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On Some Trigonometric and Exponential Lattice Sums*
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Certain two-dimensional trigonometric lattice series, the ordinary convergence
of which involves unresolved questions of a deep and delicate number-theoretic
nature, are shown to be summable by a special Abelian method and their Abelian
sums are abtained. This is done by first evaluating an absolutely convergent
exponential lattice series and then analytically extending its sum. @ 1994 Academic
Press. Inc.

I. INTRODUCTION

We consider the trigonometric sums

5.(0) := \;;”m sin(Vm? + n20) (@ real)
i nie0

)m+n

+
= Z e sin(r)  where r:= Vm? + n? = 0,
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and C. (8), the corresponding sums with cos(rf) in place of sin(rf). We
use the notation 2,,, for sums over all lattice points (m, n) and 2’ to
indicate that the point (0, 0) is omitted. It is not clear, ab initio, in what
sense these sums exist. When absolute convergence is not assured it will
be convenient to sum over expanding circles, so that

o (=De,
S.(0) = ; G sin(\Vn6),

where ¢, is the number of ways of expressing n as the sum of two integer
squares, and similarly for C. (8). These series, however, may or may not
converge in the ordinary sense. Since

EI-—-

it is certainly possible that they may be conditionally convergent or even
divergent. In fact, since

2

n=1

2Vn8) + sind(Vn)) = =,

it follows that either

S, <

1cos(W0)| or Y L sin(Vno)| = =
nel nel Vi
The problem of determining whether or not the series for §. () and C. (8)
actually converge involves deep number-theoretic questions which we
cannot answer. What we shall show, inter aha, is that

S (6)XA)=—9  for |0 < V2m, (1)

S, (9)(,4)-3;5—9 for 0 < |) < 27, (2)

where A denotes the Abelian method of summability defined as follows:

> a, = €A) 1fhm2ae“"-€

x—0+
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The method is regular (see [3, Section 4.7]), i.e., if ;| 4, = € then 27_,
a, = €(A). We shall also show that

C_(6)A) = g (2:) y(n + %)(%)2" for |6] < V2, (3)
C.(6)A) = Zﬁ (2:) 8<n + %)(&) for 0 < |6 <2m (&)

where y(s) 1= 4(s)B(s)2* — 1) and 8(s) := 4{(s)B(s) with

{s):=1+2+3F+45+ - (res>1)
1

‘:—“]—_—F(l — 274 3 — 475 4 -0 (re s > 0),

Bs):=1~-35+5F =T+ .- (re s > 0).

We shall describe in Section 2 below how S.(#) and C. (8) behave in the
A-sense for 8 outside the *‘principal domains’’ specified in (1), (2), (3), and
(4). Note that these equations only give A-values of the sine and cosine
series, but that whenever the series do converge they must converge to
the said values. We cannot infer ordinary convergence from A-conver-
gence. However, had we had in our definition of the Abelian summability
method A, instead of Vi with A, > 0 and lim inf A,.,/A, > 1, then, by the
“‘high indices’’ theorem (3, Theorem 114], Abelian summability would
have implied convergence.

The results in this note provide answers, in slightly rescaled form, to
Problem 92-11* in SIAM Review. Moreover, on computing the right-
hand series in (3) to high precision, we found that C_(2.5) cannot be zero
as conjectured in the problem. Computation shows that the unique zero of
that right-hand series in (0, V27) is in fact 8 = 2.504259 ... Computation
of the original defining lattice sum (in whatever sense) is much too slow a
process to practically determine the value of the zero to even three digit
accuracy. After our note was submitted for publication the September
1993 issue of SIAM Review presented a complete formal solution for
Problem 92—11* by Boersma and De Doelder which, however, made no
explicit mention of the delicate convergence questions. Other responses
to the problem are briefly discussed in this issue.

It is interesting to observe the following differences in behavior at the
origin between those of the above lattice series that involve the alternat-
ing term (—1)™** and those that do not.
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im{S_(@)A)} =S (0)=0 and lim{C-(O)NA)} = C_(0) = (1)
ﬂl—'rr[)l - - - 60 - - ‘y 2

(see [4] and [1, Section 9.2]); but

lim{S,(0)A)} =>> 5,0 =0 and
#-0+

. N .
lim{C. (0)(A)} = 6(5) < C.(0) ==

2. THE PROOFS: AN EXPONENTIAL SUM

Let
cos(2meym) cosQuwen)
E.(a) := Z - > e aVmiat
mn=—» Vm? + n
m2+nt#0

_ Z’ cos(2wem) cos(2mern) oar
r

>
m,n

wherea > 0,8, > 0,6 >0, £ := (g1, £2), and r := Vm? + n? = 0. The
sums are absolutely convergent, so the order of summation is immaterial.
Further, since (see [1, p. 39, Exercise 4])

€ a »
— -312 ,-1-a?rY
? elar4ldt,

r 2Va o

we have (as in (2, p. 1417]) that E.(a) = lims—y. E.(a, 8) where

' cos(2we; m) cos(Zmeyn) J Angr-atin gy

Eda,8):= 7= ;

= Ve (3 cos@meim) cos@mern) e~ 1) at,
m m,n

the interchange of order of 2’ and lim being justified by the uniform
convergence of the series. By Poisson’s formula (see [1, Section 2.2]), the

final sum is equal to
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4t 2 2
Y, erérrital where r2 :=(m + &) + (n + &)%, r. > 0.

5
2
as o

Integration now yields (as in [2])

o erfc(V8(1 + 4n?ria?))
Eda,8) = 2 = /s

e~? + a erfc(VS),

d
Vad
where erfe(x) = 2/Vw) fj,‘ e " dr. We can express the sum involving

erfc(-) as

5 erfcarVaia)

m,n re

L+ 3

where

R ]

1 1 )
-2 G- weoo

and

3, = E erfc(V8(1 + 4w?ri/a?)) — erfcQnr.V8/a?)
2=

mn \/;%.; + 02/4772

8! —48nriia? 1/4 1
e~ ¥ = (3 )zm

& m.n £

- 0(8”4) Z

o(1) as § — 0+.

Hence

erfcQmr.Vé/a?) __a

E.(a, 8) = ) p s e + a erfc(V3)

1 1
_ [ .
mzm <re VA + alan? + o(l) as 8§ — 0
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Further, for b > 0, b # a,

NV 8/a?
E.(b, 8b%/a}) = D, erfcQmr,V8/a) u

2 RV A erfe(V8b/a)
_z(l——*—L—'——____*_>+o(l) 356'—)0+.
mn e Vil + a¥4m?

It follows that

E.(a, ) — E.(b, 8bYa?) = \/“_g (e~ — oB)
m

+ a erfc(VS) — b erfc(VSb/2)

_;ﬂ(?l7 _ 1 )

\/r; + b*4m? r2+ aldm?

+ o(l) as 8 — 0+,
and hence that

Eg(a)zEs(b)+a—b—z< !

). ©®
S\ bAn? | Vi T alan?)

Now, fora > 0,y > 1, let

Ea) :

Il

e—»(lggnmx E.(@) and Fy) = 2 (1+\)/’ - 2‘
where d,, := ¢/ Vn, A

n=1

V'n, and, as before, ¢, is the number of ways of
expressing n as the sum of two integer squares. Observe that E(a) exists

because of the uniform convergence of the series defining £, (a), and that

x
ﬂ:\/l = Z —dak,

=
[l
=

Hence

FY =15 )Z do [ @t da = r‘(y)jox @~ 'E(a) da,

the change of order of summation and integration being legitimate since
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all the terms are positive. Next, letting e — (0+, 0+) in (5), we get, for a >
0,6>0,a#+b,

E(a)—%-—E(b)—%I%- - b

—Z ( - L ) 6)

Vi + b’/4rr" Vi + d/4m?

It follows that E(a) is analytic for ¢ > 0, that
o _ 2_77)
L al—l»rgl (E(a) a
exists, and hence that

lim (E(a) - %71 e‘“) =y + 27.

a—0+
Further, fory > 1,

2
y -1

-8 () -

by Hardy’s decomposition of the two-dimensional zeta function (see [1,
Section 9.2]). Both the left-hand and right-hand terms of this equation are
analytic for y > 0. Hence, by analytic continuation, equality holds in this
range. Also, the limit of the left-hand term as y — 0+ isy + 27, and of the
right-hand term is 4£(1/2)8(1/2) + 27. We have thus proved

tim (£@ - ) = 4c(3) 8 (5) = 5 (3) )

In dealing with analytic continuation we shall suppose that the principal
branch of any involved square root is considered. It follows from (5) that
E.(a) has an analytic continuation to the half-plane re @ > 0, and that, for
b>0,|0| #2rr.=2rVim+e)+(n+e)lPmn=0 1, +2 ),

F(ly_) f: ar'(E(a) - %7[ e’”) da = F(y) —

. 1
lim E,(x + i) = i0 + E,(b) - b — ( )
lim Eo(x +i0) = i ) - 2 Vit + b2/471'2 \/rﬁ — 6*/47?

409°188°1-16
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Consequently, for |8| # 27r,,

: o i B 1 1
lim E.(x +i6) = i + lim E.(b) m}) (re ——————m). (8)

Likewise, it follows from (6) that E(a) — 2m/a has an analytic continuation
to half-plane re a > 0, and that, for b > 0, |0]| # 27r = 20Vm? + n? (m,
n=0,1,2,--),

lim E(x + i0) = (0——21) +E(b)—2—7z—b
x—0+ 6 b

-2 7
Vi + b2/4'rr VP = ¢lan

Letting b — 0+, we deduce by means of (7) that, for |6] # 2 7r,

Jlim E(x + i) = (" - 27”) + 3 (%) -3 G - ﬁ) ©)

m,n

We now specialize these results to deal with S. (8) and C.(8). Let E_(a)
:= E.(a) with &, = &, = 4. Then, for b > 0,

_lmn —_ —1 " b
E®) =3 S o = 3 L e
o~ (=D"c, _ (1 (10
—»; n —7(2) asb—0+.

It follows from (8) and (10) that, for

18] # 2mp :=7VE2m + 1 + 2n + 1)2 (m,n =0, 1, £2, -+,

lim E_(x + i8) = xl_{ i (= 1)"c,, e *V"(cos(Vnb) — i sin(V'n6))

x—0+

: 1 1 1
=,0+7(5) —%(5—_——’———'_—;)2—02/4772) (11)
= {C_(8) — iS_(OHA).

Thus we can obtain the A-values of C_(8) and S_(8) whenever

0] # 2mp = 7VQ2m + 12 + 2n + 1) mn=0, =1, £2, -
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by equating real and imaginary parts of the final equation in (11). In
particular, for the principal domain |6] < V2, we have

S_(6)(A) = -9,

and, by the binomial theorem,
C (g)(A) = <l) — Z (1 — __,_I____)
B y 2 m.n P \/pz - 02/4772
1 % 2/( 0 2% 1
7@+EZQMQEW

mun k=1

Y G) M ,; (Zkk) (%)u 2 o T )2 fk(;ln T 1y

m.n

-5 GG b3

(See [4] and [1, Section 9.2]). We have thus established (1) and (3), and (2)
and (4) follow in like manner from (9).

To describe the behavior of S.(8) outside the principal domains, we
define oy, 0;, 03, * - - to be the numbers 2n + 1) + Cm + 1) (m, n =0,
+1, *2, ---) in increasing order, and ¢, e;, €3, - - - to be the numbers
4n> + 4m? (m, n = 1, 2, 3, ---) in increasing order. Thus o,, o0;, 03,
04---=2,10,18,26,---,and ey, e;,e3,¢€4,---=4,8,16,20,---. Then it
follows from (11) that

1

B - 27
S_(0)A) = -0+ ,;l ——0\/—2-———_—"2—-0—’( for W\/()—n < ‘Ol < TVou+1, (12)

and from (9) that

for Ve, < 0] < #Vens,.

(13)

We can evidently also obtain formulae for C. (#) appropriate to the above
ranges by the method used in deriving (3) and (4). Finally, (8) gives us
access to

- 27 “ 2w
SiOA) == -0+ ),
H(6)(A) = ;‘,l prp——

5.8):= S cos(21$'.nnz:)ios(227rszn) Sin(@OVmI T 5),
m.n n
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For example, it follows from (8) that, if », is the smallest of the numbers
m+eg)P+mn+e)Pma=0,x1,+2 -4, then

S.(0)A) = -6  for|6] < 2mVy,.
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