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Abstract
We improve known Tauberian results concerning the power series method of
summability J, based on the sequence {p,} by removing the condition that p, be
asymptotically logarithmico-exponential. We also prove an entirely new Tauberian
result for rapidly decreasing p,,.

1. Introduction

Suppose throughout that {p,} is a sequence of non-negative numbers, and that the

power series w0
p(t) = X put*
k=0

has non-zero radius of convergence R. Let {a,} be a sequence of complex numbers,
and let s, =3} ,a,. The power series method .J, is defined as follows:

s,—>38(J,) if X p, s, t* is convergent for |f < R,
k=0

and a,(t) =mk§0pk st >
as t— R — through real values.

In this note we present a unified treatment of J,-methods generated by ‘smooth’
sequences {p,}. We deal with both so-called ‘Abel-type’ (R < o0) and ‘Borel-type’
(B = c0) methods. Although the Abel method itself (p, = 1) is not included, the
assumptions cover all smooth sequences {p,} with p, growing faster than some
positive power of n. The Abel method could be treated similarly, but methods like
the logarithmic method 1

P =T
require another technique (see [9]).

* This research was supported in part by the Natural Sciences and Engineering Research
Council of Canada.



366 DavipD BoRWEIN AND WERNER KraTZ

We prove two theorems (Theorems 1 and 2 below) concerning Tauberian
conditions on {s,} under which s, —+s(J,) implies s, »s. For the sake of clarity we
describe, in this introduction, the following local version of Theorem 1:

If p,, ~ 9™ with the function g such that, for sufficiently large z, g"(x) is continuous,
posttive and decreasing while x%g" (x) is increasing; and if a, = s, —38,_, = O(+/g"(n)),
and s, s(.J,), then s, —s.

This was known for logarithmico-exponential functions ¢ (see [2, 4, 7, 8, 10]) with
g”(x)+0 as x> co. Theorem 2, our new ‘high indices’ theorem, shows that when
liminf,  _ ¢"(x) > 0 a version of the above result holds without any monotonicity
conditions on ¢”(x). A corollary of this theorem is that if ¢”(z) is ultimately monotonic
and greater than some positive constant, then the Tauberian condition on a, can be
weakened to a, = O(e? ™/3),

2. The O-Tauberian theorem

In this section we prove the following Tauberian result.

TaroreM 1. Suppose that the real function g satisfies the following condition:

©) [ geUy[z,, oo) for some xy€ N, g" () is posilive and decreasing,

1 and G(x) = x%9"(x) s increasing on [y, 00).
Let p, ~ e 9™ aqs n— 0, and let l(x) = 1/4/9"(x). Then

lim w(e) =0 with w(e) =limsup max |5, —8,/ (1)
e—+0+ N—>00 n<m<ntel{n)

and s, —s8(J,) imply that s, —s.

Proof. If lim,_, _g"(x) = 8 > 0, then I(n) > &% < o0 and condition (1) reduces to
w1 = 0(1); the required conclusion follows from Theorem 2 below (or
from the o-result [8], corollary 1).

Suppose lim,_  G(x) = § < 0. Then, as z—> o0,

a, =8,—8

T—o

g'(x) > < o0, and so a{n—g'(2)} = xf”%

T

dt— 6.

Hence ¢ 9 = ¢ ""n’L(n) where L is a slowly varying function, since, for each

A=,
A% Lo BN e
LQx):exp(J dtf Mdu)»l as x> 0.
(IJ) T t Y

L

Moreover, I(n) ~ nd~%, and (1) reduces to the well-known Tauberian condition

lim limsup max |[s,,,;—8,l =0,
A=l+ nooo nE<mM<An

which yields the required conclusion (see e.g. [10] and condition (1-5") on p. 490 of [7]
and the references there quoted).
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Hence we may assume that
g”({L‘) -0 and G((L‘) = ng”(x)—> oo as x—-00. (2)

In this case we can proceed along the same lines as in the proofs in [7], p. 500 and
[8], p- 472, but use only condition (C) instead of the more restrictive conditions
involving logarithmico-exponential functions of those proofs. The detailed asymp-
totic results required for the following proof are derived in Section 4 below. Let

oo
at)= 3 evBi.
=,
Then the radius of convergence of this power series is R = ¢7, where

—o0 <= lim¢'(x) < co.
Since p,, ~ ¢ 7™, the power series for p(t) has the same radius of convergence, and (in
much the same way as in [1]) we obtain from Lemma 2 in Section 4 below that

A, = inf p@t)t ™ =p(t,) " with ¢, 7R
O<t<R
satisfies

A . 2m . : 2m
T o9 inf J”_e—g(u)+ug(u)ng (u) N\/ - = 2m) l(n) — o0,
7w 7 Y B

pﬂ U>T,

€
Pe_,

and hence :
n<k<ntel(n) A, (2m)

as m— 00.
We introduce a complex parameter a with # = Rea > 0, and consider the following
expressions:

o0 o
g ()= X eIk = 3 9By (a)t* with p,(x) = 12000

k=, k=x,

1 o0
3 86007, (@),

Ta(e) =T and fle) =
a\ln k=x,

where {s,} is the given sequence of complex numbers satisfying condition (1) and
$p > 3(Jy). Then, by [7], lemma 1 and [8], Lemma 4 (with A = e¢+1,1(n, A) = €l(n),
¢ = +/(2m), we have the basic inequality

limsup|s, —f,(2)] < w(e) +@«/2§ forreal a > 0,¢>0, (3)
=00
Since ¢(a) - hm ga(Tn(a))Tn(a}in — L

by Lemma 2. Moreover, the above quoted results with y, =1, 7, =t,, ¢ =1, and
€= 1 reduce to

limsup|s, —o,(t,)| < (1) (1++/(27) < 0. (37

n—ao0
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Since o,(,) s, the sequence {s,} is bounded, and then p, ~ ¢ ™ implies that

8, > 8(Jy), 1.e. o (t)>s as t—>R—. By Lemma 2, we have that

_ o0 Rl*ﬂ
paler) ~ pix(e) = J(IQT“)I Vg (1) el ot A0 gy = f u* dy, ()
Zy 0

for 0 <o <1, where y,(u) is non-decreasing (use the substitution u = ¢1=2¢®),

Thus, for 0 < a < 1, {g¥(«)} is a ‘moment sequence’.
Suppose next that, for 0 <a < 1,

3 =g*t) = 3 eOu¥(a),

k=x,

and note that the radius of convergence of the power series is B*. Let ¢ be an arbitrary
positive number. Since s, — $(J,), there is a positive £, < R such that |o(t)—s| < € for

ty, <t < R. Hence, for some C >0, and B*%t; < i< R?,

e \ :

o S O (a) (5, — o) 1

D

1

Rl &
< f o (t6) — o ) iy o)

], et
<ot ﬁ) lorg(tee) — sl q(tw) dx, (w)

qlty)
0=

q(t)
the change of order of summation and integration implicit in the first inequality
being justified because s, —s = O(1) implies that

< e+ € as t—>R*—

o) Rl—a
> e W®g, —g t"f w®dy,(u) < oo.

k=xz, 0

Hence s, = s(Jx) for 0 < o < 1 (cf. [8], lemma 6). Since uk(x) ~ p,(a), s, = O(1), and
Talot) > R*— as n—> 00, it follows that

limf (x) =5 for O0<a<l. (4)

n—>co

Finally, for C' = sup,, 4|s,| < o0, and a complex with §:=Rea > 0, we have

Ifu(a) € C 947 (£)) gcj(g)w
i ¢u(Tp () 1+R, ,(n)’

where, by Lemma 2, R, ,(n) and R, ,(n) tend uniformly to 0 on compact subsets of
the half-plane Rea > 0 as n— oo. Hence, the functions in the sequence {f, (x)} are
holomorphic and uniformly bounded on compact subsets of some region U > (0, c0).
Therefore, by (3), (4), and Vitali’s theorem (see [11], theorem 5:2-1),

. 2
limsupls, —s < ()+% g forall a«>0,¢>0.

N—>00
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Letting a— o0 and then e—»0+, we deduce from this and assumption (1) that
hmn»»oo Hp, = 8.

A direct consequence of this theorem and of Theorem 2 (in the case that g”(x) does

not tend to 0 as x— co) is the following local result.

CoROLLARY. Suppose that the function g satisfies (C), and that p, ~ e 9™ If
Uy = 8p— 8,1 = O(\/g"(n)) and s, —s(J), then s, —s.

Remark. For real sequences {s,,}, the statement of Theorem 1 remains true when
assumption (1) is replaced by the corresponding one-sided Tauberian condition. Thig
follows essentially from [5], theorem 1 or [6], Satz 3-2 where the boundedness of
{s,} is derived from the one-sided condition via a technique due to Vijayaraghavan

(see [3]).

3. The high indices theorem
In this section we prove the following ‘high indices’ result to supplement Theorem 1.
THEOREM 2. Suppose that the real function g satisfies the following condition :
(H) g€ Cylx,y, ) for some xyeN, and ¢"(x) = § > 0 on [x,, 0).
Let p, ~ e 9™ ag n— o0, and let
A, = min (e*», ef») where 1
= gm)—gln—1) =g (n—1), f, = gln—1)—g(n)+¢'().]
Then o, =3,—8,_; =

O(A,) and s, —s(J,) vmply that s, —s.

D

Remarks. (1) Observe that

an=fn (n—u)g"(w)du, ﬁﬁjn (w—n+1)g"(w)du for n>n,  (6)

=1 -1

and hence that

< 4§ min ¢"(v) < min (a,,, §,) < max («,, 5,) <3 max ¢"(u).

[r—1,n] [n—1,n]

(SR~

Thus, if ¢” is monotonic, then a, = 0(4,) reduces to a, = O ™/%). Of course,
a, = O(1) always implies a,, = ((4,) without any additional monotonicity condition.

(1) Next, condition (H) implies that the radius of convergence for the J,-method
under consideration is o0, and also that 1 <A, /p, = O(1) where A, = inf,_ ,p(¢)~
by [8], remark 5(iii) or by estimates similar to those developed below. Moreover,
the limitation result [1], theorem L2 yields that, subject to (H) holding, s, >3
whenever s, > 0 and s, - s(J,). Thus, when (H) holds, the J,-method is equivalent to
convergence for real non-negative sequences, and this underlies the use of the
terminology ‘high indices’ to describe Theorem 2. This equivalence to convergence,
however, does not hold for oscillating sequences; e.g.

[—1)"
nlp,
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e—t

is unbounded, but o,(t) = m—)—() as t— 00
50 that s, =~ 0(J,).
We use the following lemma in the proof of Theorem 2.

Levma 1. Suppose that (H) holds, that g”(x) = 5 2 ¢ on [x,, ), and that
g, =g\, g = % e I®|s, —g, |7 g™,
k=2,
Then I,<C if a,=04,), and I, < Ce* if s, =0(1), (7)

for all n > x, and some positive constant C depending on & but not on 7.
Proof. Let
h(t;n) = g(n)—g(t)+ (E—n)g'(n) = 'f (t—u)g"(u) du.

7

This is denoted by %,(t;7) in Section 4 below. Then

b}
hit;n) < —L(t—n)p < —2(t—n)?, and I,= 3 [s,—s,|tEW = 5, +3,,
2 2 5
n—1 [=9] o
where 3= 3 s —s,leE™, ZTy= X s —s8,|e" T
=z, k=n+1

By C and C(8) we denote constants which may depend on & but not on 7, and
which may be different on different occasions.
Suppose first that a, = O(4,). Then, by (6),

Elécnf (n—ﬁfc)eXp(—r(u—r’c)g"’(u)d’w+ max f (u—j+1)g ()du)

k=, k k+1<isn

so“ilm—k)exp(—f /() d ) § ket 1) e = 0(9),

k=1, k+1
and

£,<0 3 (k*n)eXP(—F(k u)g'(u)du+ max f (j—u)g ()du)

k=n+1 n n+l<j<k J i

a> (k—n)exp(—jk_lg”( Vdu ) <O (b+1)e = C(3).

k=x, k=0

Hence [, < C.
Suppose next that s, = O(1). Then

n—1
3, €C 3 exp(—y(k—n)?/2) < Ce 2,

k=2,

and T, <0 Y exp(—yk—n)?/2) < Ce? |
k=n+1
Remark. Observe that a, , =

—h(n+1;n), B, =—h(n—1;n). Therefore, for any
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given n and any v > 0, I, = v if |e,| = vef or |a,,,| = v e*+. This shows that the
condition a, = 0(4,,) of Lemma 1 cannot be weakened, and throws light on the form
of condltlon (5) in Theorem 2.

Proof of Theorem 2. Suppose that s, - s(J,)) and a,, = O(4,,). Let x, be a sufficiently
large but fixed integer in [x,, c0). Again C will denote possibly different positive
constants. Since t, = ¢/™ > o0 and p, ~ ¢ 7", we have that

limsup|s, —s| = limsup|s, — o ,(t,)| < T, + 15,
n—=00 00
where ~ali,
N—+00 p(t k=0
and T, = —s,| k.

n-+o0 p(tn) k=,
Then 7; < Climsup,,_ , (ne®*) with
7

¢ = g(n)+(x, —n)g'(n)—g(x;)+ max J (u—j+1)g"(u)du

T+isisnJi-1
< —j g’ (u)du < —8(n—x,—1),
so that 7] = 0. Further

[+ 0]
T, < 2limsup 2 e 9®|s, —s,|tEmet™ L O,

n->oc  k=xz,

by Lemma 1. Hence the sequence {s,} is bounded. Since s, - s(J,) we now have that

s, =0(1); and s,—>s(J), where gq(f)= > e 9®¢*, (8)
k=1,
As in the proof of Theorem 1, we introduce a complex parameter « with
f = Rea > —14, and we consider the functions

o0
prle) = €, 7 () = MW g (1) = T e IP ()8,

k=xz,

R S
E Ske gl —ak Tn(a)k'

= W) = @,

Then, by (8), f,(0) = 0,(7,(0)) > s as n— o0, and since, for n = 0, & <0,

—n? 1 5 log?t\ dt
B R S i el = 0N o
Halhrme 2V(—a77)L eXp( 4o ) :

(so that {u, ()} is & “moment sequence’), we can conclude as in the proof of Theorem
1 that

lim f,(a) =s for —-g <o <. (9)

n—00
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Moreover, since

(g(x) +oaz?)” 2 ple) =0+2a = g for o> =T
it follows from (8) and Lemma 1 that
h o )
lim sup |f,(a)—s,| < Ce™® for a> —7 (10)

T—+0

(' being a constant depending on & but not on «. Next we shall show that Vitali’s
theorem can be applied to the sequence {f, («)}. To this end let

hy(t;m) = h(t;n)—alt—n)® = —3(g"(§) + 20) (t—n)*
with h(t;n) = g(n)—g(t) +(E—n)g'(n)
(as in the proof of Lemma 1). Then

& o)
where (@) = 3 s enEm and hyla)= 3 &HED,
k=x, k=1,

Then, since s, = O(1), we obtain that
lg,,(2)] < C for all n > z,, and all complex « with Rea > —4/4,
and hy(a) = €™ =1 for all n = x,, and all real a.

Moreover

el < 3 (b—netemtn =ic,

k=—o0
for all n = z,, and all complex a with Rea > —d/4. Hence if
G ={xeC|Rea>—1¢,[Ima| < C;'},

we get that |h, ()| = § for a €@, n = x,. Therefore {f,(x)} is a sequence of funetions
holomorphic and uniformly bounded in . Hence, by Vitali’s theorem, it follows
from (9) and (10) that

limsupls,—s| < Ce® forallreal o> ~1

Letting a— o0, we obtain the required result that s, —>s. I

4. Asymptotics
In the following lemma we state the asymptotic results required in Section 2 in the
form of strict inequalities which may be useful elsewhere.

LeMMa 2. Suppose that the real function g satisfies the following condition :

[ ge0,[x,, 00) for some xy€ N, ¢"(x) is positive and

(©)

1 decreasing, and G(x) = x%¢"(x) is increasing on [z,, 00).
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Let a be a complex number with f# = Reo > 0, and let
o0
fa(z) = E PR LR ey M- 2(, OC) = (@)
k=z,

Then, for all x = 2x,,

2 [ 70\ el zg () —tg () +g(f)] «g(z)
= Vg'(t)e dt = e (1+ R, ,(2))
Ty

and fulz) = —2; 7\/91”(9;) e 0@-20 @Y1 L R (x))
with
Vielle 1 V| y Viellel 1
R <0X 0N B Clajlag Y N
B, ()| 5 BV B, o(x)| <2 3 lee] v/ g (2} + C T

where C is an absolute constant, e.g. C = 40; and +/a denotes the principal branch of the
square root.

Proof. We use the inequalities

o
oo — 7] < Lﬁ‘leﬂ*—eﬁ“!, lef —e¥] < [t—ulemex ¥ (11)

for real ¢, v and f# = Rea > 0. Next, we define, for t = z,, x = x,,

ha(t; ) = g(t) —gle) +@—0) g’ (1), hy(t:z) = glx)—g(t) — (x—1)g'(2),

and we write A(f) = h(t;x) for either function whenever the distinction between the
use of A, or A, is immaterial. We have

R @)= [Z| vemensoa—1
a,l 271, g 3
Ty

B, o@) = [oov/g'() B etutbio—1,

k=1,

h(x) = h'(x) =0, Ri(E) = (x—1)g"(t), Ay(t) =g'(x)—g'(t),
and ” ) " ' 1.7 2 * ) g ( ) ]\ (12)
WD) = =g, k) =—lg"(E) (t—2) J
for some £ between ¢ and z. Observe that
t
w0 = [ =g win =@ @0

Also, it follows from the monotonicity of ¢”(x) and G(z) = x%¢”(x) that

g"(t) |t —2 :

g”(:c)_l ' < 47 forall tZza, xz=x, with |t—z < z (13)

Since the asymptotic form of the inequalities asserted in Lemma 2 can be established
by Laplace’s well-known method, we only briefly summarize the steps required to
obtain the striet form.
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Step 1. Using the fact that hy(f) is increasing on [x,,], decreasing on [z, 00), and
always < 0, we obtain, in view also of (11), that for all z = x,,

| J & i@ 3 emzw:m—r onen at)| < 2Y el v @),
2 rrs, » A

In the following put & = &(x) = x/8, and suppose x = 2x,.

Step 2. Using (11), (12), and (13), and substituting v = 4/ (g (x)) (t—=), we get (for
both A, and A,) that

a z+8 A 5
2_ ’\/g//(x) J (eaf.h(t;x) il e*ug (z) (t—1) f'2) dt '
m z—6

STE FVEMVER) ) B B G=)

Step 3. Using mostly (13), and substituting u = v (B’ (x)) (t—x) as above, we
obtain ,

’«/%L_awg @)= Vg0 et )d‘.gg A ECT)

o0
Step 4. Since J g J e~*¥"2 dy, the above substitution leads to
o

—00

-0

4 G —oag”(z) (t—2)%/2 _\/_IOL_H_Oil 1
{J%Vﬂ(w)J g ”dt—l.ss T3 vVow

Step 5. Since

Vo) _ 8 B it
= <vem ™ Sk Svem "

it follows that both

o z—8
v z,

are less than or equal to

o ' —0
and lJ \/Q”(&:)J exhattsm) dt'
2m %

ld 8 [ hrgyetno Vladle 1
%/G(@Lu LU I EY0)

Step 6. Since

V') 9
0< T ar < for t=zx+ 6,
—hit;x) v G(x)

we get (as in Step 5) that

L i) 3 Viedlal 1
— “gyemiEl d | € 4————-———.
| J= ] vrweneoal <P T
Step 7. Since

ho(t; ) < —f (¢ (w)—g (x)du < —F(t—ax—d)ag’(x) for ¢= x+0
x+8
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by (12) and (13), it follows that

% 2 : loc] -
Vs g”(x)J gE } X ~/ v 9”(x)f o Rt
l N/ZT’T 46 2m s

caY Ml ey
B B VG=)

Combining the inequalities of Steps 1 to 7 leads directly to the asserted inequalities
(with constant €' = 40). No effort was made to improve on the value of the constant,
but the dependency on a and § = Re o was carefully considered, because this played
an essential part in the application in Section 2.
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