.

In this note we investigate some of the properties of the L method.
In particular, we consider its relationship to the (A4, A) method and also
establish a result about the iteration product of L with any regular
Hausdorff method.

2. Translativity.

In this section we prove

TurEoREM 1. The L method is translative.

By this we mean that s, , —s (L) if and only if s, s (L). We require

LeMMA 1. If «is a real number and {s,} is an L-convergent sequence,
and if (n+a) u, =3, forn=0,1, ..., then u,—0 (L).

Proof. Let

— = Sﬂ'
LEE

where m > |a|+2. Then {log(I—z)}'¢(x) tends to a finite limit as
z—>1 in (0,1) and 2z 1¢(x)—0 as x—0. Hence ¢(x)= Of log (1—=)[}
for 0 <<x < 1, and so, as x—1 in (0, 1),

gnto—1 (lx‘ = ]_)’

= uﬂ T+l . pl—o %
B S LqS(t)dt

= O{xl"“jﬂ log (1—1)] dt} = of|log (1—=x)|}.
0
The lemma follows.
Proof of Theorem 1. Suppose that s,—s(L), and note that, for
0 -_<__x < 1:

8 Z 8
2 gn,
a1 N(n+1)

SR DR D G B ey

oleE Gl s ey Lt ey e
Applying Lemma 1, we deduce from the first identity that s, .;—s (L)
and from the second that s, ;—&(L). The theorem follows.

3. Relationship between L and (A4, X) methods.
We commence this section with some results concerning the (4, A,

method. We use the notation

L e Sy T
) = Ty Try S () 0> L y>0),

so that sn#s (4, A) if and only if I'(A4-1)y o, (g)—>s as y—oo.
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From the known identity

e v 1 % ( ”’) g r’ (y— ) +3-1 A
LA+ ™" TAFLIS) . A2 "t
(y>0, A>—1, §>0),
it is easily deduced that

‘THJ(Z/):P—zg)-j:(?f“t)a'lﬂa(i)dt >0, A>—1,8>0, (1)

provided only that o, (f) is defined for all positive t. For A = 0 this result
is due essentially to Kogbetliantz ([7], 37) (see also Lord [8], 243).

In virtue of a familiar theorem on Cesiro limits of functions, an
immediate consequence of (1) is that

(4, A48) 2 (4, ) A>—1, §>0),

[t.e. 8,—&(4, A+8) whenever s,—s (4, A)].
For A > 0 this result was given by Lord ([8], 243) and for A> —1, by
Amir [1].
Little additional difficulty is involved in proving the stronger inclusion
result
(4, A48)D(4,)) @A>—1, §=>0), (2)

the notation signifying that (4, A4-8) 2 (4, A) and that at least one
(A4, A6)-convergent sequence is not (4, A)-convergent.
Suppose A > —1 and let {s,*} be the sequence such that

l—z £ 11—z

= X gra" (|z|<1).
=0

The sequence {s,} of which {s,%} is the sequence of (C, \) means is given
by the relation
8y = ¥ (nqyih_ﬂ (VJVFA) &b

r=0 n—v

For this sequence {s,}, '(A+1)0o,(y) = »* sin(1+y), so that, for y > 0,
8 >0, we have in virtue of (1),

r'e
T ¥ neat) =y [ (o1t sim (1 )

0

1

= j (1—u)? Ly sin (1 -+ uy) du.

0

Hence, by the Riemann-Lebesgue theorem, y—2—0, ;(y)—>0 as y—>o0;
and 8o 8,0 (4, A+0). On the other hand {s,} is not (4, A)-convergent,
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since sin l—ix does not tend to a limit when 2—1 in (0, 1). This Limngs. 2. If Ay b, asigir s,

establishes (2). (i) y—* E Y (y—t)1 cos (1+-8)di 0,
The next theorem extends the known result that L 2 A (Hardy [5], 81; 0

see also Borwein [4], 347-8).

(i) y—»\j"" (y—1)*1 cos (1) log (14-8) dt—~0,
THEOREM 2. For 1=A> —1, Lo (4, ]). 0

Proof. Suppose that s,—>s (4, 1) and let ¢, —s,1. Then t,—>s (4) ] (iii) y“‘lr(y—t)" (1--£) sin (14£) log (1) dt— 0.
and consequently f,->s (L). Further s,.,=t, -+ ®+1)(E, 1—1,), 50 0
e l Proof of (i). The result is well-known and is an immediate consequence
1 &y of the Riemann-Lebesgue theorem.
A+l 4l
Tog (T— 3 . !
0g (1—2) oon+1 Proof of (ii). Suppose 0 <A <{1. In virtue of the inclusion theorem
1 @ ¢ Tt i ¢ for Cesaro limits of functions no loss of generality is involved in so
— 7+l mn+1+_— ¥ o 0 X tricti 2. Let
log (1—x) ,_gn+1 log(1—a) .o ™ log (1—2) resiricting A. Le
In view of Theorem 1, it follows that s, ,,—s(L) and hence that s, — s(L). I(y)= y*”‘j'y (y—t)* L cost logtdt (y > 0).
We have thus proved that L = (4, 1). The full result is now a conse- -
quence of (2) and the following theorem. Now, as y— o0,
v
TuarEoREM 3. There is an L-convergent sequence which is not (A, ))- I(1+y)— (1—{—y)—"j (y—t)*2 cos (1+¢) log (L4-¢)dt
convergent for any A > —1. .
0
Proof. Let {s,} be the sequence such that = (1 ‘H/)_’\j. . (y—1)"~1 cos (1+-£) log (14-¢) dt = o(1),
(1—z)1—t = 5 gaa®  {|z| < 1), so that it is enough to prove that I(y)—>0 as y—>o. We have, for y > 0,
n=0 I
1 1
in which case o,(y) = (1+y)®. Hence, by (1) we have for A= 0, y > 0, ‘ I(y)= .\’o (1—1)* logt cos tde-lOgyL (1—28)*~1 cos ty dt
TNy o) =y r] (y—t " (1+-8) di = I,(y)+logy I (y),
0
say; and by the Riemann-Lebesgue theorem I,(y)—0 as y—oco.
. B D(Fa) e e —Ar _fiiL i Further*, for y > 1
= ToxitD Y (it —y g (y—t)* 1 (1+8) dt. ; y
1ly 1
Since the final term tends to zero as y — oo, it follows that = o, (y) does not [ Io(y)| < ‘ jﬂ w1 cos (1—u)y d’“‘ + L] w1 cos (1—u) y du
tend to a limit as y—oo. Consequently {s,} is not (4, A)-convergent 3
for any A > 0 and a fortiori for any A > —1. % TS j’l )
On the other hand, as 2—1 in (0, 1), Sy A4y chS (I—w)ydu (@HrLEL])

<y HA1+2).

Consequently logy I,(y) >0 as y->o00; and the proof of (ii) is complete.

Y n_gnir j’x (1—8)"1—tdt = of|log (1—2a) [},
n=0 M 1 0
so that s,—0(L). This completes the proof.

In order to prove the final theorem in this section we require a lemma. * Seo Hobson ([6], 565) for a similar Tesult.
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Proof of (iii). Tt is readily verified that, for y >0,
v [ (g1 (140 sim (140 log (1-44)
= (1425772 | (=0 cos (1-+4) log (1-+-4)d
Tyt | (gt cos (149

FA+)y [ =171 cos (144) Log 146y

from which, in view of the results (i) and (ij), result (iii) follows.

TurEOREM 4. There is a sequence which is (A4, A)- -convergent for every
A> 1 but is not L-convergent.

Proof. Let {s,} be the sequence such that

G

127~ Eon+1

—log (1—=x) cos il (] o2 1)

This sequence is not L-convergent.
On the other hand, differentiation yields

COS

1 log (1—x)
+31 i s =

- (I—z) Z s, 2™ (|z|<1)

n=0

so that oy(t) = cos (14-t)— (1--¢) sin (14-£) log (1+¢). In view of (1) and
Lemma 2, we have for A > 1,

I‘(?\)y""o,\(y):y—"j: (y—t)* Loy (f) dt = o(1) as y—>c0.

Consequently {s,} is (4, A)-convergent for every A> 1, and the proof is
complete.

To sum up the main results in this section, we have shown that
L>(4,2) for 1 2> —1, but that, for A > 1, the methods Z and (4, A)
are not comparable.

4. Product of L and Hausdorff methods.

In what follows suppose that x(¢) is a real function of bounded variation
in the closed interval [0, 1] and let

us s v /n E v n—y o
k"ﬂfu( v) syjot (L—~dy(t) (n=0, 1, ...).
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If b, —s we write s, —s(H,). It is known (Hardy [5], §11.8) that the
Hausdorff method of summability H, so defined is regular [i.e. s, s (H 2,
whenever s, —s] if and only if

x(0+)=x(0), x(1)—x(0)=1 (3)

If h,,—s(L) we write s, —>s(LH,); thus defining the product method of
summability LH,.
The main result in this section is:

Turorem 5. If H, is o regular Hausdorff method, then LH, 2 L,

Similar theorems with other methods of summability in place of L
have been obtained by Szész [9] (see also Amir [2], 376, and Borwein [3],
321-2),

We require two lemmas

Lemma 3. If

and the series is convergent for all

El%(ég)n:ﬁ{s(yt —8o log (1+yt)} dy (¢ +solOg(1+y)j x (t).

e ey
2y =EA A :t" (1t ()
() [ a—orax
- oo § i(%)”ép(f’:f) (3;—;%)
i S LY

14y
o 1 w© .S_V yt uﬁ i +yt
ﬁjodx(t)g : (—1+yt) Sojolog Tl ax(0;

0, then, for y =0,

4

1
all the inversions being legitimate since j‘ |dx(t)] < oo and, for 0 <t <1,
0
y =0,

:1 Lu‘l(1+yt)y \El_v[(lnty) -

The lemma follows.
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Lemma 4. If f(t) is a continuous function for ¢ =0 which tends fo a
finite limit | as t—co, and if x satisfies (3), then, as y—0,
1

1
F§) = o1 | 0 g -+ d (0>

0

Proof. Suppose first that f(t)->0 as t—co, and let m(x) = sup FiGIE

iza

so that m(0) is finite and m(x) >0 as x->oo. Then, for y >« >0, _

aly 1
Fwl < [ liaol <o+ fellao)
0 0 oy
aly i
<) | |ax()+n@ | ax].

oy .
Since S: | dy(t)| < oo and, in virtue of (3), L | dx(4)| =0 as y — o0, it follows

that #(y)—0 as y—>o0.
To complete the lemma it remains only to prove that, as y oo,

1 1
| log (14-yt)dy(f)—1.
Tog (1+y)jo og (1+yt)dx(f) >

For 0 < e<< 1, we have

o— [ [t {;_ log (1+yt ¢ T {1108 Aty (Y4
i 50{1_%@%}@@\éjotd"(t)[ﬁ}ﬁ{l 10g(1+y)HJ x()]

Y >wo

= [ jaxol.

¢
0
The required result follows, since, by (3), j:]dx(t)l+0 as €—>0 in (0, 1)
and 5: dy(t)=1.
Proof of Theorem 5. Suppose that s,->s(L). Then by Theorem I,

8,41—>8(L) so that, in the notation of Lemma 3, {log(1+41)}1s(t)>s
n

as t—o0. .
Recalling that, in virtue of the hypothesis of the theorem, y satisfies (3),
and appealing to Lemma 3 and Lemma 4, with

ft) = {log (1+1)} 1 s(t)—sp (t>0), f(0) =381~

we can now prove that %, —s(L) and hence, by Theorem 1, that h,—>s(L).
Consequently, LH, = L.
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