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DAVID BORWEIN AND XIAOPENG GAO*

Department of Mathematics, University of Western Ontario,
London, Ontario, Canada N6A 5B7

Submitted by Bruce Berndt
Received April 27, 1992

Two theorems are proved. Theorem I establishes sufficient conditions for a
generalized Hausdorff matrix H(4, «) either to be in B(/,) or not to be in B({,).
Theorem 2 shows, inter alia, that if I <p< o, a,>0, 4, :==a;+a,+ --- +a,, and
A,/na,— ¢>0, then the weighted mean matrix M, with weights a, is in B(/,) if and
only if c<p. There are two examples about cases when the conditions of the
theorems are not satisfied. A short proof of the fact that weighted mean matrices
are special generalized Hausdorff matrices is also given.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Suppose throughout that 1< p< oo, and that 4 :=(a,,) is a triangular
matrix of complex numbers, that is a,, =0 for n> k. Let /, be the Banach
space of all complex sequences x = {x,} with norm

el 1/p
nx|p:=(z |xn|f°) —
0

n=

and let B(/,) be the Banach algebra of all bounded linear operators on /,.
Thus 4 € B(/,) if and only if Ax e/, whenever xe/,, Ax being the sequence
with nth term (Ax), =37 _,a,.x,. Let

All,:= sup [lAx],,

llxflp<1

so that Ae B(/,) if and only if | 4], < o0, in which case | 4|, is the norm
of 4.
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Generalized Hausdorff Matrices

Suppose that 1:={1,} is a sequence of real numbers with 1,>0, 1,>0
for 21, and that « is a function of bounded variation on [0, 1]. For
0<k<n, let

1 t*dz
Bl =gy vl | = . 0<i<l,
(1) fr 2mjc (Ag—z) -+ (A, —2) (1)

Aa(0) 1= 2, (0+),

C'= C,, being a positively sensed Jordan contour enclosing A, A, ,, .., 4,.
Here and elsewhere we observe the convention that empty products, like
Agy1---4, when k=n, have the value 1. Let

1
Ank:=j6;tnk{:)da(z) for 0<k<n  A,:=0 for k>n

and denote the triangular matrix (4,,) by H(A «). This is called a
generalized Hausdorff matrix.

Weighted Mean Matrices

Let a:= {a,} be a sequence of positive numbers and let 4, ;=37 _, a,.
The weighted mean matrix M, :=(a,,) is defined by setting

a,,k::% for 0<k<n, a, =0 for k>n.
Let
Dy=(14+4)dy=1
1 1
Dr;3=(1+7)"‘(1+7) (2)
Ay A,
(1+4,)4d, for n=1
Then

D,=4,,d,.1= for n=0.

l+l Z

Also, it was proved in [5] that when all the 1’s are distinct

1 d :
J i di==%  for O<k<n. 3)
0 D,
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Although a continuity argument shows that this is also true for more
general A,, Lemma 1 (below) affords a shorter and more direct proof.
When o(f) :=1¢ and A,:=0, H(A, «) reduces to the weighted mean matrix
M, with d:={d,} given by (2). Conversely if d:={d,} is a sequence of
positive numbers with d,, := 1, then (2) yields a sequence 4 := {4,} such
that H(A, «) becomes M, when a(z) :=1¢.

The following theorem is due to Cass and Kratz [4].

THEOREM A. Suppose that a,=f(n) where f(x) is a logarithmico-
exponential function for x > x,, and that A, /na, — c. Suppose also that p > 1
and (1/p)+(1/q)=1. Then M, € B(l,) if and only if ¢ <p, in which case

E <, <otiolr <
p—c
where
% n+ 1\ k+ 1\
g =sup ( ) and =sup ( ) ;
! n>ukzo k+1 72 k>unZkA n+1

Cass and Kratz showed that A4,/na, necessarily tends to a finite or
infinite limit when a,, is generated by a logarithmico-exponential function.
Borwein [1] proved the following theorem.

THEOREM B. Ifp=1, ¢>0 and

A -4
W= sup k+1° "

ogken (Aptc) (4 n7]+c)<oo, )

and if [t~ |do(t)| < co, then H(4, «)€ B(l,), and
1
|H(, a)upsw[ =7 |da(1)].
0

Note. Although the proof of Theorem 1 in [1] in fact establishes
Theorem B, the statement of Theorem 1 has the simpler condition

Api1Sc+ 4, for nzn, (%)

in place of (4). Evidently (5) implies (4), but as illustrated in Example 1
{below) it is possible for (4) to hold for some ¢ and (5) to fail to hold for
any c.

One of the objectives of this paper is to show that, subject to the exis-
tence of ¢ :=lim A4, /na,, the condition in Theorem A that a, be generated
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by a logarithmico-exponential function is redundant when ¢ >0, and can
be replaced by the far less restrictive condition that {a,} be eventually
monotonic when ¢ =0. This objective is achieved by means of Theorem 2
{below) which is largely a specialization of our main result, Theorem 1
(below). In view of (2) and (3), the existence of lim A4,/na, in Theorem 2
corresponds to the existence of lim A, /n in Theorem 1.

We shall prove the following two theorems:

THEOREM 1. Suppose p=1. Let ¢, :=liminf A, /n and ¢, :=lim sup 4, /n.

(1) I[fwo>ec,;>0,> | 1/i,=0m, and o is a non-decreasing function

n=1

on [0, 1] such that a(0+ )=x(0), then
] '
|HG, @)l > [ 1o dae),
0

In particular, if (ot 7 doft) = oo, then H(4, o) ¢ B(I,).

(i) If limAd,/n=00 (ie, c;=o0), 27, 1/i,=c0, and o is a
non-decreasing function on [0, 1] such that «(0+)=a(0)<a(r) for some
re(0, 1), then H(4, a) ¢ B(l,).

(i) vaff, 1 |da(t)] < oo for some ¢ > ¢y, and ¢, >0, then H(A, o) e
B(l,), and

1
VH(, @), <t | Jdo(0)] < o0
0
where i is given by (4).

(iv) IflimA,/n=0and lim(4,,, —4,) exists, and if [t ~° |da(t)] < 0
for some >0, then H(A, a)e B(l,) for all p=1.

(V) If the sequence {d,} given by (2) is eventually non-decreasing,
and [5 177 |da(t)| < co for some p =1, then H(4, «)e B(l,).

THeorEM 2. Suppose p=1. Let ¢, :=liminfAd,/na, and c,:=
lim sup 4, /na,.

(1) If either 3 a, is convergent, or oo = cy = p, then M, ¢ B(l,).
(ii) IfO0<c,<c,<p, then M, € B(l,) and

P

<M, <u'”
1 P—C2
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where w is given by (4) with A, :=A,/a,— 1 and any ce(c,, p). Further-
more, if 0 <lim 4,na,=c<p and

An+1 An
-~ c+an for n (6)
then ”Ma”p:p/(p_c)

(i) If lim A,/na, =0, and

An+1_A

n

Ay 41 a,

tends to a limit, then M, B(l,) for all p > 1.

(iv) If limA,/na,=0, and {a,} is eventually monotonic, then
M,e B(l,) for all p> 1.

2. PRELIMINARY RESULTS

LEMMA 1. If D, and d, satisfy (2), then (3) holds.

Proof. Let I' be a circle enclosing A, .., 4, and lying in the half-plane
Rez> —¢ where 0<d<1. For O0<:<1 and zel, we have

tZ

o] L

for some positive M independent of ¢ and z. Hence, by Fubini’s theorem,

1 B Do pspn sndye T Fdz
Jy vy ai= == [ |

:_)ﬁkﬂ"'/lnf dz
2ni riz+ 1), —z) - (4,—z)

Let

1
& = = =2

Then |, _,, f(z) dz— 0 as m — oo, and so

1

1
z—mfrf(z)dp <Reslffa), N e —
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Consequently
! Ais1An dy
A (E) dt = - =—
J, 0 di= =D,

The following lemma is included here for convenience. Its proof is given
in [2].

LEMMA 2. Under the hypotheses in the definition of a generalized
Hausdorff matrix, we always have

0<2,(1)

VAN

Y ik()<1  for 0<i<1, 0<j<n
k=0

n=1

If, in addition, >°_, 1/4,= co, then

lim Y 2.(0)=

n—=cO k=0

! 0 if t=0 and Ay>0
1 otherwise.

The next lemma is essentially Theorem 4 of [3] with superficial changes
to make it a little more general and also easier to apply. We supply a proof
here for completeness.

LEMMA 3. Suppose that a, =0 for 0<k<n, a,, =0 for k> n, and that
{b,} is a bounded sequence of positive numbers such that 3. b, = co. Let

n bk 1/p
g, .= z fa EgY ('g‘) "
k=0 n

If 0 :=liminfo, and A :=(a,.), then | 4|, > 0. In particular, if o= o0, then
A¢ B(l,).

Proof. Suppose without loss in generality that ¢>0, and let O<pu<
i<go. Let

n —1
diyes T (1—?—") where b >sup b;.

n
k=0 b kz=0

Then t,:=T,—T,_=T,b,/bfornzl, and T, =Tq+ ¢+ -+ +1,—> @,
Let

n bk 1/p
Vui= Y, @uX,  where x;:= (F) , £>0.
k=0 k
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By Dini’s theorem, {x,}e/,. Further, there is a positive integer N
independent of ¢ such that for n=N

Then
o0 o0 oo
Yy Y xbzpt Y xh.
n=0 =

Therefore ||A|,=p and, since u is an arbitrary number in the interval
(0, @), it follows that ||A],=0. |

3. PROOFS OF THE MAIN RESULTS
To prove part (ii) of Theorem 1 we need the following lemma.

LEMMA 4. If liminf A,/n>0, and ¢, :=lim sup A,/n < ¢ < oo, then

B il

su < 0.
oskzn (Ae+c)--(d,_ 1 +0)

=

Proof. Let n, be a positive integer such that A,/n<c when nzn,.
For n=zk>n, we have

lp+e A,_i+c 1 1 n
> | ==,
’lk Anfl (1+k) ( +H—1) k

so that

A A k
kbl . A g"—ﬁ.{\(supi)c=:M1<OO

k=ny "k
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Let

i A'k+1 )Ln
M,:= sup 1 7 o
0sk<n<ng k+C “n—1

Then for 0 <k <ny,<n we have

£}

’{‘k+1”')"n ;‘k-i-]'“’l‘no

(At )= (Apoyrte) (Aete) (A1 t+6)

gy
(An0+c)“‘()'n71+c)

and so p<max(M,, M,, M\M,)<w. |
Proof of Theorem 1. (i) Let 0<w<c,/p, let

Y B
bn = " ’ln = /1.,,+W,
(A +w)- (4, +w)

and define 7,,(¢) by (1) with {1,} in place of {4,}. Since wp <c, there is
a positive integer n, such that A, > nwp for all n>n,. Hence, for nzn,,

b AL w7 pw 1 n—1
=" = o zl-——2z21—--=
) (”A) T

2

b

n

and so b,>b,ne/n. It follows that 3 b,=oco. Further, for 0<k<n,
0<t1<1,

AN L +w) L i
helt) () = ~Cairw) et g |
_ - TV 1 dz,
=T il = L= (zyi=z+wW)
k+1 2mi '[Cl (Ap—z1) - (Ap—2zy) '

=ha 0 ™

By Lemma 2 and Fatou’s theorem,

n bk Lp n 1, 1
liminf ¥ 4. (;) =liminf ¥ j A,,k(z)fwa(r);j 1= dot),
0

n—o g n n—ow g 0

and hence, by Lemma 3,

\H(2, m)npzjo1 = da1). (7
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It follows, on letting w — ¢, /p from the left and appealing to the monotonic
convergence theorem, that

| H(, a)upaj: 1P 1), (8)

Notice that (8) is true when the right side is either finite or infinite. In the
case when it is infinite, (8) means precisely that H(/, «) ¢ B(1,).

(iif) For any w>0, we obtain (7) exactly as in part (i). It
follows that [|H(A, o)]|, =[5t ¥ de(t) zr =" [ du(t) > oo as w— co. Thus
H(A, o) ¢ B(L,).

(111) This is an immediate consequence of Lemma 4 and Theorem B.

(iv) Observe that

Il

A, 172} Is
e Y (Rpar— A+ 2
" ”/Z:o( k+1 k)+n

So limA,/n=0 and the existence of lim(A,,,—4,) imply that
lim(4, ,,—4,)=0. Hence 4, ., <4, + ¢p for large n, and so, by Theorem B,
H(4, a)e B(l,).

(v) This also follows from Theorem B since, by (2),

D D 1 1
Apy— A==t _Zn_p ( ——J+1gt
i " dn+l dn ! dn+1 dn +

for large n. i

Proof of Theorem 2. (i) If > a,<co, then Y (ay/4,)" = co; but this
implies that M_,e°¢1l,, where ¢°:=(1,0,0,..), so that M, ¢ B(l,). That
M, ¢ B(l,) when o0 2¢, >p and } a,= oo, follows directly from parts (i)
and (ii) of Theorem 1 with a(#) :=¢ and A, :=4,/a,— 1, since 4, — co if
and only if % | 1/4,=co.

n=1

(ii) This follows from parts (i) and (iii) of Theorem 1, the final
conclusion being justified because the appropriate u=1 when (6) holds.

(ii1) This follows from Theorem 1{iv) and Lemma 1, since

An+1 An

an+1 dy

=’1n+l_;|'

n3

and [517"dr< oo when &< 1.
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(iv) First we prove that the hypothesis lim 4, /na, =0 implies that
lim a, = co. (In fact the hypothesis implies that n~‘a, — oo for every real
constant ¢). Let o, :=na,/A,. Then

A o o
1 L | 1__” _”,
OgA Og( n)>

n—1 n

so that logd,>logd,+X7_, «/k Since o, co, it follows that
log A,/log n — o0, and hence that, for any given ¢ and sufficiently large n,
log A,>(c+1)logn, or A,>n‘t! Therefore n ‘a,=n""'u,4,>
o, — 00 as B — 0.

Hence, since {a,} is eventually monotonic it must be eventually non-
decreasing, and so M, € B(l,) for every p>1 by Theorem 1(v). [

4. EXAMPLES

In this section we deal with two examples. For the first we construct
a generalized Hausdorf matrix H(A, )€ B(l,), with « increasing, for
which [}z da(t)=oc0 for every ¢>c,, where po>1 and ¢, is as in
Theorem 1(iii). This will show that the conclusion of Theorem 1(iii) can
hold when its main condition is not satisfied. The example will also show
that (4) can hold with ¢=1 while (5) can fail to hold for any c.

ExampLE 1. Suppose that p,> 1. Let

A i=m? for m*<n<(m+1)? m=0,1,2, ..,
[UPO

du(t) i=——— dt
U = o 12

for te(0,1].

Observe that ¢, :=1lim A,/n=1, and [§ ¢~ “*da(t) = oo for all ¢>c,. Thus
Theorem 1(ii) cannot be used to prove that H(A, a)e B(/,). Instead we
shall appeal to Theorem B. For m = 1, we have that

g i A1 s 1 A( m? )2’”“(m+1)2

(At 1) (Ao + 1) \m*+1 m
Since
7 1 m+1/2 1 m+1/2 1 1 ] 1
(F) o (1) s (mad) o £,
m m 2/ m m m
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it follows that f,, <1 for m= 1. Also because

Ty —— e
m— 00 lm271+1

1,

and A, /(4,_;+1)<1 when k is not a perfect square, we get

’lk+] "')’n
su - - < 0.
s P 15 6 (g g 1)

Since

: = 1po — ' dt
L : d"‘("‘)‘L tlogZ 2 = &
it follows that H(4, a)e B(/,) by Theorem B with ¢=1. In fact this
theorem shows that H(4, «)e B(/,) for all p=p,. On the other hand, a
simple consequence of Theorem 1(i) is that H(A, a)é¢ B(l,) for 1 <p<p,.
Finally, we see that (4) holds with ¢ = 1, but that (5) cannot hold for any
¢ since lim sup(4,,, ; —4,) = c0.

The second example will show us that it is possible for M., ¢ B(l,)
when A4,/na,— 0, although Theorem 2 tells us that M, e B(/,) when
A, /na,— ce (0, p). Thus the condition A4, /na, — 0 needs to be augmented,
as in parts (iii) and (iv) of Theorem 2, in order to ensure that M, e B(1,).
Correspondingly the condition 4, /n — 0 needs to be augmented, as in part
(iv) of Theorem 1, in order to ensure that H(/, x)e B(/,).

ExaMPLE 2. Define the weighted mean matrix M, with a:= {a,} as
follows:

1 for n=0
a,:=<{2" for m><n<(m+1)3 m=1,2,..
m2m ! for n=m>
Then
m+1yY—1
a,z2= Z Ay,
k=m?+1

and so the partial sum

Aprrp_1=14+ Y kK2 2=(m—-1)2"+>+09.

k=1
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Hence, for m><n<(m+1)7,

na, m22m
i - o,
A, 7 (m—1)2"%349
and
a2 ) m2m ! 1

AT S )29 4

Now let p> 1, and define x := {x,} €/, by setting

1 .
e —— if k=m? m=273,..
_JmPlogm
Ky 1=
0 otherwise,
and let
1 n
yn = Z akxk'
A, k=0
Then, for 4<m* <n<(m+1)>%4
>an12 5}?’1
n = xm /]
Y A, "7 mP logm
Thus
(m+1)2—1 2mSP = % 257
P — and so yE= 2= o0,
n=m? y” m Ing m HZ“O ’ mZ—-‘Z 1ng m

Consequently M, ¢ B(l,), even though lim 4, /na,=0.
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