An O-Tauberian theorem and a high indices theorem for power series methods of summability*

By DAVID BORWEIN

Department of Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7

AND WERNER KRATZ

Abteilung Mathematik, Universität Ulm, Helmholtzstr. 18, D-7900 Ulm/Donau, Germany

(Received 14 December 1992; revised 14 June 1993)

Abstract

We improve known Tauberian results concerning the power series method of summability J_p based on the sequence $\{p_n\}$ by removing the condition that p_n be asymptotically logarithmico-exponential. We also prove an entirely new Tauberian result for rapidly decreasing p_n .

1. Introduction

Suppose throughout that $\{p_n\}$ is a sequence of non-negative numbers, and that the power series

 $p(t) = \sum_{k=0}^{\infty} p_k t^k$

has non-zero radius of convergence R. Let $\{a_n\}$ be a sequence of complex numbers, and let $s_n := \sum_{k=0}^n a_k$. The power series method J_p is defined as follows:

$$s_n \to s(J_p) \quad \text{if} \quad \sum_{k=0}^\infty p_k \, s_k \, t^k \, \text{is convergent for} \, |t| < R,$$

and

$$\sigma_p(t) = \frac{1}{p(t)} \sum_{k=0}^{\infty} p_k s_k t^k \to s$$

as $t \rightarrow R$ – through real values.

In this note we present a unified treatment of J_p -methods generated by 'smooth' sequences $\{p_n\}$. We deal with both so-called 'Abel-type' $(R < \infty)$ and 'Borel-type' $(R = \infty)$ methods. Although the Abel method itself $(p_n = 1)$ is not included, the assumptions cover all smooth sequences $\{p_n\}$ with p_n growing faster than some positive power of n. The Abel method could be treated similarly, but methods like the logarithmic method

 $p_n = \frac{1}{n+1}$

require another technique (see [9]).

^{*} This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

An O-Tauberian theorem and a high indices theorem

367

We prove two theorems (Theorems 1 and 2 below) concerning Tauberian conditions on $\{s_n\}$ under which $s_n \to s(J_p)$ implies $s_n \to s$. For the sake of clarity we describe, in this introduction, the following local version of Theorem 1:

If $p_n \sim e^{-g(n)}$ with the function g such that, for sufficiently large x, g''(x) is continuous, positive and decreasing while $x^2g''(x)$ is increasing; and if $a_n = s_n - s_{n-1} = O(\sqrt{g''(n)})$, and $s_n \to s(J_p)$, then $s_n \to s$.

This was known for logarithmico-exponential functions g (see [2, 4, 7, 8, 10]) with $g''(x) \to 0$ as $x \to \infty$. Theorem 2, our new 'high indices' theorem, shows that when $\lim\inf_{x\to\infty}g''(x)>0$ a version of the above result holds without any monotonicity conditions on g''(x). A corollary of this theorem is that if g''(x) is ultimately monotonic and greater than some positive constant, then the Tauberian condition on a_n can be weakened to $a_n=O(e^{g''(n)/2})$.

2. The O-Tauberian theorem

In this section we prove the following Tauberian result.

Theorem 1. Suppose that the real function g satisfies the following condition:

(C)
$$\begin{cases} g \in C_2[x_0, \infty) \text{ for some } x_0 \in \mathbb{N}, g''(x) \text{ is positive and decreasing,} \\ and G(x) = x^2 g''(x) \text{ is increasing on } [x_0, \infty). \end{cases}$$

Let $p_n \sim e^{-g(n)}$ as $n \to \infty$, and let $l(x) = 1/\sqrt{g''(x)}$. Then

$$\lim_{\epsilon \to 0+} \omega(\epsilon) = 0 \quad \text{with} \quad \omega(\epsilon) = \limsup_{n \to \infty} \max_{n \leqslant m} |s_{m+1} - s_n|, \tag{1}$$

and $s_n \rightarrow s(J_p)$ imply that $s_n \rightarrow s$.

Proof. If $\lim_{x\to\infty} g''(x) = \delta > 0$, then $l(n) \to \delta^{-\frac{1}{2}} < \infty$ and condition (1) reduces to $a_n = s_n - s_{n-1} = o(1)$; the required conclusion follows from Theorem 2 below (or from the o-result [8], corollary 1).

Suppose $\lim_{x\to\infty} G(x) = \delta < \infty$. Then, as $x\to\infty$,

$$g'(x) \to \eta < \infty$$
, and so $x\{\eta - g'(x)\} = x \int_{x}^{\infty} \frac{G(t)}{t^2} dt \to \delta$.

Hence $e^{-g(n)} = e^{-\eta n} n^{\delta} L(n)$ where L is a slowly varying function, since, for each $\lambda > 1$,

$$\frac{L(\lambda x)}{L(x)} = \exp\left(\int_x^{\lambda x} dt \int_t^{\infty} \frac{u^2 g''(u) - \delta}{u^2} du\right) \to 1 \quad \text{as} \quad x \to \infty.$$

Moreover, $l(n) \sim n\delta^{-\frac{1}{2}}$, and (1) reduces to the well-known Tauberian condition

$$\lim_{\lambda \to 1^+} \limsup_{n \to \infty} \max_{n \leqslant m < \lambda n} |s_{m+1} - s_n| = 0,$$

which yields the required conclusion (see e.g. [10] and condition (1.5') on p. 490 of [7] and the references there quoted).

 $g''(x) \to 0$ and $G(x) = x^2 g''(x) \to \infty$ as $x \to \infty$. (2)

In this case we can proceed along the same lines as in the proofs in [7], p. 500 and [8], p. 472, but use only condition (C) instead of the more restrictive conditions involving logarithmico-exponential functions of those proofs. The detailed asymptotic results required for the following proof are derived in Section 4 below. Let

$$q(t) = \sum_{k=x_0}^{\infty} e^{-g(k)} t^k.$$

Then the radius of convergence of this power series is $R = e^{\eta}$, where

Hence we may assume that

$$-\infty < \eta = \lim_{x \to \infty} g'(x) \leqslant \infty.$$

Since $p_n \sim e^{-g(n)}$, the power series for p(t) has the same radius of convergence, and (in much the same way as in [1]) we obtain from Lemma 2 in Section 4 below that

$$\Delta_n := \inf_{0 < t < R} p(t) t^{-n} = p(t_n) t_n^{-n} \quad \text{with} \quad t_n \nearrow R$$

satisfies

$$\frac{\Delta_n}{p_n} \sim e^{g(n)} \inf_{u > x_0} \sqrt{\frac{2\pi}{g''(u)}} e^{-g(u) + ug'(u) - ng'(u)} \sim \sqrt{\frac{2\pi}{g''(n)}} = \sqrt{(2\pi) l(n)} \to \infty,$$

and hence

$$\sum_{n \leq k \leq n + \epsilon l(n)} \frac{p_k}{\Delta_k} \to \frac{\epsilon}{\sqrt{(2\pi)}} \quad \text{as} \quad n \to \infty.$$

We introduce a complex parameter α with $\beta = \text{Re } \alpha > 0$, and consider the following expressions:

$$q_{\alpha}(t) = \sum_{k=x_0}^{\infty} e^{-\alpha g(k)} t^k = \sum_{k=x_0}^{\infty} e^{-g(k)} \mu_k(\alpha) t^k \quad \text{with} \quad \mu_k(\alpha) = e^{(1-\alpha)g(k)},$$

$$\tau_n(\alpha) = e^{\alpha g'(n)} \quad \text{and} \quad f_n(\alpha) = \frac{1}{q_\alpha(\tau_n(\alpha))} \sum_{k=x_0}^{\infty} s_k \, e^{-\alpha g(k)} \tau_n(\alpha)^k,$$

where $\{s_n\}$ is the given sequence of complex numbers satisfying condition (1) and $s_n \to s(J_p)$. Then, by [7], lemma 1 and [8], Lemma 4 (with $\lambda = \epsilon + 1, l(n, \lambda) = \epsilon l(n)$, $c = \sqrt{(2\pi)}$, we have the basic inequality

$$\limsup_{n\to\infty} |s_n - f_n(\alpha)| \le \omega(\epsilon) + \frac{\omega(\epsilon)}{\epsilon} \sqrt{\frac{2\pi}{\alpha}} \quad \text{for real} \quad \alpha > 0, \epsilon > 0, \tag{3}$$

since

$$\phi(\alpha) = \lim_{n \to \infty} \frac{q_{\alpha}(\tau_n(\alpha)) \, \tau_n(\alpha)^{-n}}{\Delta_n \, \mu_n(\alpha)} = \frac{1}{\sqrt{\alpha}}$$

by Lemma 2. Moreover, the above quoted results with $\mu_n = 1$, $\tau_n = t_n$, $\phi = 1$, and $\epsilon = 1$ reduce to

$$\limsup_{n \to \infty} |s_n - \sigma_p(t_n)| \le \omega(1) (1 + \sqrt{2\pi}) < \infty. \tag{3'}$$

Since $\sigma_p(t_n) \to s$, the sequence $\{s_n\}$ is bounded, and then $p_n \sim e^{-g(n)}$ implies that $s_n \to s(J_q)$, i.e. $\sigma_q(t) \to s$ as $t \to R -$. By Lemma 2, we have that

$$\mu_n(\alpha) \sim \mu_n^*(\alpha) = \sqrt{\left(\frac{1-\alpha}{2\pi}\right)} \int_{x_0}^{\infty} \sqrt{g''(t)} \, e^{(1-\alpha)\{ng'(t) - tg'(t) + g(t)\}} dt = \int_0^{R^{1-\alpha}} u^n \, d\chi_{\alpha}(u)$$

for $0 < \alpha < 1$, where $\chi_{\alpha}(u)$ is non-decreasing (use the substitution $u = e^{(1-\alpha)g'(t)}$). Thus, for $0 < \alpha < 1$, $\{\mu_{n}^{*}(\alpha)\}$ is a 'moment sequence'.

Suppose next that, for $0 < \alpha < 1$,

$$\tilde{q}(t) = q_{\alpha}^*(t) = \sum_{k=x_0}^{\infty} e^{-g(k)} \mu_k^*(\alpha) t^k,$$

and note that the radius of convergence of the power series is R^{α} . Let ϵ be an arbitrary positive number. Since $s_n \to s(J_q)$, there is a positive $t_0 < R$ such that $|\sigma_q(t) - s| < \epsilon$ for $t_0 < t < R$. Hence, for some C > 0, and $R^{\alpha-1}t_0 < t < R^{\alpha}$,

$$\begin{split} |\sigma_{\tilde{q}}(t)-s| &= \left|\frac{1}{\tilde{q}(t)}\sum_{k=x_0}^{\infty} e^{-g(k)}\mu_k^*(\alpha)\left(s_k-s\right)t^k\right| \\ &\leqslant \frac{1}{\tilde{q}(t)}\int_0^{R^{1-\alpha}} |\sigma_q(tu)-s|\,q(tu)\,d\chi_\alpha(u) \\ &\leqslant \epsilon + \frac{1}{\tilde{q}(t)}\int_0^{t_0/t} |\sigma_q(tu)-s|\,q(tu)\,d\chi_\alpha(u) \\ &\leqslant \epsilon + C\frac{q(t_0)}{\tilde{q}(t)} \to \epsilon \quad \text{as} \quad t \to R^\alpha - , \end{split}$$

the change of order of summation and integration implicit in the first inequality being justified because $s_n-s=O(1)$ implies that

$$\sum_{k=x_0}^{\infty} e^{-g(k)} |s_k - s| t^k \int_0^{R^{1-\alpha}} u^k d\chi_{\alpha}(u) < \infty.$$

Hence $s_n \to s(J_{q_\alpha^*})$ for $0 < \alpha < 1$ (cf. [8], lemma 6). Since $\mu_n^*(\alpha) \sim \mu_n(\alpha)$, $s_n = O(1)$, and $\tau_n(\alpha) \to R^\alpha - \text{ as } n \to \infty$, it follows that

$$\lim_{n \to \infty} f_n(\alpha) = s \quad \text{for} \quad 0 < \alpha \le 1. \tag{4}$$

Finally, for $C = \sup_{n \ge 0} |s_n| < \infty$, and α complex with $\beta := \operatorname{Re} \alpha > 0$, we have

$$|f_n(\alpha)| \leqslant C \left| \frac{q_{\beta}(\tau_n(\beta))}{q_{\alpha}(\tau_n(\alpha))} \right| \leqslant C \sqrt{\left(\left| \frac{\alpha}{\beta} \right| \right)} \frac{|1 + R_{\beta,\,2}(n)|}{|1 + R_{\alpha,\,2}(n)|},$$

where, by Lemma 2, $R_{\alpha,2}(n)$ and $R_{\beta,2}(n)$ tend uniformly to 0 on compact subsets of the half-plane $\text{Re }\alpha>0$ as $n\to\infty$. Hence, the functions in the sequence $\{f_n(\alpha)\}$ are holomorphic and uniformly bounded on compact subsets of some region $U \supset (0,\infty)$. Therefore, by (3), (4), and Vitali's theorem (see [11], theorem 5·2·1),

$$\limsup_{n\to\infty} |s_n-s|\leqslant \omega(\epsilon) + \frac{\omega(\epsilon)}{\epsilon} \sqrt{\frac{2\pi}{\alpha}} \quad \text{for all} \quad \alpha>0, \epsilon>0.$$

Letting $\alpha \to \infty$ and then $\epsilon \to 0+$, we deduce from this and assumption (1) that $\lim_{n\to\infty} s_n = s$.

A direct consequence of this theorem and of Theorem 2 (in the case that g''(x) does not tend to 0 as $x \to \infty$) is the following local result.

Corollary. Suppose that the function g satisfies (C), and that $p_n \sim e^{-g(n)}$. If $a_n = s_n - s_{n-1} = O(\sqrt{g''(n)})$ and $s_n \to s(J_p)$, then $s_n \to s$.

Remark. For real sequences $\{s_n\}$, the statement of Theorem 1 remains true when assumption (1) is replaced by the corresponding one-sided Tauberian condition. This follows essentially from [5], theorem 1 or [6], Satz 3·2 where the boundedness of $\{s_n\}$ is derived from the one-sided condition via a technique due to Vijayaraghavan (see [3]).

3. The high indices theorem

In this section we prove the following 'high indices' result to supplement Theorem 1.

Theorem 2. Suppose that the real function g satisfies the following condition:

(H)
$$g \in C_2[x_0, \infty)$$
 for some $x_0 \in \mathbb{N}$, and $g''(x) \ge \delta > 0$ on $[x_0, \infty)$.

Let $p_n \sim e^{-g(n)}$ as $n \to \infty$, and let

$$A_n = \min(e^{\alpha_n}, e^{\beta_n}) \text{ where }$$

$$\alpha_n = g(n) - g(n-1) - g'(n-1), \quad \beta_n = g(n-1) - g(n) + g'(n).$$
(5)

Then $a_n = s_n - s_{n-1} = O(A_n)$ and $s_n \to s(J_p)$ imply that $s_n \to s$.

Remarks. (i) Observe that

$$\alpha_n = \int_{n-1}^n (n-u) g''(u) du, \quad \beta_n = \int_{n-1}^n (u-n+1) g''(u) du \quad \text{for} \quad n > n_0,$$
 (6)

and hence that

$$\frac{\delta}{2} \leqslant \frac{1}{2} \min_{[n-1,\,n]} g''(u) \leqslant \min\left(\alpha_n,\beta_n\right) \leqslant \max\left(\alpha_n,\beta_n\right) \leqslant \frac{1}{2} \max_{[n-1,\,n]} g''(u).$$

Thus, if g'' is monotonic, then $a_n = O(A_n)$ reduces to $a_n = O(e^{g''(n)/2})$. Of course, $a_n = O(1)$ always implies $a_n = O(A_n)$ without any additional monotonicity condition.

(ii) Next, condition (H) implies that the radius of convergence for the J_p -method under consideration is ∞ , and also that $1 \leq \Delta_n/p_n = O(1)$ where $\Delta_n = \inf_{t>0} p(t) t^{-n}$, by [8], remark 5(iii) or by estimates similar to those developed below. Moreover, the limitation result [1], theorem L2 yields that, subject to (H) holding, $s_n \to s$ whenever $s_n \geq 0$ and $s_n \to s(J_p)$. Thus, when (H) holds, the J_p -method is equivalent to convergence for real non-negative sequences, and this underlies the use of the terminology 'high indices' to describe Theorem 2. This equivalence to convergence, however, does not hold for oscillating sequences; e.g.

$$s_n = \frac{(-1)^n}{n!p_n}$$

371

$$\sigma_p(t) = \frac{e^{-t}}{p(t)} \to 0 \quad \text{as} \quad t \to \infty$$

so that $s_n \to 0(J_p)$.

We use the following lemma in the proof of Theorem 2.

LEMMA 1. Suppose that (H) holds, that $g''(x) \ge \eta \ge \delta$ on $[x_0, \infty)$, and that

$$t_n = e^{g'(n)}, \quad I_n = \sum_{k=x_0}^{\infty} e^{-g(k)} |s_k - s_n| \, t_n^{k-n} \, e^{g(n)}.$$

Then
$$I_n \leqslant C$$
 if $a_n = O(A_n)$, and $I_n \leqslant Ce^{-\eta/2}$ if $s_n = O(1)$, (7)

for all $n > x_0$ and some positive constant C depending on δ but not on η .

Proof. Let

$$h(t; n) = g(n) - g(t) + (t - n)g'(n) = -\int_{n}^{t} (t - u)g''(u) du.$$

This is denoted by $h_2(t;n)$ in Section 4 below. Then

$$h(t\,;n)\leqslant -\frac{\eta}{2}(t-n)^2\leqslant -\frac{\delta}{2}(t-n)^2,\quad \text{and}\quad I_n=\sum_{k=x_0}^{\infty}|s_k-s_n|\,e^{h(k\,;n)}=\Sigma_1+\Sigma_2,$$

where

$$\Sigma_{1} = \sum_{k=x_{n}}^{n-1} \left| s_{k} - s_{n} \right| e^{h(k\,;\,n)}, \quad \Sigma_{2} = \sum_{k=n+1}^{\infty} \left| s_{k} - s_{n} \right| e^{h(k\,;\,n)}.$$

By C and $C(\delta)$ we denote constants which may depend on δ but not on η , and which may be different on different occasions.

Suppose first that $a_n = O(A_n)$. Then, by (6),

$$\begin{split} & \Sigma_1 \leqslant C \sum_{k=x_0}^{n-1} (n-k) \exp \bigg(- \int_k^n (u-k) \, g''(u) \, du + \max_{k+1 \leqslant j \leqslant n} \int_{j-1}^j \left(u - j + 1 \right) g''(u) \, du \bigg) \\ & \leqslant C \sum_{k=x}^{n-1} \left(n - k \right) \exp \bigg(- \int_{k+1}^n g''(u) \, du \bigg) \leqslant C \sum_{k=0}^\infty \left(k + 1 \right) e^{-\delta k} = C(\delta), \end{split}$$

and

$$\begin{split} &\Sigma_2 \leqslant C \sum_{k=n+1}^{\infty} (k-n) \exp \biggl(- \int_n^k (k-u) \, g''(u) \, du + \max_{n+1 \leqslant j \leqslant k} \int_{j-1}^j \left(j-u \right) g''(u) \, du \biggr) \\ &\leqslant C \sum_{k=x_0}^{n-1} (k-n) \exp \biggl(- \int_n^{k-1} g''(u) \, du \biggr) \leqslant C \sum_{k=0}^{\infty} \left(k+1 \right) e^{-\delta k} = C(\delta). \end{split}$$

Hence $I_n \leq C$.

Suppose next that $s_n = O(1)$. Then

$$\Sigma_1 \leqslant C \sum_{k=x_0}^{n-1} \exp{(-\eta (k-n)^2/2)} \leqslant C e^{-\eta/2},$$

and

$$\Sigma_2 \leqslant C \sum_{k=n+1}^{\infty} \exp\left(-\eta (k-n)^2/2\right) \leqslant C e^{-\eta/2}.$$

Remark. Observe that $\alpha_{n+1} = -h(n+1;n)$, $\beta_n = -h(n-1;n)$. Therefore, for any

An O-Tauberian theorem and a high indices theorem given n and any $\gamma > 0$, $I_n \geqslant \gamma$ if $|a_n| \geqslant \gamma e^{\beta_n}$ or $|a_{n+1}| \geqslant \gamma e^{\alpha_{n+1}}$. This shows that the

condition $a_n = O(A_n)$ of Lemma 1 cannot be weakened, and throws light on the form of condition (5) in Theorem 2.

Proof of Theorem 2. Suppose that $s_n \to s(J_n)$ and $a_n = O(A_n)$. Let x_1 be a sufficiently large but fixed integer in $[x_0, \infty)$. Again C will denote possibly different positive constants. Since $t_n = e^{g'(n)} \to \infty$ and $p_n \sim e^{-g(n)}$, we have that

$$\limsup_{n\to\infty}|s_n-s|=\limsup_{n\to\infty}|s_n-\sigma_p(t_n)|\leqslant T_1+T_2,$$

where

$$T_1 = \limsup_{n \to \infty} \frac{1}{p(t_n)} \sum_{k=0}^{s_1} p_k |s_k - s_n| \, t_n^k,$$

and

$$T_{2} = \limsup_{n \rightarrow \infty} \frac{1}{p(t_{n})} \sum_{k=x_{n}}^{\infty} p_{k} |s_{k} - s_{n}| \ t_{n}^{k}.$$

Then $T_1 \leq C \limsup_{n \to \infty} (ne^{c_n})$ with

$$\begin{split} c_n &= g(n) + (x_1 - n) \, g'(n) - g(x_1) + \max_{x_1 + 1 \, \leqslant \, j \, \leqslant \, n} \int_{j - 1}^j \left(u - j + 1 \right) g''(u) \, du \\ &\leqslant - \int_{x_1 + 1}^n g''(u) \, du \leqslant - \delta(n - x_1 - 1), \end{split}$$

so that $T_1 = 0$. Further

$$T_2 \leqslant 2 \limsup_{n \to \infty} \sum_{k=x_0}^{\infty} e^{-g(k)} |s_k - s_n| \, t_n^{k-n} \, e^{g(n)} \leqslant C,$$

by Lemma 1. Hence the sequence $\{s_n\}$ is bounded. Since $s_n \to s(J_n)$ we now have that

$$s_n = O(1)$$
; and $s_n \to s(J_q)$, where $q(t) = \sum_{k=x_0}^{\infty} e^{-g(k)} t^k$. (8)

As in the proof of Theorem 1, we introduce a complex parameter α with $\beta = \operatorname{Re} \alpha > -\frac{1}{4}\delta$, and we consider the functions

$$\mu_k(\alpha) = e^{-\alpha k^2}, \quad \tau_n(\alpha) = e^{g'(n) + 2\alpha n}, \quad q_\alpha(t) = \sum_{k=x_0}^\infty e^{-g(k)} \mu_k(\alpha) \, t^k,$$

and

$$f_n(\alpha) = \frac{1}{q_{\alpha}(\tau_n(\alpha))} \sum_{k=x_0}^{\infty} s_k e^{-g(k) - \alpha k^2} \tau_n(\alpha)^k.$$

Then, by (8), $f_n(0) = \sigma_n(\tau_n(0)) \rightarrow s$ as $n \rightarrow \infty$, and since, for $n \ge 0$, $\alpha < 0$,

$$\mu_n(\alpha) = e^{-\alpha n^2} = \frac{1}{2\sqrt{(-\alpha \pi)}} \int_0^\infty t^n \exp\left(\frac{\log^2 t}{4\alpha}\right) \frac{dt}{t}$$

(so that $\{\mu_n(\alpha)\}\$ is a 'moment sequence'), we can conclude as in the proof of Theorem 1 that

$$\lim_{n \to \infty} f_n(\alpha) = s \quad \text{for} \quad -\frac{\delta}{4} < \alpha < 0. \tag{9}$$

An O-Tauberian theorem and a high indices theorem

Moreover, since

$$(g(x) + \alpha x^2)'' \geqslant \eta(\alpha) := \delta + 2\alpha \geqslant \frac{\delta}{2} \quad \text{for} \quad \alpha > -\frac{\delta}{4},$$

it follows from (8) and Lemma 1 that

$$\limsup_{n\to\infty} |f_n(\alpha) - s_n| \leqslant Ce^{-\alpha} \quad \text{for} \quad \alpha > -\frac{\delta}{4}, \tag{10}$$

C being a constant depending on δ but not on α . Next we shall show that Vitali's theorem can be applied to the sequence $\{f_n(\alpha)\}$. To this end let

$$h_{\alpha}(t\,;n) = h(t\,;n) - \alpha(t-n)^2 = -\tfrac{1}{2}(g''(\xi) + 2\alpha)\,(t-n)^2$$

with

$$h(t; n) = g(n) - g(t) + (t - n)g'(n)$$

(as in the proof of Lemma 1). Then

$$f_n(\alpha) = \frac{g_n(\alpha)}{h_n(\alpha)},$$

where

$$g_n(\alpha) = \sum_{k=x_0}^{\infty} s_k \, e^{h_\alpha(k\,;\,n)}, \quad \text{and} \quad h_n(\alpha) = \sum_{k=x_0}^{\infty} e^{h_\alpha(k\,;\,n)}.$$

Then, since $s_n = O(1)$, we obtain that

 $|g_n(\alpha)|\leqslant C \text{ for all } n\geqslant x_0, \text{ and all complex } \alpha \text{ with } \mathrm{Re}\,\alpha>-\delta/4,$

and

$$h_n(\alpha) \geqslant e^{h_{\alpha}(n,n)} = 1 \text{ for all } n \geqslant x_0, \text{ and all real } \alpha.$$

Moreover

$$|h'_n(\alpha)| \le \sum_{k=-\infty}^{\infty} (k-n)^2 e^{-\delta(k-n)^2/4} = \frac{1}{2} C_{\delta}$$

for all $n \ge x_0$, and all complex α with Re $\alpha > -\delta/4$. Hence if

$$G = \{\alpha \in \mathbb{C} \mid \operatorname{Re} \alpha > -\tfrac{1}{4}\delta, |\operatorname{Im} \alpha| < C_{\delta}^{-1}\},$$

we get that $|h_n(\alpha)| \ge \frac{1}{2}$ for $\alpha \in G$, $n \ge x_0$. Therefore $\{f_n(\alpha)\}$ is a sequence of functions holomorphic and uniformly bounded in G. Hence, by Vitali's theorem, it follows from (9) and (10) that

$$\limsup_{n\to\infty} |s_n-s|\leqslant Ce^{-\alpha}\quad \text{for all real}\quad \alpha>-\frac{\delta}{4}.$$

Letting $\alpha \to \infty$, we obtain the required result that $s_n \to s$.

4. Asymptotics

In the following lemma we state the asymptotic results required in Section 2 in the form of strict inequalities which may be useful elsewhere.

Lemma 2. Suppose that the real function g satisfies the following condition:

(C)
$$\begin{cases} g \in C_2[x_0, \infty) \text{ for some } x_0 \in \mathbb{N}, g''(x) \text{ is positive and} \\ \text{decreasing, and } G(x) \coloneqq x^2 g''(x) \text{ is increasing on } [x_0, \infty). \end{cases}$$

Let α be a complex number with $\beta = \operatorname{Re} \alpha > 0$, and let

$$f_{\alpha}(z) = \sum_{k=x_0}^{\infty} e^{-\alpha g(k)} z^k$$
 with $z = z(x, \alpha) = e^{\alpha g'(x)}$.

373

Then, for all $x \ge 2x_0$,

$$\sqrt{\frac{2\pi}{\alpha}}\int_{x_0}^{\infty} \sqrt{g''(t)}\,e^{\alpha[xg'(t)-tg'(t)+g(t)]}\,dt = e^{\alpha g(x)}(1+R_{\alpha,\,1}(x))$$

and

$$f_{\alpha}(z) = \sqrt{\frac{2\pi}{\alpha}} \frac{1}{\sqrt{g''(x)}} e^{-\alpha[g(x) - xg'(x)]} (1 + R_{\alpha, 2}(x))$$

with

$$|R_{\alpha,\,1}(x)|\leqslant C\frac{\sqrt{|\alpha|}}{\beta}\frac{|\alpha|}{\beta}\frac{1}{\sqrt{G(x)}},\quad |R_{\alpha,\,2}(x)|\leqslant 2\frac{\sqrt{|\alpha|}}{\beta}|\alpha|\sqrt{g''(x)}+C\frac{\sqrt{|\alpha|}}{\beta}\frac{|\alpha|}{\beta}\frac{1}{\sqrt{G(x)}},$$

where C is an absolute constant, e.g. C = 40; and $\sqrt{\alpha}$ denotes the principal branch of the square root.

Proof. We use the inequalities

$$|e^{\alpha t} - e^{\alpha u}| \le \frac{|\alpha|}{\beta} |e^{\beta t} - e^{\beta u}|, \quad |e^t - e^u| \le |t - u| e^{\max(t, u)}$$

$$\tag{11}$$

for real t, u and $\beta = \text{Re } \alpha > 0$. Next, we define, for $t \ge x_0$, $x \ge x_0$.

$$h_1(t\,;x) = g(t) - g(x) + (x-t)\,g'(t), \quad h_2(t\,;x) = g(x) - g(t) - (x-t)\,g'(x),$$

and we write h(t) = h(t;x) for either function whenever the distinction between the use of h_1 or h_2 is immaterial. We have

$$R_{\alpha,\,1}(x) = \sqrt{\frac{\alpha}{2\pi}} \int_{x_0}^{\infty} \sqrt{g''(t)} \, e^{\alpha h_1(t\,;\,x)} \, dt - 1, \label{eq:Radiation}$$

$$R_{\alpha,\,2}(x) = \sqrt{\frac{\alpha}{2\pi}} \sqrt{g''(x)} \sum_{k=x}^{\infty} e^{\alpha h_2(k\,;x)} - 1,$$

and

$$h(x) = h'(x) = 0, \quad h'_1(t) = (x - t)g''(t), \quad h'_2(t) = g'(x) - g'(t),$$

$$h''(t) = -g''(t), \quad h(t) = -\frac{1}{2}g''(\xi)(t - x)^2$$

$$(12)$$

for some ξ between t and x. Observe that

$$h_1(t) = \int_x^t (x-u) \, g''(u) \, du = -\tfrac{1}{2} g''(\xi) \, (x-t)^2.$$

Also, it follows from the monotonicity of g''(x) and $G(x) = x^2 g''(x)$ that

$$\left|\frac{g''(t)}{g''(x)} - 1\right| \leqslant 4 \frac{|t - x|}{x} \quad \text{for all} \quad t \geqslant x_0, \quad x \geqslant x_0 \quad \text{with} \quad |t - x| \leqslant \frac{x}{4}. \tag{13}$$

Since the asymptotic form of the inequalities asserted in Lemma 2 can be established by Laplace's well-known method, we only briefly summarize the steps required to obtain the strict form.

An O-Tauberian theorem and a high indices theorem

by (12) and (13), it follows that

375

Step 1. Using the fact that $h_2(t)$ is increasing on $[x_0, x]$, decreasing on $[x, \infty)$, and always ≤ 0 , we obtain, in view also of (11), that for all $x \geq x_0$,

$$\bigg| \sqrt{\frac{\alpha}{2\pi}} \sqrt{g''(x)} \bigg(\sum_{k=x_0}^\infty e^{\alpha h_2(k\,;x)} - \int_{x_0}^\infty e^{\alpha h_2(t\,;x)} \,dt \bigg) \bigg| \leqslant 2 \frac{\sqrt{|\alpha|}}{\beta} |\alpha| \, \sqrt{g''(x)}.$$

In the following put $\delta = \delta(x) = x/8$, and suppose $x \ge 2x_0$.

Step 2. Using (11), (12), and (13), and substituting $u = \sqrt{(\beta g''(x))(t-x)}$, we get (for both h_1 and h_2) that

$$\begin{split} \left| \sqrt{\frac{\alpha}{2\pi}} \sqrt{g''(x)} \int_{x-\delta}^{x+\delta} (e^{\alpha h(t;x)} - e^{-\alpha g''(x)(t-x)^2/2}) \, dt \, \right| \\ & \leq \frac{\sqrt{|\alpha|}}{\beta} \frac{|\alpha|}{\beta} \frac{2}{\sqrt{(2\pi)}} \frac{1}{\sqrt{G(x)}} \int_{-\infty}^{\infty} |u|^3 \, e^{-u^2/4} \, du \leqslant 16 \frac{\sqrt{|\alpha|}}{\beta} \frac{|\alpha|}{\beta} \frac{1}{\sqrt{G(x)}}. \end{split}$$

Step 3. Using mostly (13), and substituting $u = \sqrt{(\beta g''(x))(t-x)}$ as above, we obtain

$$\left| \sqrt{\frac{\alpha}{2\pi}} \int_{x-\delta}^{x+\delta} \left(\sqrt{g''(x)} - \sqrt{g''(t)} \right) e^{xh_1(t\,;x)} \, dt \, \right| \leqslant 8 \frac{\sqrt{|\alpha|}}{\beta} \frac{|\alpha|}{\beta} \frac{1}{\sqrt{G(x)}}.$$

Step 4. Since $\sqrt{\frac{2\pi}{\alpha}} = \int_{-\infty}^{\infty} e^{-\alpha u^2/2} du$, the above substitution leads to

$$\left| \sqrt{\frac{\alpha}{2\pi}} \sqrt{g''(x)} \int_{x-\delta}^{x+\delta} e^{-\alpha g''(x) (t-x)^2/2} dt - 1 \right| \leqslant 8 \frac{\sqrt{|\alpha|}}{\beta} \frac{|\alpha|}{\beta} \frac{1}{\sqrt{G(x)}}.$$

Step 5. Since

$$0\leqslant \frac{\sqrt{g''(t)}}{h_1'(t\,;x)}\leqslant \frac{8}{\sqrt{G(x)}}\quad \text{and}\quad 0\leqslant \frac{\sqrt{g''(x)}}{h_2'(t\,;x)}\leqslant \frac{8}{\sqrt{G(x)}}\quad \text{for}\quad x_0\leqslant t\leqslant x-\delta,$$

it follows that both

$$\left| \sqrt{\frac{\alpha}{2\pi}} \int_{x_0}^{x-\delta} \sqrt{g''(t)} \, e^{\alpha h_1(t;x)} \, dt \right| \quad \text{and} \quad \left| \sqrt{\frac{\alpha}{2\pi}} \sqrt{g''(x)} \int_{x_0}^{x-\delta} e^{\alpha h_2(t;x)} \, dt \right|$$

are less than or equal to

$$\sqrt{\frac{|\alpha|}{2\pi}} \frac{8}{\sqrt{G(x)}} \int_{x_0}^{x-\delta} h'(t) \, e^{\beta h(t)} \, dt \leqslant 4 \frac{\sqrt{|\alpha|}}{\beta} \frac{|\alpha|}{\beta} \frac{1}{\sqrt{G(x)}}.$$

Step 6. Since

$$0 \leqslant \frac{\sqrt{g''(t)}}{-h_1'(t;x)} \leqslant \frac{9}{\sqrt{G(x)}} \quad \text{for} \quad t \geqslant x + \delta,$$

we get (as in Step 5) that

$$\left| \sqrt{\frac{\alpha}{2\pi}} \int_{x+\delta}^{\infty} \sqrt{g''(t)} \, e^{\alpha h_1(t;x)} \, dt \right| \leqslant 4 \frac{\sqrt{|\alpha|}}{\beta} \frac{|\alpha|}{\beta} \frac{1}{\sqrt{G(x)}}.$$

Step 7. Since

$$h_2(t;x) \leqslant -\int_{x+\delta}^t (g'(u)-g'(x))\,du \leqslant -\tfrac{1}{12}(t-x-\delta)\,xg''(x) \quad \text{for} \quad t \geqslant x+\delta$$

 $\left| \sqrt{\frac{\alpha}{2\pi}} \sqrt{g''(x)} \int_{x+\delta}^{\infty} e^{\alpha h_2(t;x)} dt \right| \leq \sqrt{\frac{|\alpha|}{2\pi}} \sqrt{g''(x)} \int_{x+\delta}^{\infty} e^{-xg''(x)(t-x-\delta)\beta/12} dt$ $\leq 6 \frac{\sqrt{|\alpha|}}{\beta} \frac{|\alpha|}{\beta} \frac{1}{\sqrt{G(x)}}.$

Combining the inequalities of Steps 1 to 7 leads directly to the asserted inequalities (with constant C = 40). No effort was made to improve on the value of the constant, but the dependency on α and $\beta = \text{Re } \alpha$ was carefully considered, because this played an essential part in the application in Section 2.

REFERENCES

 D. Borwein and W. Kratz. On relations between weighted means and power series methods of summability. J. Math. Anal. Appl. 139 (1989), 178-186.

[2] D. Borwein and A. Meir. A Tauberian theorem concerning weighted means and power series. Math. Proc. Cambridge Phil. Soc. 101 (1987), 283–286.

[3] G. H. HARDY. Divergent Series (Oxford University Press, 1949).

[4] A. Jakimovski and H. Tietz. Regular varying functions and power series methods. J. Math. Anal. Appl. 73 (1983), 65-84; Errata, ibid. 95 (1983) 597-598.

[5] R. Kiesel and U. Stadtmüller. Tauberian theorems for general power series methods. Math. Proc. Cambridge Phil. Soc. 110 (1991), 483-490.

[6] R. Kiesel. Taubersätze und starke Gesetze für Potenzreihenverfahren. Dissertation, Universität Ulm, 1990.

[7] W. Kratz and U. Stadtmüller. O-Tauberian theorems for J_p -methods with rapidly increasing weights. J. London Math. Soc. (2) 41 (1990), 489–502.

[8] W. Kratz and U. Stadtmüller. Tauberian theorems for Borel-type methods of summability. Arch. Math. 55 (1990), 465-474.

[9] B. Kwee. A Tauberian theorem for the logarithmic method of summation. Proc. Cambridge Phil. Soc. 63 (1967), 401–405.

[10] H. Tietz and R. Trautner. Taubersätze für Potentzreihenverfahren. Arch. Math. 50 (1988), 164–174

[11] E. C. TITCHMARSH. The Theory of Functions (Oxford University Press, 1947).