MATRIX TRANSFORMATIONS OF SERIES OF
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Abstract.  For a sequence of polynomials (P, ) orthonormal on the interval
[—1, 1], we consider the sequence of transforms (g, ) of the series } ;> a.Pi(u)
given by g,(u) =Y buaiPi(u). We establish necessary and sufficient condi-
tions on the matrix (b, ) for the sequence (g,) to converge uniformly on com-
pact subsets of the interior of an appropriate ellipse to a function holomorphic
on that interior.

§1. Introduction. Suppose throughout that 1 <P< o, 1 <R <0, and that
all sequences and matrices are complex with indices running through
0,1,2,.... We make the following definitions.

C is the finite complex plane.

Y is the ellipse with foci +1 and half-axes a=3(R+R "), b=3(R—R).
Note that an ellipse with foci =1 having R as the sum of its two half-axes is
necessarily yg,

D% is the interior of the ellipse vz, and DI, =C,

(P,) is an orthonormal sequence of polynomials with respect to a fixed non-
negative weight function w on the interval [—1, 1]. Thatis, P, is a polynomial of
degree n, and

1

f P, ()P, (u)w(u)du=6,,.
-
We assume throughout that .
wel(—1,1) and w fel(-1,1) for some £>0.

The first of these integrability conditions is standard, and the second is imposed
for the purposes of the present paper. The classical Jacobi polynomials, for
which w(u) = (u—1)“(u+1)? with a, B> —1, satisfy the conditions.

& is the set of all sequences a=(a,) sieh, A i s i=g,

&7 is the set of all sequences a= (a,) such that lim sup |a,|"/"*" < 0.

&r is the set of all sequences a=(a,) such that }'* '|a,|R"< 0.

A is the set of all sequences a=(a,) such that lim sup |a,|" """ P=1/R.
The following lemma, the proof of which appears in [1], shows that &° is the
B-dual of &.

LEMMA 1. A sequence b has the property that ¥ b,a, is convergent for
each acé& if, and only if, be &¥.
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The following are the first three of eight theorems we shall prove concerning
matrix transformations of series of orthogonal polynomials. They are ana-
logues of Theorems 1, 2 and 3 in [1] concerning matrix transformations of
power series.

THEOREM 1. A matrix B=(b,.) has the property that whenever the
sequence a=(a,)e&r the sequence of functions (g,) given by

gn(u)= § byt P (1),

k=0

n=0,1,...,
converges uniformly on every compact subset of D}, each series Y . buai Py (u)
of orthogonal polynomials being convergent on D%, if, and only if,
(1) im,_ o by=by for k=0,1, ...
(i) M(p)=supuzox=olbul (p/R)* < o0
And then lim, ., g,(u) =Y bsayPi(u) on D.

; and

whenever I<p=P.

THEOREM 2. A matrix B=(b,.) has the property that whenever the
sequence a=(a,) €Ay the sequence of functions (g,) given by

g.(u)= OZO: by Pr(u),

k=0

n=0,1,...,
converges uniformly on every compact subset of D}, each series ¥, bua;Pi (1)
of orthogonal polynomials being convergent on D}, if, and only if,
(1) limy, o b =by for k=0,1,...; and
(i) M(p)=supnsouzolbul(p/R) <0
And then lim,,_, ., g.(w) =Y barPi(u) on Dj.

whenever l<p<P.

THEOREM 3. A matrix B=(b,y) has the property that whenever the
sequence a=(a,)e& the sequence of functions (g,) given by

8. (u)= SZO: b P (u),

k=0

n=0.1:00 .5

converges uniformly on every compact subset of C, each series Z:;O b Pr (1)
of orthogonal polynomials being convergent on C, if, and only if,

(1) lim,,_.og b,,k=bkfor kZO, 1, Nl
(i) M=8up,zors0 b V<.

And then im,_, . g, () =Y buar Py (u) on C.

These theorems show that if the series-to-sequence transform given by B is
regular, then it is necessary in each case that lim,_, , bu=b,=1fork=0,1, .. .,
and this in turn implies that P<R in Theorems 1 and 2 (i.e., the sequence (g,)
cannot converge uniformly in the interior of any ellipse y » with P> R). Regular
sequence-to-sequence transforms of power series have been considered by

T
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Peyerimhoﬁ" [8] and Luh [7] among others. One of the novel features of our
approach is that we deal with series-to-sequence transforms rather than
sequence-to-sequence transforms.

Let (B,) be a sequence of non-zero complex numbers. The associated
Norlund series-to-sequence matrix N is the triangular matrix (b, ) with

Bﬂ—k

B,
0,

0<k<n,

if
bnk = ’ '

otherwise.

The following theorem is an immediate consequence of Theorem 1.

THEOREM N. The Ndrlund matrix Ny has the property that whenever the
sequence a=(a,) €& r the sequence of functions (g,) given by

1 n
gn(u):E— Z Bﬂ—kakpk(u)a n=03 1:"°:

nk=0
converges uniformly on every compact subset of D}, if, and only if,

R
="
P

vy D s
lim l=p

n—oc

with

n

And then lim,_.., g.(u) =Y, , b*ax Py (u) on D}.

Note.
by AR .

In view of Theorem 2, Theorem N remains true if &z is replaced

§2. Orthogonal polynomials. 1In this section we set out some of the proper-
ties of orthogonal polynomials required in our proofs. Note that the function
u=3(z+z"') maps the region {z:|z|>1} bijectively onto the region
{u: u¢[—1, 1]}, and that each circle |z| = R is mapped onto yx. The inverse of
this function is z=u+./u*— 1. Here and elsewhere in the paper the sign of
the square root is chosen so that |u+., /w*—1|>1 when u¢[—1, 1]. We then
have, for z=u+./u’—1, that |z| = R when ue ¥z, and |z| <R when ue Dk. The
function u=3(z+z ') maps both the top half and the bottom half of the unit
circle {z:|z| =1} onto [—1, 1].

LEMMA 2. For £>0 let the non-negative weight function we L(—1, 1) asso-
ciated with the orthonormal sequence of polynomials (P,) be such that
w *eL(—1,1), and let |z| =1 and u=3(z+z""). Then

for

Where K(¢) is a positive number independent of n.

| Po(u)| S K()(1+n)*" 7| 2" n=0,1,...,
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Proof. By Bernstein’s inequality (see [S, Theorem 7))
|Pu(u)| < max [P,(1)]|2I",

=lI=it<l

and by a result due to Erdéli [2, Theorem 5]
1
max |P,()| <Ki(g)(1+n)*" @ ijn(r)lw(t)dt'
-1<r<l
=1

Finally, by the Cauchy-Schwarz inequality,

1 1 1/2 /1 1/2 ! 1/2

.[|P,,,(t)|w(t)dt€_ JPH(I)zw(t)dt Jw(t)dt = J w(r)dt

—1 —1 =] =1

Combining the above inequalities we get the required result.

LemMa 3. (Expansion of a holomorphic function in terms of orthogonal '

polynomials). Let the non-negative weight function we L(—1, 1) associated with
the orthonormal sequence of polynomials (P,) be such that w™ e L(—1, 1) for
some £>0. Let [ (u) be holomorphic on the closed segment [—1, 1], and let vr
denote the largest ellipse with foci +1 on the interior of which f (u) is holomorphic.
The Fourier series expansion of f (u) on Dk, the interior of yr, is given by

o0

f)=73% apPr(u),

k=0

where

1

a= jf(f)Pk(f)W(f)df-

-1

The Fourier series is absolutely convergent on D%, and is also uniformly conver-

gent on compact subsets of D. It is divergent on the exterior of yr. Further,
the sum R of the semi-axes of the ellipse of convergence is given by

53 oK 17k
—=limsup |a ;
= lk_mop! el

Proof. All but the statement about absolute convergence follows from
Theorems 12.7.3 and 12.7.4 in [11], since the conditions on the weight w are
more stringent than those in the said theorems. To prove the absolute conver-
gence part, let

1
—=lim sup |ax|"*,
R A

k— oo
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and let ue Dk. Then R>1and u=3(z+z"") with 1<|z] <R. Let |z| <R,<R.
Then |ax| <Rg* for all sufficiently large k. Hence, by Lemma 2,

k
|aPe ()] = (lai|zl*) |27 *Pe ()| < K(e)(1+k)* /2 (%)
for all sufficiently large k, and therefore Y,"_ |aPi(u)| is convergent.

LeEmma 4. (Cauchy-type inequalities for Fourier series). Let the non-nega-
tive weight function weL(—1, 1) associated with the orthonormal sequence of
polynomials (P,) be such that w *eL(—1, 1) for some £>0. Assume that the
function f (u) is holomorphic on D% and continuous on D%, the closure of D%.
Let ¥, aiPi(u) be its Fourier series. Then

c(R)

|, | <—~max | f(u)] for n=0,1,...,
R UEYR

where c(R)=(2R/R—1) (., w(t)dn)'">.

Proof. Suppose first that n>1. By Lemma 3 we have
1 1
a,= Jf(f)Pn(i)W(f)dt= J(f(t)—qn—n (D)P. (Yw(t)dt,
-1 -1

where g, (¢) is any polynomial of degree n—1. It follows that

1 1 1/2
|a,,i£E,,](f)JiP,,(z)[w(t)dng,,_.(f) JW(I)dt ’

where, in the notation of Lorentz [5],

E,_ (f)=inf maxllf(t)—“qn—l(m-

dn-1 —l<r<
Further, it is proved in [5, inequality (6), p. 78] that

2R 1
By (f)gg—_l'ﬁggflf(u)l'

Combining the above inequalities we obtain the desired result for 7> 1. Finally,
the case n=0 of the Cauchy-type inequality is easily seen to be true since, for
Py= Py(1), we have

1 172

| Py jw(r)dt =].
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§3. Proofs of Theorems 1, 2 and 3. In the proofs of Theorems 1,2 and 3,
u and z are related by u=3(z+z""), z=u+/u’—1 with |z| > 1, the sign of the
square root being chosen so that |u +.ir—1>1.

Proof of Theorems 1 and 2. We prove these two theorems together.

Sufficiency. We assume that

lim by=b. for k=0,1,...;

n—co by

M(p)= sup lbnkl(ﬂ) <w for 1<p<P.
n=04kz0 R

Let acAg, or ac&z. For 1<p<P choose r so that 1<r<R and p/r<P/R.
Now choose p, so that p<p,<P and p/r=p,/R. Suppose ueD]. Then u=
3(z+z7") with 1<|z| <p, and therefore, by Lemma 2,

|bwsascPic ()] < K(€)| bt | @ (1 +K)* " p*

k
= K(&)|bn| (g) || (1 + k)30

k
= K(&)| b (%‘) lae| (1 &2

<K(e)M(p)lae|(1+k)* T *9r < oo,
Further, by (i) (of either Theorem 1 or Theorem 23,

lim b,,kakPk(u) =, bkakPk (M) 5
Since ¥ lax|(1+k)*"#¥r* < c0, and since p can be chosen arbitrarily close
to P in (1, P), it follows, by the Weierstrass M-test, that g,.(u) exists for n=
0,1,...,and

lim g,(u)=1lim Y buaiPr(u)= Y beay Py (u)
k=0

H— 0 "W Lo

on D}, and that the sequence (g,) is uniformly convergent on compact subsets
of D%. This completes the proof of the sufficiency of conditions (1) and (ii)
both for Theorem 1 and Theorem 2.

Necessity. Let ar= 1/R*(k+1)°. Then acAr and aeéx. Under the
hypotheses of either Theorem 1 or Theorem 2 the series

2)= 3 butPe(t)

k=0

is convergent on D} and the sequence (g, ) is uniformly convergent on compact

subsets of D%. Therefore, by the Weierstrass double-series theorem, (8n)
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converges to a holomorphic function on D7. By Lemma 3, we get, for the
above sequence a, that ’
1

ba, = jg,, (P (Ddt for n=0,1,....

-1
Since g,(7) converges uniformly on [—1, 1] to g(¢) say, we get that
1

lim b,,kak= ng(t)Pk (f)df:—'dk.

n=>00
=1

Hence, for k=0,1, ...,

lim b, =5y,

where by =d,.R" (k+1)% This proves the necessity of conditi i) i
Theorem 1 and Theorem 2. ’ s

Suppose now that p and j are fixed with 1 <p<p<P. Since a satisfies the
hypotheses of both Theorem I and Theorem 2, the sequence (g,) is uniformly
convergent (zn D}. Hence we have, for ueﬁ};’ and »=0,1,..., that
|i,, (tu)l <M(p,a)<co, M(p,a) being independent of n. By Lemma 4 we get
tha

|bua | <c(P)M(p,a)  for  nk=0,1,....

Since a,=1/R* (k+1)?, it follows that

k
i} 1
|| (’i) —— _<c(HM(p,a)  for

R/} (k+1) mk=0,1,...,

and hence that
k

k
sup |bnk|(%) <c(p)M(p, a) iulg{(}j) (k+1)2}<oo,
>0 [\p

nz0kz0

Therefore the condition

k
sup [ by (%) <o  whenever 1<p<P,

nz0k=0

15 necessary, i.e., condition (ii) is necessary in both Theorem 1 and Theorem

Proof of Theorem 3. Sufficiency. We assume that

lim b =by for

n—oo

= 1/(k=+1
M= sup |by|"**P<o.
nz0k=0

k=0,1,...;
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Let aeé, and let ueDk. Then u= J(z+z") with 1<zl <R< 0, and so, by
Lemma 2,
| B Pic(u)| < K(&)| bl ax | (1 +h)2 )5
<K(&)|buk || (1 +K)* @/OR"
<K(&)May|(1+k)* @ (MR)* < 0.

From (i) we get

hm b,,kakPk(u) =. bkakPk(u) .

n—oo

Since ¥, lax (1 +k)*+*9(MR)* < o0, and since R can be arbitrarily large, it
follows,kl;; the Weierstrass M-test, that g, (u) exists for n=0,1,..., and

lim En (M) = lim Z b,,kakPk (u)= Z bkakPk (u)
= a0 n—=w k=0 k=0

on C. and that the sequence (g,) is uniformly convergent on compact subsets
of C.

Necessity. Let ar=k ¥, so that ae&. Then, by hypothesis, the series

[=.9]
gn(W)= Y, buarPi(u)
k=0
is convergent on C, and the sequence (g.) is uniformly convergent on compact
subsets of C. By the Weierstrass double-series theorem, (g,) converges to an
entire function on C. By Lemma 3 we have
1

buar= jgn(I)Pk (r)dt for =1 | [

-1

Since g,(t) is uniformly convergent on [—1,1] to g(¢) say, we get, for k=
0,1,..., that
1

Hm byar= jg(t)Pk(t)dt=dk,

n—oo
|

and hence that

lim bnk = bk N
where b, =dk* for k=0,1,2,.... Thus condition (i) is necessary. i
Sup;ose now that a is an arbitrary sequence in &, and that R _>; 12 gmf
the sequence (g.) 1s uniformly convergent on D%, we have, for ue Dk and #
0.1,..., that |g, ()| <M(R, a) <co. From Lemma 4 we get that

|buate| SCCR)M(R,2)R™*  for  n,k=0, Ly 5 (!
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o p
Hence } " buay is convergent whenever ae &, and we have, by Lemma 1, that

— 1/(k+1
Mn—iulg|b,,k|/{+)<oo for n=0,1,....
=

Assume now that

sup sup by |**V=sup M,=c0.
nz0 k=0 nz=0
This implies that there exists a strictly increasing sequence of positive integers

(n;) such ‘that M, —~o0. This in turn implies that there exists a sequence of
non-negative integers (k;) such that

lbﬂj,kjll/(kj+l)>%Mnj_)w as j_’m. (2)

We show now that the sequence (;) is not bounded. Assume that it is bounded.
Then there is a positive integer &* such that 0<k,<k*. Since lim,_., by = by
for k=0,1,...,k% it follows that the set of numbers (B Ywsogepey 13
bounded, and hence that the set of numbers (|by|"/**),5 00cx <4 is bounded.
But this contradicts (2). Therefore the sequence (k;) is not bounded. We can

suppose (by considering a subsequence if necessary) that the sequence is strictly
increasing. Choose

1 ak+1)
a= (bnf,kl) 5 tk=k.
0, otherwise.
We then have, by (2), that
1 ] k1)
Fa,-ll/(k'+l)=‘_f——<( ) &
K Bl T ﬂ/{n, -0 as J—oo.

Therefore ae&, but

|bn,-,k,|akj= ’bnj'ij*OO as

which contradicts (1). Thus the condition

Jjoo,

' 1/(k+1
sup by | P < a0
nz0k=0

18 necessary, i.e., condition (ii) is necessary.

84. Adajitional Theorems. In this section we prove some theorems showing
that the elhps; of convergence D} specified in Theorem 2 cannot be enlarged
when the matrix B satisfies conditions (1) and (ii) of that theorem together with

Certaln' other conditions. Analogous theorems concerning matrix trans-
formations of power series appear in [1]

TueoREM 4.  Suppose that P and R are Jinite numbers greater than 1, and
that B=(b,,) is a triangular infinite matrix (i.e., by =0 for k> n) satisfying

k
M(p)= sup |bnkf(%) <o  for I<p<P.

rz20k=0
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Then, for each acAg and each R\ =P,

" 1/n
Y, butiPi(u)

k=0

lim sup max

n— oo UEYR|

R
=P

Proof. Choose R;>P>1, and suppose aEAR.1 Let 1/P<;L<-1, and ?a_ke
p=AP>1. Then 1<p<P. Since lim sup |ax|/®*D=1/R, there is a positive

constant ¢(A) such that

d) for k=0.
(AR)*

we have | Pu(1)| <K(£)(1+k)** R and hence

Ja| <

By Lemma 2, for ueyg,

k k
i R —_—
<K(e) ¥, |bnk|(£) |ax| R* (-‘) (1+k)>¥®
k=0 R 5 P
R

k
2 R, 2+(2/e)
<KMW X (7] \7p) 0+0

i Bt P (1)

k=0

n Rl
<K()M(p)c(A)(1+n)* P F (PE) '

k=0

Since R; /A2P> R, /P>1, it follows that
1/n e 1/n
' " [ R )) _ R,
<Jim .2, 2P 2P

i/n

Y bucarPr(u)

k=0

lim sup max

n—00  HEYR)

Letting A ~ 1 we get

z b,,kakPk (u)

k=0

R
S
/3

lim sup max

n— oG UEYR|

Remark. Assume that a triangular matrix B satisfies

k
M(p)= sup ibnkl(%) <o far,  A=psP.

nz0kz0

Then

|bnn|”"£R$M(p)”"—rl as  n—ow,

and hence

limsuplb,,,.llf"ég for each - pe(l,P).
P

n—+oo
Letting p /P we get

lim sup | b 1""@5
H— X0 o P
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This suggests that it is not inappropriate to impose the condition

1/‘r:=R

lim |b,,| 5

as we do in the following theorem.

THEOREM 5. Let B be a triangular matrix. Suppose that

R
hm |bnn| Un=_,
oo P
where P and R are finite numbers greater than 1. Then for each ac Ay and each
R, =P we have '
1/n
i R
Z b,,ka;cPk(u) ?Fl

k=0

lim sup max

n—o0  UEYR

Proof. Assume that the conclusion of the theorem is not true. Then there
is an a*€Ag and an R, >P>1 such that

n 1/n R
z bnkafpk(u) <?l.

k=0

lim sup max
n—00  HEYR

Therefore there exists a number R such that 1 <R <R, and, for all » sufficiently

large,
(E)n
<{—=]-
P

Applying Lemma 4 to the function g,(u) =Y, _, buak Pi(u) we get in particular
that, for all large n,

1/n _’R' . .
‘S} z b,,kak Pk(ll)

k=0

Z b,,kaz'Pk(u)

k=0

max
UETR

: and hence max

UEYR

-~

bl | RE<e(R)) (ﬁ) ,

and therefore

| =

|Ban |5 | /" Ry < e(Ry )"

From the last inequality we get that

=lim sup (|18,.|""|ax|""Ry) =R, lim |b,,|"" . lim sup |a,‘f|”"=%.

Lo n— o0 n—oo

~ | =

:BUt this is a contradiction since 1< R<R,. Hence the conclusion of the
theorem must hold.

| The next two theorems are analogues of Theorems 6 and 7 (concerning
atrix transformations of power series) in [1], which in turn generalize results
bout regular and non-regular Norlund matrices due respectively to Luh [6]
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and K. Stadtmiiller [9, Theorems 6 and 7]. The first of these new theorems,
which follows immediately from Theorems 4 and 5, shows, inter alia, that the
sequence (g,) specified in Theorem 2 cannot converge uniformly in the interior
of any ellipse yp, with P;> P when B is a triangular matrix satisfying condition
(ii) of Theorem 2 together with the diagonal condition of Theorem 5.
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THEOREM 6. Suppose that P and R are finite numbers greater than 1, and
that B is a triangular matrix satisfying

sup
n=z0k=0

k
M(p)= |b,,kh(%)<oo for  1<p<P,

and

R
lim |bu|'/"==.
P

Then, for each ac Ay and each R, 2 P,
1/n

Y, buarPr ()

k=0

lim sup max

n—oo  UEYR,

The next theorem shows that the ellipse ¥, in the conclusion of Theorem
6 can be replaced by any arc of that ellipse (provided condition (i) of Theorem
2 is also satisfied when R, =P).

THEOREM 7. Suppose that P and R are finite numbers greater than 1, and
that B is a triangular matrix such that

M(p)= sup

nz0k=0

k
|bnk|(%) <o for 1<p<P,

and

R
lim || ==.

n— 00

(1) Then, for each acAg and each R,> P,

1/n
u R
lim sup max | Y. buaiPr(u) =1
n— 0 wel |p—p P
where T is any closed non-trivial arc of yg, .
(i) If, in addition,
lim b, = by for k=0,1,..., where b #0  for k>l

h— 00

then, for each acAg,

1/n
=1,

Y buarPr (u)

k=0

lim sup max

n— o0 uel
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where T is any closed non-trivial arc of yp.

Proof of (). By Theorem 6 we know that

W 1/n R
Y buaiPr (1) s;‘.

k=0

lim sup max

n—oo uel’

Hence it is enough to prove that, for every acAg,

1/n
R,
27
P

n

Y bua Py (1)

k=0

lim sup max

n—o0 uel

: 3)

which we no*w proceed to do. Assume that (3) is not true. Then there exists
a sequence a“ €Ay and a number R such that P< R <R, and

~

lim sup max |g, (u, a*)| ”"s%.

n—o0 uel

Hence given £>0 we have, for z=u+./u’—1 and all sufficiently large n,

<)) G
P R R/ \P

Further, from Theorem 6 we get that, for all large »,

(2E)n
g s
P

(28)"

<\ =
P

Let P<r<R,. Since the function z=u+ /%" —1 is holomorphic and different
from zero on C\[—1, 1], we have, by Nevanlinna’s N-constants theorem (see

[3, Theorem 18.3.3]), that there exist positive constants 6,, 85, 6, (depending
on r but not on ¢) such that 8+ #,+60;=1 and

(T

R, P P P R, P

for all sufficiently large n. Hence, choosing &> 0 so small that (R/R,)*2°<1
we get ,

g (u, a*)

n

4

max

uell

gn(u, a*)
ZH

max

UeYp

and

gn(u, a%)

n

A

max
HEY R

8n(u, 2%)

zﬂ

max

uey,

. =\ 6
lim sup max |g, (4, a*)|'"" < (5) g
n—o  uey, R, B P

Since r > P, the last inequality contradicts the conclusion of Theorem 5. Hence
(3) must hold when R, > P.
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Proof of (ii). By Theorem 6 we know in this case that
& 1/n
limsupmax | Y buaPr(u)| <1.
n—c0 uel [r_g
Hence it is enough to prove that, for every acAg,
5 I/n
lim sup max | ) buarPr(u)| =1, (4)
n— oo uell k=0

Suppose (4) is not true. Then for some a*cA, we have

5 1/n

Y, budtPu)| <I.

k=0

lim sup max

R— 00 uel’

Write
&n (u7 ﬂ*) = Z b,,ka;:Pk (u) ’
k=0

It follows that there exists a positive number ¢ <R, /P=1, such that, for all »
sufficiently large,

sup |g. (u, a%) <q".

uel’

Given a >0 we get from Theorem 6 that, for all » sufficiently large,

max | g, (u, a%)| <2°".

Ueyp

By Nevanlinna’s N-constants theorem, there exists a positive number 6 <1
(independent of @) such that, for all large »,

max |g,(u, a%)| <(g%2"' 707",

—l<u<]
Since we can choose @ >0 so small that ¢?2" = < | _ it follows that

max |g.(u, a*)| =0 as

—I<u<gl

h— Q0.

By Lemma 3 we have

1 ]
bua,= Jg,,(t, a*) P, ()dt for n=0,1,....
=1
Since g, (7, a*) tends uniformly to 0 on [—1, 1] as n— co, it follows that

0= Ilim bnka}f =bkaff for

n—oo

e=10,.1; cee

Since a* €Ay we have that af #0 for some k>k*. Hence b, =0 for such a k.
But this contradicts the assumption that b, 0 for k>k*. Therefore (4) must
hold.
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85. Chebyshev Polynomials. In this section we restrict (P,) to be the
orthonormal sequence on [0, 1] of Chebyshev polynomials of the first or second

- kind, the corresponding weight functions of which are respectively w(x)=

52(1—x*)"" and w(x)=37(1 —x%)"/2. The special properties of these Cheby-
shev polynomials that makes them amenable to the proof of Theorem 8 (below)
are the familiar identities

2P, (3(z+z ) =z"+z" (5)
when P, is of the first kind, and
(z—z HYP,(G(z+z D))= =7} (6)

when P, is of the second kind.

The said theorem deals with the possibility of pointwise convergence of the
sequence (g, (u)) specified in Theorem 2 outside the convergence ellipse 5. Its
analogue for power series is Theorem 8 in [1], which generalizes results due to
Leja [4] and Stadtmiiller [9, Theorem 8] about regular and non-regular Nor-
lund matrices respectively.

THEOREM 8. Suppose that P and R are finite numbers greater than 1, and
that B is a triangular matrix such that
(1) lim,o b =by for k=0, 1, ... where b, #0 for k>k*;

(Il) M(p) =Supn20,k20 |bnk| (P/R)k< 00 for 1 <p<P’ limn—»co Ibnn|1/n=
R/P; and

(iil) 15| <c(R)|bun| (P/R)"™* for 1< R<R and 0<k <n.

Suppose that ac Ay and that lim sup, .. |a,|R">0. Let
gn(u)= Z b Pr(1t),
k=0

where (Py) is the orthonormal sequence on [—1, 1] of Chebyshev polynomials of
the first or second kind, and let P,>P. Then lim sup,_.., |g.(u)|'/"<1 for at
most a finite number of points u outside the ellipse yp, and hence, in particular,
the sequence (g.) can converge at most at a finite number of points u outside the
ellipse v p, .

Proof. Assume that u is a point outside the ellipse ¥, for which
lim sup |g, (u)|'/"<1. (7)
Let z=u+./u*—1, so that |z| > P, ; and let
g.(2)= Z bnkakzk-
k=0

Then, by (5),

200)=2 3. buaiPe () =gu()+ (=)

k=0
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when the Chebyshev polynomials P, are of the first kind; and, by (6),
(z—z7 " g (W) =28, ()~ 27'5,(z™")

when the Chebyshev polynomials P, are of the second kind.
Since |z7'| < P;' <P it follows from Theorem 2 in [1] that Z,(z!) tends
to a finite limit as n—co, and therefore from (7) that, in either case,

lim sup |£, (2)|'"<1. (8)

n—o0

Theorem 8 in [1] tells us that inequality (8) can hold for at most a finite number
of points z satisfying |z| > P,, and thus (7) can hold for at most finitely many
points u outside the ellipse yp,.

Remarks. A Norlund matrix Ng for which

B )
lim l=p with |b] =
P

R=» 00 n

satisfies all the conditions on the matrix in Theorem 8. In this case, however,
the condition lim sup |a,|R" >0 can be omitted since the corresponding version
of the theorem for power series has recently been proved by K. Stadtmiiller
and Grosse-Erdmann [10, Remark 3.7].

An open and challenging question is whether Theorem 8 holds for other
orthogonal polynomials.
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