Weighted Means and Summability by Generalized Nörlund and Other Methods*

DAVID BORWEIN

Department of Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7

AND

RÜDIGER KIESEL

Abteilung Stochastik, Universität Ulm, D-8906, Ulm/Donau, Germany Submitted by Bruce C. Berndt Received January 4, 1993

It is proved that if the weighted means of a sequence satisfy certain order conditions, then the sequence is summable by every method of a family of methods Γ_ρ based on a given sequence (p_n) . The family Γ_ρ includes the power series method J_ρ and the generalized Nörlund method (N, p, p). © 1994 Academic Press, Inc.

1. Introduction and Main Results

Suppose throughout that (s_n) is a given sequence, and that (q_n) is a sequence of positive numbers. The sequence of weighted means (t_n) is defined by

$$t_n := \frac{1}{Q_n} \sum_{k=0}^n q_k s_k, \quad \text{where} \quad Q_n := \sum_{k=0}^n q_k.$$

The sequence (s_n) is said to be summable to s by the weighted mean method M_q , and we write

$$s_n \to s(M_q)$$
 if $t_n \to s$.

In particular, the Cesàro method C_1 and the logarithmic method l are the

*This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

WEIGHTED MEANS

methods M_q with $q_k = 1$ and $q_k = 1/(k+1)$, respectively. The sequence of C_1 -means of any sequence (x_n) will be denoted by (x_n) , so that

$$x_n^1 = \frac{1}{n+1} \sum_{k=0}^n x_k.$$

Suppose further that (p_n) is a sequence of real non-negative numbers with $p_0 > 0$, and that the power series

$$p(t) := \sum_{n=0}^{\infty} p_n t^n$$

has radius of convergence R > 0. Then the power series method of summability J_p is defined as follows.

$$s_n \to s(J_p)$$
 if

$$p_s(t) := \sum_{n=0}^{\infty} s_n p_n t^n$$

is convergent for |t| < R, and if

$$\sigma_p(t) := \frac{p_s(t)}{p(t)} \to s$$
 as $t \to R - .$

In this note we impose certain smoothness conditions on the sequence (p_n) , namely

$$p_n := e^{-g(n)}$$
 for $n \ge x_0 \in \mathbb{N}$, and $p_n := p_{x_0}$ for $0 \le n \le x_0$, (1.1)

where the function g has the properties

$$\begin{cases} g''(x) \text{ is continuous, positive, and decreasing to } 0 \text{ on } [x_0, \infty), \\ \text{while } x^2 g''(x) \text{ is increasing to } \infty \text{ on } [x_0, \infty). \end{cases}$$
 (C)

Our treatment will cover both Abel-type $(R < \infty)$ and Borel-type $(R = \infty)$ methods. In particular it will include the Borel-type method (B, α, β) , $\alpha > 0$, for which $g(x) = \log \Gamma(\alpha x + \beta)$.

By [5, Theorem 5], the J_p method is regular when $R = \infty$, that is, $s_n \to s$ implies $s_n \to s(J_p)$. Suppose, therefore, that $R < \infty$. Then, by (1.1) and (C), we have that g'(x) increases and tends to ρ (say) as $x \to \infty$, and consequently that $g(n)/n \to \rho$ as $n \to \infty$. It follows, by the nth root test, that $R = e^{\rho}$, and hence that $g(n) - g(x_0) \le n \log R$ for $n \ge x_0$, whence

$$\sum_{n=0}^{\infty} p_n R^n \geqslant \sum_{n=x_0}^{\infty} R^{-n} R^n e^{-g(x_0)} = \infty.$$

Thus, by [5, Theorem 5], J_p is also regular when $R < \infty$.

We define a function ϕ by

$$\phi(x) := \frac{1}{\sqrt{g''(x)}} \text{ for } x \geqslant x_0, \quad \text{and} \quad \phi(x) := \phi(x_0) \text{ for } 0 \leqslant x \leqslant x_0.$$
(1.2)

We also consider the scale of generalized Nörlund summability methods $(N, p^{*\alpha}, p)$, $\alpha = 1, 2, ...$, defined as (see [1, 6])

$$s_n \to s(N, p^{*\alpha}, p)$$
 if $\sigma_n^{\alpha} := \frac{1}{p_n^{*(\alpha+1)}} \sum_{k=0}^n p_{n-k}^{*\alpha} p_k s_k \to s$ as $n \to \infty$,

where

$$p_n^{*1} := p_n$$
, and $p_n^{*(\alpha+1)} := \sum_{k=0}^{\infty} p_{n-k}^{*\alpha} p_k > 0$.

Let Γ_p denote the family of all the methods $(N, p^{*\alpha}, p)$ together with J_p . It is known [6, Theorem 1] that

$$(N, p^{*\alpha}, p) \subseteq (N, p^{*\beta}, p) \subseteq J_p$$
 for $\alpha < \beta$, $\alpha, \beta \in \mathbb{N}$, (1.3)

that is, the methods in (1.3) increase in strength from left to right. It follows from (1.3) and the regularity of J_p that all the methods in Γ_p are regular when (1.1) and (C) hold. The most familiar family Γ_p is generated by $p_n = 1/n! = e^{-\log \Gamma(n+1)}$. In this family J_p is the Borel method B, and $(N, p^{*\alpha}, p)$ is the Euler-Knopp method $E_{(\alpha-1)/\alpha}$ for which $\sigma_n^{\alpha} = (1/\alpha^n) \sum_{k=0}^n \binom{k}{k} (\alpha-1)^k s_k$.

In general C_1 -summability does not imply summability by any member of Γ_p . However, the following result, which we prove in Section 3, shows that C_1 -summability together with an order condition does imply summability by every member of Γ_p .

THEOREM C. Suppose that the sequence (p_n) is given by (1.1) with g satisfying (C), and that

$$s_n^1 = s + o\left(\frac{\phi(n)}{n}\right),$$

where ϕ is given by (1.2). Then (s_n) is summable to s by every member of Γ_p .

This theorem has been proved ([6, Theorem 2]; see also [10]) for a sequence (p_n) such that $p_n \sim e^{-g(n)}$ and p_n/p_{n+1} is non-decreasing, with g

WEIGHTED MEANS

satisfying (C). The special case $p_n = 1/n!$, for which $\phi(n)/n \sim 1/\sqrt{n}$, is a classical result of Knopp's (see [5, Theorem 149]).

We also establish the following two theorems.

THEOREM 1. Suppose that the sequence (p_n) is given by (1.1) with g satisfying (C), and in addition

$$x^{\varepsilon}g''(x)$$
 is decreasing on $\lceil x_0, \infty \rceil$ for some $\varepsilon > 0$. (1.4)

Suppose also that

$$\frac{q_{n-1}}{q_n} = 1 + O(n^{-1}) \tag{1.5}$$

and

$$t_n = s + \frac{\mu}{Q_n} + o\left(\frac{\phi(n) \, q_n}{Q_n}\right),\tag{1.6}$$

where s and μ are constants.

Then (i) (s_n) is summable to s by every member of Γ_p (and by C_1).

Moreover, (ii) "o" cannot be replaced by "O" in (1.6).

Indeed, (iii) there exists a C_1 -summable bounded sequence (s_n) which is not summable by any member of Γ_p and which satisfies

$$t_n = O\left(\frac{\phi(n) \ q_n}{Q_n}\right).$$

Theorem 1 generalizes [2, Theorem 1 which deals with $p_n=1/n!$], which in turn generalized [11, Theorem 1 which deals with $p_n=1/n!$, $q_n=1/(n+1)$]. Theorem 1 shows that M_q -summability together with an order condition implies summability by every member of Γ_p and that the order condition is best possible in a strong sense.

Theorem 2. Suppose that the sequence (p_n) is given by (1.1) with g satisfying (C), (1.5), and in addition

$$\lim\inf ng''(n) > 0. \tag{1.7}$$

Suppose also that condition (1.4) holds, and that

$$nq_n s_n = O_L(1), \tag{1.8}$$

$$\frac{1}{nq_n} = O(1),\tag{1.9}$$

and

$$\frac{1}{n} \sum_{k=0}^{n} \frac{k}{\phi(k)} t_k Q_k = \mu + o\left(\frac{\phi(n)}{n}\right), \tag{1.10}$$

where μ is a constant. Then (s_n) is summable to 0 by every member of Γ_p .

The notation $x_n = O_L(1)$ signifies, as usual, that $\liminf x_n > -\infty$. Theorem 2 generalizes [2, Theorem 2 which deals with $p_n = 1/n!$], which in turn generalized [11, Theorem 2 which deals with $p_n = 1/n!$, $q_n = 1(n+1)$].

2. Preliminary Results

In all that follows we assume that

$$p_n := e^{-g(n)}$$
 for $x_0 \le n \in \mathbb{N}$,

and define

$$p_x := e^{-g(x)}$$
 for $x \ge x_0$, and $p_x := p_{x_0}$ for $0 \le x \le x_0$,

even when x is not an integer.

LEMMA 1. Suppose that the sequence (p_n) is given by (1.1) with g satisfying (C). Then

(i) $p_{n-x}p_x \leqslant p_{n-x-1}p_{x+1}$ for $0 \leqslant x \leqslant \frac{1}{2}n-1$, and $\max_{0 \leqslant x \leqslant n} p_{n-x}p_x = p_{n/2}^2$, and

(ii)
$$p_n^{*2} \sim \sqrt{\pi} \phi(n/2) p_{n/2}^2$$
.

Proof. (i) Since g''(x) > 0 for $x \ge x_0$, we have that

$$\frac{d}{dx}(p_{n-x}p_x) = p_{n-x}p_x(g'(n-x) - g'(x))$$

is positive for $x_0 \le x < \frac{1}{2}n$ and negative for $x_0 \le \frac{1}{2}n < x \le n - x_0$. The desired conclusions follow.

(ii) It follows from the monotonicity of g''(x) and $x^2g''(x)$ that if $x_0 \le \frac{3}{4}x \le t \le x$, then

$$0 \leqslant \frac{g''(t)}{g''(x)} - 1 = \frac{t^2 g''(t)}{x^2 g''(x)} \cdot \frac{x^2}{t^2} - 1 \leqslant \frac{x^2}{t^2} - 1 \leqslant \frac{28}{9} \cdot \frac{x - t}{x},$$

while if $x_0 \le x \le t \le \frac{5}{4}x$, then

$$0 \leqslant 1 - \frac{g''(t)}{g''(x)} = 1 - \frac{t^2 g''(t)}{x^2 g''(x)} \cdot \frac{x^2}{t^2} \leqslant 1 - \frac{x^2}{t^2} \leqslant 1 - \frac{x^2}{t^2} \leqslant \frac{45}{16} \cdot \frac{t - x}{x}.$$

WEIGHTED MEANS

Hence

$$\left| \frac{g''(t)}{g''(x)} - 1 \right| \le 4 \frac{|t - x|}{x} \quad \text{whenever} \quad x, t \ge x_0 \text{ and } |t - x| \le \frac{x}{4}. \quad (2.1)$$

Further, for $x_0 \leqslant x \leqslant \frac{1}{2}n$,

$$\frac{p_{n-x}p_x}{p_{n/2}^2} = e^{-h(n,x)}, \quad \text{where} \quad h(n,x) := g(n-x) - 2g(n/2) + g(x). \tag{2.2}$$

By the second mean value theorem, we have

$$h(n, x) = (x - n/2)^2 g''(\xi)$$
 with $x_0 \le x \le \xi \le n - x$. (2.3)

In view of (2.1), (2.2), and (2.3), and since $\phi(n/2) \to \infty$, we can now apply standard techniques (as in [3, 6, 7, 8]) to obtain

$$\frac{p_n^{*2}}{p_{n/2}^2} = \int_{3n/8}^{5n/8} e^{-h(n,x)} dx + o(\phi(n/2))$$

$$= \int_{3n/8}^{5n/8} e^{-(x-n/2)^2 g''(n/2)} dx + o(\phi(n/2))$$

$$= \int_{-\infty}^{\infty} e^{-(x-n/2)^2 g''(n/2)} dx + o(\phi(n/2))$$

$$= \sqrt{\pi} \phi(n/2)(1+o(1)) \quad \text{as} \quad n \to \infty.$$

LEMMA 2. Suppose that the sequence (p_n) is given by (1.1) with g satisfying (C). Let

$$\begin{cases} \Delta_n := p(u_n) u_n^{-n}, & \text{with} \\ u_n := e^{g'(n)} & \text{for } n \geqslant x_0, & \text{and} & u_n := u_{x_0} & \text{for } 0 \leqslant n \leqslant x_0. \end{cases}$$
 (2.4)

Then

- (i) $u_{n+1} \geqslant u_n$, and $u_n \to R$;
- (ii) $p(u_n) = \sqrt{2\pi} \phi(n) e^{-g(n) + ng'(n)} (1 + o(1));$ and
- (iii) for every $\delta > 0$ there is an $n_0 \in \mathbb{N}$ such that

$$\sum_{n < v \leq n + \delta\phi(n)} \frac{p_v}{\Delta_v} \ge \frac{\delta}{4\sqrt{2\pi}} \quad \text{for} \quad n \ge n_0.$$

Proof. (i) This follows from (2.4) since g'(n) increases for $n \ge x_0$ and (as in the proof of the regularity of J_n in Section 1) $e^{g'(n)} \to R$.

(ii) This is an immediate consequence of [4, Lemma 2].

(iii) It follows from (ii) that, for n sufficiently large,

$$\sum_{n < v \leq n + \delta\phi(n)} \frac{p_v}{\Delta_v} \ge \frac{1}{2\sqrt{2\pi}} \sum_{n < v \leq n + \delta\phi(n)} \frac{v}{\phi(v)} \cdot \frac{1}{v}$$
$$\ge \frac{\delta\phi(n)}{2\sqrt{2\pi}} \cdot \frac{n}{\phi(n)} \cdot \frac{1}{n + \delta\phi(n)} \ge \frac{\delta}{4\sqrt{2\pi}},$$

since $\phi(n)/n$ decreases to 0.

For the purposes of the next lemma we recall the following definition given by Lorentz [9].

DEFINITION. The characteristic function $\omega(n)$ of a (finite or infinite) sequence $n_1 < n_2 < \cdots$ of positive integers is defined for all $n \ge 0$ as the number of n_v satisfying the inequality $n_v \le n$.

Let $\Omega(n)$ be a positive non-decreasing function defined for $n \ge 0$ and tending to ∞ as $n \to \infty$. For any such function the class $\Theta_1(\Omega)$ consists of all real bounded sequences (s_n) for which the set of indices $n_1 < n_2 < \cdots$ with non-vanishing s_n has characteristic function $\omega(n) \le \Omega(n)$. The class $\Theta_2(n)$ consists of all real sequences (s_n) such that the sums $s_0 + s_1 + \cdots + s_n = O(\Omega(n))$.

The function $\Omega(n)$ is a summability function of the first or second kind for a summability method P, if all sequences in $\Theta_1(\Omega)$ or $\Theta_2(\Omega)$, respectively, are P-summable.

LEMMA 3. Suppose that the sequence (p_n) is given by (1.1) with g satisfying (C), and that $\Omega(n) \neq o(\phi(n))$. Then $\Omega(n)$ is not a summability function of either kind for J_p .

Proof. We consider the regular summability method P defined as

$$s_n \to s(P)$$
 if $\frac{1}{p(u_n)} \sum_{\nu=0}^{\infty} u_n^{\nu} p_{\nu} s_{\nu} \to s$ as $n \to \infty$,

where u_n is given by (2.4). Then $J_p \subseteq P$.

Let $A(m; \Omega)$ denote the least upper bound of

$$\frac{1}{p(u_m)}\sum_{v=0}^{\infty}u_m^{n_v}p_{n_v}$$

for all sequences (n_v) with $\omega(n) \leq \Omega(n)$. Since $\Omega(m) \neq o(\phi(m))$ there exists a $\delta > 0$ such that $\Omega(m) \geq \delta \phi(m)$ for an infinite set \mathbb{M} of positive integers m. Hence, using first part (ii) and then part (iii) of Lemma 2, we obtain, for all sufficiently large $m \in \mathbb{M}$,

$$\begin{split} &A(m,\Omega) \\ &\geqslant \frac{1}{p(u_m)} \sum_{m < v \leqslant m + \delta\phi(m)} u_m^v p_v \\ &= \sum_{m < v \leqslant m + \delta\phi(m)} \frac{p_v}{\Delta_v} \cdot \frac{p(u_v) u_m^v}{p(u_m) u_v^v} \\ &\geqslant \frac{1}{2} \sum_{m < v \leqslant m + \delta\phi(m)} \frac{p_v}{\Delta_v} \cdot \frac{\phi(v)}{\phi(m)} e^{g(m) - g(v) + (v - m)g'(m)} \\ &= \frac{1}{2} \sum_{m < v \leqslant m + \delta\phi(m)} \frac{p_v}{\Delta_v} \cdot \frac{\phi(v)}{\phi(m)} e^{-(v - m)^2 g''(\xi)/2} \qquad (m \leqslant \xi \leqslant m + \delta\phi(m)) \\ &\geqslant \frac{1}{2} e^{-\delta^2 g''(\xi)/2g''(m)} \sum_{m < v \leqslant m + \delta\phi(m)} \frac{p_v}{\Delta_v} \\ &\geqslant \frac{\delta}{8\sqrt{2\pi}} e^{-\delta^2/2} > 0. \end{split}$$

Hence, by [9, Theorem 1], $\Omega(n)$ is not a summability function of the first kind for P, and thus also not a summability function of the first kind for J_p . Further, since a summability function of the second kind is also a summability function of the first kind for J_p , $\Omega(n)$ cannot be a summability function of the second kind for J_p either.

3. Proofs of the Main Results

Proof of Theorem C (cf. [6, Theorem 2]). In view of (1.3) it suffices to prove that $s_n \to s(N, p, p)$, and because of regularity and linearity of this method we can suppose that s = 0. Thus our hypothesis becomes

$$S_n := \sum_{k=0}^n s_k = o(\phi(n)).$$

Let $\varepsilon > 0$ be given. Then there is an $m \in \mathbb{N}$ such that $|S_n| < \varepsilon \phi(n)$ for $n \ge m$. By Abel partial summation we have, for $n \ge m$,

$$\begin{split} \sigma_n &:= \frac{1}{p_n^{*2}} \sum_{k=0}^n p_{n-k} p_k s_k \\ &= \frac{1}{p_n^{*2}} \sum_{k=0}^n S_k (p_{n-k} p_k - p_{n-k-1} p_{k+1}) \qquad (p_{-1} := 0) \\ &= \frac{1}{p_n^{*2}} \left(\sum_{k=0}^{m-1} + \sum_{k=m}^n \right) S_k (p_{n-k} p_k - p_{n-k-1} p_{k+1}) =: \Sigma_1 + \Sigma_2. \end{split}$$

Since m is fixed, it follows from the regularity of (N, p, p) that $\Sigma_1 \to 0$ as $n \to \infty$ [5, Theorem 2]. Next, we have, by first applying part (i) of Lemma 1 and then part (ii), that, as $n \to \infty$,

$$\begin{split} |\varSigma_{2}| &\leqslant \frac{\varepsilon \phi(n)}{p_{n}^{*2}} \sum_{k=0}^{n} |p_{n-k} p_{k} - p_{n-k-1} p_{k+1}| \\ &\leqslant \frac{\varepsilon \phi(n)}{p_{n}^{*2}} 2p_{n/2}^{2} \sim \frac{2\varepsilon \phi(n)}{\sqrt{\pi} \phi(n/2)} \\ &= \frac{2\varepsilon n}{\sqrt{\pi} \phi(n/2)} \frac{\phi(n)}{n} \leqslant \frac{4\varepsilon}{\sqrt{\pi}}, \end{split}$$

since $\phi(n)/n$ decreases. Hence $\limsup |\sigma_n| \le 4\varepsilon/\sqrt{\pi}$, and therefore $\sigma_n \to 0$.

Part (i) of Theorem 1 is an immediate consequence of Theorem C and the following lemma.

Lemma 4. Suppose that the hypotheses of Theorem 1 hold. Then $s_n^1 = s + o(\phi(n)/n)$.

Proof. We may suppose the s = 0. Let

$$\tau_n := t_n Q_n,$$
 so that $\tau_n - \mu = o(\phi(n) q_n)$ (3.1)

by (1.6).

Then, for $n \ge 1$,

$$s_n = \frac{\tau_n - \mu}{q_n} - \frac{\tau_{n-1} - \mu}{q_{n-1}} - (\tau_{n-1} - \mu) \left(\frac{1}{q_n} - \frac{1}{q_{n-1}} \right),$$

so that

$$\sum_{k=0}^{n} s_{k} = \frac{\tau_{n} - \mu}{q_{n}} - \sum_{k=1}^{n} (\tau_{k-1} - \mu) \left(\frac{1}{q_{k}} - \frac{1}{q_{k-1}} \right) + \frac{\mu}{q_{0}}$$
 (3.2)

and so

$$s_n^1 = o\left(\frac{\phi(n)}{n}\right) - \frac{1}{n+1} \sum_{k=1}^n (\tau_{k-1} - \mu) \left(\frac{1}{q_k} - \frac{1}{q_{k-1}}\right). \tag{3.3}$$

Next, by (3.1), we have that $\tau_k = \mu + \varepsilon_k \phi(k) q_k$ where $\varepsilon_k \to 0$. Hence, by (1.4) and (1.5), we get that

$$\sum_{k=1}^{n} (\tau_{k-1} - \mu) \left(\frac{1}{q_k} - \frac{1}{q_{k-1}} \right)$$

$$= \sum_{k=1}^{n} \varepsilon_{k-1} \frac{\phi(k-1)}{k} \left(\frac{q_{k-1}}{q_k} - 1 \right) k = o(\phi(n)), \tag{3.4}$$

the final order relation being justified since $(q_{k-1}/q_k-1)k = O(1)$ and, for some $\varepsilon \in (0, 1)$, $x^{-\varepsilon}\phi(x)$ increases for $x \ge x_0$, so that, for $n > x_0$,

$$\sum_{k=x_0}^{n} \frac{\phi(k-1)}{k} \le \sum_{k=x_0}^{n} \frac{\phi(k)}{k} \le n^{-\varepsilon} \phi(n) \sum_{k=x_0}^{n} k^{\varepsilon-1} = O(\phi(n)).$$

It follows from (3.3) and (3.4) that $s_n^1 = o(\phi(n)/n)$.

Proof of Theorem 1. As stated above part (i) follows from Lemma 4 and Theorem C. To prove parts (ii) and (iii) we observe that, by Lemma 3, there exists a bounded sequence (x_n) satisfying $x_n^1 = O(\phi(n)/n)$ which is not J_p -summable. We now define (s_n) so that

$$\tau_n := t_n Q_n = (n+1) q_n x_n^1$$
.

Then

$$\tau_n = O(\phi(n) \, q_n). \tag{3.5}$$

It follows from (3.1) with $\mu = 0$ that

$$s_n^1 = x_n^1 - y_n^1$$
, where $y_n := \tau_{n-1} \left(\frac{1}{q_n} - \frac{1}{q_{n-1}} \right)$ for $n \ge 1$ and $y_0 := 0$,

and so

$$s_n = x_n - y_n.$$

Next, by (3.5) and (1.5), we have that

$$y_n = \frac{\tau_{n-1}}{q_{n-1}} \left(\frac{q_{n-1}}{q_n} - 1 \right) = O\left(\frac{\phi(n)}{n} \right) = o(1),$$

so that (y_n) is J_p -summable. Since (x_n) is bounded and not J_p -summable, it follows that (s_n) also has these properties. In addition (s_n) is C_1 -summable to 0, since $x_n^1 = o(1)$. Finally, by (1.3), (s_n) is not summable by any member of Γ_p .

Proof of Theorem 2. For $n \ge 1$, let

$$\psi(n) := \frac{n}{\phi(n)}, \quad \tau_n := t_n Q_n, \quad \text{and} \quad z_n := \tau_n - \mu \frac{\phi(n)}{n}.$$

Then, by hypothesis (1.10), we have that

$$\frac{1}{n} \sum_{k=1}^{n} \psi(k) z_k = o\left(\frac{\phi(n)}{n}\right), \tag{3.6}$$

from which it follows, by Theorem C, that

$$\psi(n) z_n \to 0(J_p). \tag{3.7}$$

Further, (3.6) implies that

$$z_n = o\left(\frac{\phi(n)^2}{n}\right) = o(1),\tag{3.8}$$

by (1.2) and (1.7). Next, using the notation $\Delta x_n := x_n - x_{n-1}$, we have that

$$\begin{split} \varDelta(\psi(n)\,z_n) &= \psi(n)(z_n - z_{n-1}) + z_{n-1}(\psi(n) - \psi(n-1)) \\ &= \psi(n) \left[\left(\tau_n - \mu \frac{\phi(n)}{n} \right) - \left(\tau_{n-1} - \mu \frac{\phi(n-1)}{n-1} \right) \right] \\ &+ z_{n-1}(\psi(n) - \psi(n-1)) \\ &= \psi(n)(\tau_n - \tau_{n-1}) + \mu \psi(n) \left(\frac{\phi(n-1)}{n-1} - \frac{\phi(n)}{n} \right) \\ &+ z_{n-1}(\psi(n) - \psi(n-1)). \end{split}$$

Hence

$$\phi(n) \Delta(\psi(n) z_n) = nq_n s_n + \mu n \left(\frac{\phi(n-1)}{n-1} - \frac{\phi(n)}{n} \right) + z_{n-1} \phi(n) (\psi(n) - \psi(n-1)).$$
(3.9)

Now

$$0 \le n \left(\frac{\phi(n-1)}{n-1} - \frac{\phi(n)}{n} \right) \le n\phi(n) \left(\frac{1}{n-1} - \frac{1}{n} \right) = \frac{\phi(n)}{n-1} = o(1), \quad (3.10)$$

and

$$0 \leq \phi(n)(\psi(n) - \psi(n-1))$$

$$= \phi(n) \left(\frac{n}{\phi(n)} - \frac{n-1}{\phi(n-1)}\right)$$

$$\leq \frac{\phi(n)}{n} \frac{n}{\phi(n-1)} \leq \frac{n}{n-1} \leq 2. \tag{3.11}$$

Therefore, by (3.8), (3.9), (3.10), (3.11), and hypothesis (1.8), we have that

$$\Delta(\psi(n) z_n) = O_L\left(\frac{1}{\phi(n)}\right). \tag{3.12}$$

By virtue of a Tauberian theorem for J_p [4, see the remark after the corollary of Theorem 1], it follows from (3.7) and (3.12) that

$$\psi(n) z_n = o(1). (3.13)$$

At this stage it is worth noting that if $\mu = 0$, then (3.13) and (1.9) imply that $\tau_n = o(\phi(n) q_n)$, so that the required conclusion follows from Theorem 1.

Returning to the general case, we deduce from (3.2) that

$$s_{n}^{1} = \frac{\tau_{n}}{(n+1) q_{n}} - \frac{1}{n+1} \sum_{k=1}^{n} \tau_{k-1} \left(\frac{1}{q_{k}} - \frac{1}{q_{k-1}} \right)$$

$$= \frac{z_{n} + \mu \phi(n)/n}{(n+1) q_{n}}$$

$$- \frac{1}{n+1} \sum_{k=1}^{n-1} \left(z_{k} + \mu \frac{\phi(k)}{k} \right) \left(\frac{1}{q_{k+1}} - \frac{1}{q_{k}} \right)$$

$$- \frac{\tau_{0}}{n+1} \left(\frac{1}{q_{1}} - \frac{1}{q_{0}} \right). \tag{3.14}$$

As in the proof of Lemma 4,

$$\frac{1}{\phi(n)} \sum_{k=1}^{n-1} \frac{\phi(k)}{k} = O(1),$$

and, by (1.5) and (1.7),

$$\frac{1}{q_{k+1}} - \frac{1}{q_k} = \left(\frac{q_k}{q_{k+1}} - 1\right) \frac{1}{q_k} = O(1).$$

Consequently it follows from (3.13) that

$$\frac{1}{\phi(n)} \sum_{k=1}^{n-1} \psi(k) z_k \psi(k)^{-1} \left(\frac{1}{q_{k+1}} - \frac{1}{q_k} \right) = o(1).$$
 (3.15)

Next, by (3.3), (1.11), (3.14), and (3.15), we have that

$$s_n^1 + v_n^1 = o\left(\frac{\phi(n)}{n}\right),$$

$$v_n^1 := \frac{-\mu\phi(n)/n}{(n+1)\ q_n} + \frac{\mu}{n+1} \sum_{k=1}^{n-1} \frac{\phi(k)}{k} \left(\frac{1}{q_{k+1}} - \frac{1}{q_k} \right),$$

whence, for $n \ge 2$,

where

$$v_n = \frac{\mu}{q_n} \left(\frac{\phi(n-1)}{n-1} - \frac{\phi(n)}{n} \right) = o\left(\frac{1}{nq_n} \right) = o(1),$$

by (3.10) and (1.9). It now follows, by Theorem C and the regularity of the members of Γ_p , that (v_n) and $(s_n + v_n)$ are summable to 0 by every member of Γ_n , and therefore so also is (s_n) .

REFERENCES

- 1. D. Borwein, On products of sequences, J. London Math. Soc. 33 (1958), 352-357.
- 2. D. BORWEIN AND T. MARKOVICH, Weighted means and summability by the circle and other methods, J. Approx. Theory 68 (1992), 49-55.
- 3. D. BORWEIN AND W. KRATZ, On relations between weighted mean and power series methods of summability, J. Math. Anal. Appl. 139 (1989), 178-186.
- 4. D. BORWEIN AND W. KRATZ, An O-Tauberian theorem and a high indices theorem for power series methods of summability, Math. Proc. Camb. Phil. Soc., in press.
- 5. G. H. HARDY, "Divergent Series," Oxford Univ. Press, London/New York, 1949.
- 6. R. Kiesel, General Nörlund transforms and power series methods, Math. Z. 214 (1993),
- 7. W. Kratz and U. Stadtmüller, O-Tauberian theorems for J_n methods with rapidly increasing weights, J. London Math. Soc. (2) 41 (1990), 489-502.
- 8. W. Kratz and U. Stadtmüller, Tauberian theorems for Borel-type methods of summability, Arch. Math. (Basel) 55 (1990), 465-474.
- 9. G. G. LORENTZ, Direct theorems on methods of summability, Cand. J. Math. 1 (1949). 305-319.
- 10. W. MOTZER, Dissertation, Universität Ulm, Germany.
- 11. M. R. PARAMESWARAN, Logarithmic means and summability by the circle methods, Proc. Amer. Math. Soc. 52 (1975), 279-281.