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It is proved that if the weighted means of a sequence satisfy certain order condi-
tions, then the sequence is summable by every method of a family of methods I,
based on a given sequence (p,). The family I', includes the power series method J,
and the generalized Norlund method (N, p, p).  © 1994 Academic Press, Inc.

1. INTRODUCTION AND MAIN RESULTS

Suppose throughout that (s,) is a given sequence, and that (g,) is a
sequence of positive numbers. The sequence of weighted means (t,) is
defined by

1 M n
t,i=— ¥ Qi8S where Q,:= Y, ¢
' k=0

nk=0

The sequence (s,) is said to be summable to s by the weighted mean
method M,, and we write

s, —=8(M,) if t,—s.
In particular, the Cesaro method C, and the logarithmic method [ are the
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methods M, with g, =1 and g, = 1/(k + 1), respectively. The sequence of
C,-means of any sequence (x,) will be denoted by (x!), so that

1 n

XK= N

" on+1,7Z,

Suppose further that (p,) is a sequence of real non-negative numbers with
Po >0, and that the power series

o0
=) Pt
n=0

has radius of convergence R>0. Then the power series method of
summability J, is defined as follows.
s, —s(J,) if

pit) =} s, pat"
n=0
is convergent for |{| < R, and if
ps(1)
g,(t)i=—==s as r—R—,
3 p(1)

In this note we impose certain smoothness conditions on the sequence (p,),
namely

p,i=e ¥ for n>x,eN, and  p,:=p, for 0<n<x, (L1)

where the function g has the properties

(C)

£"(x) is continuous, positive, and decreasing to 0 on [x,, o),
while x“g”(x) is increasing to oo on [x,, o).

Our treatment will cover both Abel-type (R < oc) and Borel-type (R=oc)
methods. In particular it will include the Borel-type method (B, a, f), « >0,
for which g(x)=log I(ax+ f).

By [5, Theorem 57, the J, method is regular when R = oo, thatis, s, = s
implies s, — 5(J,). Suppose, therefore, that R < co. Then, by (1.1) and (C),
we have that g'(x) increases and tends to p (say) as x — o0, and conse-
quently that g(n)/n— p as n— co. It follows, by the nth root test, that
R=¢" and hence that g(n)—g(x,) <nlog R for n = x,, whence

Y. L Re Y RERIe T g,
=0

n=xq

Thus, by [5, Theorem 5], J, is also regular when R < co.
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We define a function ¢ by

for 062, and d(x) :=p(xy) for 0< x< xq.

1
P(x) = )

(1.2)

We also consider the scale of generalized Norlund summability methods
(N, p**, p), «=1, 2, .., defined as (see [1, 6])

o

s, s(N,p*%p) if oli=—mrm L PEkPeSi—™S A n-—oo,
Pn k=0
where

Let I, denote the family of all the methods (N, p*?, p) together with J,. It
is known [6, Theorem 1] that

(N, p**, p) (N, p*’,p)=J, for a<f, a BeN, (1.3)

that is, the methods in (1.3) increase in strength from left to right. It
follows from (1.3) and the regularity of J, that all the methods in I, are
regular when (1.1) and (C) hold. The most familiar family I, is generated
by p,=1/ml=¢ 08T+ In this family J, is the Borel method B,
and (N, p**, p) is the Buler-Knopp method E( ), for which of=
(/") 5o ()= 1) 5.

In general C,-summability does not imply summability by any member
of I',. However, the following result, which we prove in Section 3, shows
that C,-summability together with an order condition does imply
summability by every member of I',.

TuroreM C. Suppose that the sequence (p,) is given by (1.1) with g
satisfying (C), and that
st=s+o0 (—¢(H)),

n

where ¢ is given by (1.2). Then (s,) is summable to s by every member of I',.

This theorem has been proved ([6, Theorem 2]; see also [10]) flor a
sequence (p,) such that p,~e~¥™ and p,/p,., is non-decreasing, with g
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satisfying (C). The special case p,=1/n!, for which ¢(n)/n~1/\/1;, is a
classical result of Knopp’s (see [5, Theorem 1497).
We also establish the following two theorems.

TrEOREM 1. Suppose that the sequence (p,) is given by (1.1) with g
satisfving (C), and in addition

x°g"(x) is decreasing on [ xy, o0) for some &>0. (1.4)
Suppose also that

Gn—1

Rn

=1+0(n ") (1.3)

and

zn—s+&+o<¢(gq">, (1.6)

where s and u are constants.
Then (1) (s,) is summable to s by every member of I', (and by C,).
Moreover, (i1) “0” cannot be replaced by *0” in (1.6).
Indeed, (iii) there exists a C,-summable bounded sequence (s,) which is
not summable by any member of I', and which satisfies

Theorem 1 generalizes [2, Theorem | which deals with p,=1/n!], which
in turn generalized [11, Theorem 1 which deals with p,=1/nl, ¢q,=
1/(n+1)]. Theorem 1 shows that M -summability together with an order
condition implies summability by every member of I', and that the order
condition is best possible in a strong sense.

TueoreM 2. Suppose that the sequence (p,) is given by (1.1) with g
satisfying (C), (1.5), and in addition

lim inf ng” (1) > 0. (1.7)

Suppose also that condition (1.4) holds, and that

HQnsn:OL(i), (18)
. =0(1), (1.9)
nqn
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and

12k B $(n)
2 i emnto(57) o

where u is a constant. Then (s,) is summable to 0 by every member of I,.

The notation x,= 0,(1) signifies, as usual, that liminfx, > —ooc.
Theorem 2 generalizes [2, Theorem 2 which deals with p, = 1/n!], which in
turn generalized [11, Theorem 2 which deals with p,=1/n!, g, =1(n+1)].

2. PRELIMINARY RESULTS

In all that follows we assume that
p,i=e ¥M  for x,<neN,
and define
poi=e f9) for x = xg, and  p,:=p, for 0<x<x,
even when x is not an integer.
LemMA 1. Suppose that the sequence (p,) is given by (1.1) with g
satisfying (C). Then
(1) Pn_xPx gpnfxfiprrlfor 0 XK %fl— 13 andmax()s_xsnpnfxpx:
Pas and
(i) p¥~/md(n/2) P2
Proof. (i) Since g”{x)>0 for x= x,, we have that

d
_(pn—xpx):pn—xpx(gf(n_x)_gr(x))

dax
is positive for x, < x < {n and negative for x, < 3n < x <n— x,. The desired
conclusions follow.
(i) It follows from the monotonicity of g”(x) and x?g”(x) that if
Xo<3x<t<x, then

” 2 1 -
Ogg(r)—l tg(r)_x % 28 x—1t

gﬂ(x) =x2gu(x) t2 I2

while if x, < x <1< 3x, then

£g"(1) ol r’g"(f) x* x_2 x2<45 t—x
gu(x) ng”(x) I2 IZ "
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Hence

’g”(f)

It —x]|

whenever x, 1= x,and |t — x| < (2:1)

g"(x)

—1‘s4
x

St ]

Further, for x,<x<1in,

Pn— xPx e x)
b

7 » where h(n, x) :=g(n— x)—2g(n/2) + g(x). (2.2)

By the second mean value theorem, we have
h(n, x) = (x—n/2)> g"(&) with xo<x<é<n—x (2.3)

In view of (2.1), (2.2), and (2.3), and since ¢(n/2) — oo, we can now apply
standard techniques (as in [3, 6,7, 8]) to obtain

p;ﬁ 5n/8 %
b=l e et o(g(n2)
n/2 A,

S5n/8
=J e (xom2Pe w2y gy 4 o(d(n/2))
3n/8

=J o= (x—n/2)  g"(n2) dx + o(d(n/2))

=/md(m2)(1+0(1)) as n—oo. |

LEMMA 2. Suppose that the sequence (p,) is given by (1.1) with g
satisfying (C). Let

{An =plu,)u, ", with
i, =W for n>ax,, and  u,:=u, for 0<n<x,.

(2.4)
Then

(i) u,,,=u,, and u, - R;
(i) plu \/szs ) e8] 4 o(1)); and
(i) far every 6> 0 there is an nye N such that
o
4. /2n

P
A—? for nz=n,.

n<v<n+dg(n)

Proof. (i) This follows from (2.4) since g'(n) increases for n > x, and
(as in the proof of the regularity of J, in Section 1) e — R,

(i) This is an immediate consequence of [4, Lemma 2].
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(iii) It follows from (ii) that, for » sufficiently large,

r D

n<vsn+dpn)

—

! L
2 2nn<v<n+5¢(n) ¢(V} v
5@5(?1) n 1

2\/£ $(n) n+064(n) 4\/5

since ¢(n)/n decreases to 0. |

For the purposes of the next lemma we recall the following definition
given by Lorentz [9].

DeriNtTiON.  The characteristic function w(n) of a (finite or infinite)
sequence u, <n,< --- of positive integers is defined for all n 20 as the
number of n, satisfying the inequality », <n.

Let Q(n) be a positive non-decreasing function defined for >0 and
tending to co as n— oo. For any such function the class @,(£2) consists of
all real bounded sequences (s,) for which the set of indices n, <n, < ---
with non-vanishing s, has characteristic function w(n)< Q(n). The class
@,(n) consists of all real sequences (s,) such that the sums s,+ 5, + -+ +

=0(2(n)).

The function Q(n) is a summability function of the first or second kind
for a summability method P, if all sequences in @,(£2) or &,(£2), respec-
tively, are P-summable.

LEMMA 3. Suppose that the sequence (p,) is given by (1.1) with g
satisfying (C), and that Q(n)+#o(p(n)). Then Q(n) is not a summability
function of either kind for J,.

Proof. We consider the regular summability method P defined as

[eo]

Y u,p,s,—s as n— o,

plu,) v="0

where u, is given by (2.4). Then J, < P.
Let A(m; £2) denote the least upper bound of

s, = 3(P) if

Z ump"v

for all sequences (n,) with w(n) < Q(n). Since 2(m) # o(¢(m)) there exists
a & >0 such that Q(m) = é¢(m) for an infinite set M of positive integers m.
Hence, using first part (ii) and then part (111) of Lemma 2, we obtain, for
all sufficiently large me M,

m
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)y Uy, Py
p(um) m<v<sm+ dg(m)

v

y P,

¥
m<v<m+5¢»(m}d\‘ p(um) T/lv

;l Z Py ¢{V) e &M —8) + (v—m)g'im)
2m<v<m+5¢(m)A ¢(’n)
1 v B0V g

—3 iv'j(m)e GomEe @2 (< E<m+ 5p(m))
m<yvEm+ op(m)
l o~ 5%8"(E)/28" 0m) ¥ Py
2 T

> T Y i

8./2n

Hence, by [9, Theorem 1], £2(n) is not a summability function of the first
kind for P, and thus also not a summability function of the first kind for J,.
Further, since a summability function of the second kind is also a sum-
mability function of the first kind for J,, Q(n) cannot be a summability
function of the second kind for J, either. [

3. PrROOFS OF THE MAIN RESULTS

Proof of Theorem C (cf. [6, Theorem 2]). In view of (1.3) it suffices to
prove that s, — s(N, p, p), and because of regularity and linearity of this
method we can suppose that s =0. Thus our hypothesis becomes

= 2 Se=o0(¢(n)).
k=0

Let £ >0 be given. Then there is an m € N such that |S,| < e@(n) for n=m.
By Abel partial summation we have, for n 2 m,

1

p*z Z Pn—iPrSk

0, i=

—

p*z 2 Sk(pn kPk—Pn— k—lpk-}—l) (P_15=0)

(Z * Z )Sk Pk Pk—Pn—k—1Pr+1)=: 21 +2,.
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Since m is fixed, it follows from the regularity of (N, p, p) that 2, - 0 as
n— oo [5 Theorem 2]. Next, we have, by first applying part (i) of
Lemma 1 and then part (ii), that, as n - oo,

L8(n)
|25] < p Z | 25—k Pe—Prim k=1 P+l

), 2 260(0)

px \/?_rgz?(n/Z)
2¢en (;ﬁ(n)

~ Judn) \ﬁ’

since ¢(n)/n decreases. Hence lim Sup|a,,|£4a/ﬁ, and therefore
g,—0. |}

<

Part (i) of Theorem 1 is an immediate consequence of Theorem C and
the following lemma.

LeMMA 4. Suppose that the hypotheses of Theorem 1 hold. Then s =
s+ o(¢g(n)/n).

Proof. We may suppose the s =0. Let
t,:=1,0,, sothat ,—u=o(4(n)q,) (3.1)

by (1.6).
Then, for n =1,

er Qrffl er Qrz 1
so that
2 Tp—Hd & 1 1 u
I CARE] Ly RS )
kg() N 4n kgl . 9r k-1 qo
and so
1 & 1 1
5},=0(M>ﬁ (te v,u)(—— ) (3.3)
n il kgl i 9 Gr-1

Next, by (3.1), we have that 1, =pu+¢,¢(k) g, where g, — 0. Hence, by
(1.4) and (1.5), we get that
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Qe qr—

© k=) (g,
= ¥ o (B koo, ()

the final order relation being justified since (g, /g, — 1)k =0O(1) and, for
some €€ (0, 1), x~"¢(x) increases for x = x,, so that, for n> x,,

- Pk
k:zxg k

It follows from (3.3) and (3.4) that s) =o(g(n)/r). I

1) o gk
)s Y ¢5€)sn—a¢(n; Y k1= 0(g(n)).
k=xy

Proof of Theorem 1. As stated above part (i) follows from Lemma 4
and Theorem C. To prove parts (ii) and (iii) we observe that, by Lemma 3,
there exists a bounded sequence (x,) satisfying x! = O(¢(n)/n) which is not
J,-summable. We now define (s,) so that

Ty = thn= (f’l+ I)QMx}z
Then
1,=0(¢(n) q,). (3.5)
It follows from (3.1) with =0 that

11
si=xi—yl,  where y,,:=r,@_1(——
qn ('In—l

) for n=21 and y,:=0,

and so
Sn=Xn— V.

Next, by (3.5) and (1.5), we have that

_Tnot (Gno1 = M)= 1
n=pt(fe1)=o (5) -

so that (y,) is J,-summable. Since (x,) is bounded and not J ,-summable,
it follows that (s,) also has these properties. In addition (s,) is
C,-summable to 0, since x!=o(1). Finally, by (1.3), (s,) is not summable
by any member of I°,. ||

Proof of Theorem 2. For n=1, let

n
V](n) = Ty = IRQ”, and Z,i=T,—

$(n)
$(n) Ho
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Then, by hypothesis (1.10), we have that

1 & n
= 2 (k) zk—o(—ﬂ )>, (3.6)
n = "
from which it follows, by Theorem C, that
Y(n) z, —»0(J,). (3.7)

Further, (3.6) implies that

zn—o(¢(s)2)=o(1), (3.8)

by (1.2) and (1.7). Next, using the notation 4x, := x, — x,,_,, we have that

AW (n) z,) = (n)(z,~ 2, _1) + 2,1 (Y(n) =Y (n—1))
=1t(n) [(r — W @) = ('c,._ +— ¢;n_11))}

+ 2,1 (Y(n) =Y (n—1))
=y(n)(t, —T,_) + mh(n) (%ﬁ%_@)

+ 2z, 1Y (n) =Y (n—1))

Hence
91 A9 () 2,) =5, (2L 2
+z,_19(n) (Y (n) —Y(n—1)). (3.9)
Now
-1 n

and

0<g(n)(y(n)—y(n—1))

n n—1
=0 (565~ 30)
L A (3.11)

S on ogn—1) n—1"
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Therefore, by (3.8), (3.9), (3.10), (3.11), and hypothesis (1.8), we have that

1
A(n[x(n)z,J:O_(——). 3.12
=\ 3m (3.12)
By virtue of a Tauberian theorem for J, [4, see the remark after the
corollary of Theorem 17, it follows from (3 7) and (3.12) that

Y(n)z,=o(1). (3.13)

At this stage it is worth noting that if u=0, then (3.13) and (1.9)

imply that 7,=o0(¢(n)g,), so that the required conclusion follows from
Theorem 1.

Returning to the general case, we deduce from (3.2) that

- Ty i 1 1
"t )g, n+1§ (qk q)
Z,+ pg(n)/n
T Tnt 1)y,
1 gl dN/ 1 1
_n+1k§1<2k+MT)(Qk+1_a)
T (11 ,
1law) G4

As in the proof of Lemma 4,

L’H?(ﬁf
o & koW

and, by (1.5) and (1.7),

1 1 1
——:( i —1)—:0(1).
Fie+1 4k Gi+1 qr

Consequently it follows from (3.13) that

n—1

¢(n Z y(k zkd/(k}i( L —i)=o(1). (3.15)

Gre+1 Gk

Next, by (3.3), (1.11), (3.14), and (3.15), we have that

s;+u:,=o(@),

n
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where

v1.=*#¢(")/”+ /2 "‘16’5("7)( 1 gl)
’ (n+1)‘§In n+1k=1 k Giv1 Gr ’

whence, for n =2,

) =£(¢(”1)_M)=O(L)=g(1)
§ qn n_l h ng, ’

by (3.10) and (1.9). It now follows, by Theorem C and the regularity of the
members of I, that (v,) and (s, +v,)} are summable to 0 by every member
of I',, and therefore so also is (s,). |

REFERENCES

1. D. BorweIN, On products of sequences, J. London Math. Soc. 33 (1958), 352-357.

2. D. BorwEiN aND T. MarkovicH, Weighted means and summability by the circle and
other methods, J. Approx. Theory 68 (1992), 49-55.

3. D. BoRWEIN AND W. KRrATZ, On relations between weighted mean and power series
methods of summability, J. Math. Anal. Appl. 139 (1989}, 178-186.

4, D. BORWEIN AND W, KRATZ, An O-Tauberian theorem and a high indices theorem for
power series methods of summability, Math. Proc. Camb. Phil. Soc., in press.

5. G. H. Harpy, “Divergent Series,” Oxford Univ. Press, London/New York, 1949.

6. R. KieseL, General Norlund transforms and power series methods, Math. Z. 214 (1993),
273-286.

7. W. Kratz anD U, STADTMULLER, O-Tauberian theorems for J, methods with rapidly
increasing weights, J. London Math. Soc. (2) 41 (1990), 489-502.

8. W. Kratz AND U. STADTMULLER, Tauberian theorems for Borel-type methods of
summability, Arch. Math. (Basel) 55 (1990), 465-474.

9. G. G. LorenTz, Direct theorems on methods of summability, Cand. J. Math. 1 (1949),
305-319.

10. W. MotzERr, Dissertation, Universitit Ulm, Germany.

11. M. R. PARAMESWARAN, Logarithmic means and summability by the circle methods, Proc.
Amer. Math. Soc. 52 (1975), 279-281.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium



