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SYNOPSIS

Given 2 power series #(x)=2 p,x" with real non-negative coefficients and having
0
radius of convergence p, 2 summability method P is defined as follows:

Sp>d (P) if —(—) DuSpx™—>l as x—>p —

Th_e main concern of this note is to establish conditions sufficient for one such method
to include another.

1. INTRODUCTION
SUPPOSE throughout that

y=n

pn>o,‘ Gn = 0, va>o, ng>o (m=05; T; v« o)
=T
Let

P(x) = Z_/Oénxnn ?(x) = Z‘Ognxn

and denote the radii of convergence of the power scries by p, and p,
respectively. ‘
Given any sequence {s,} of complex numbers we sha!l use the notations:
&

j)(x) ZPMS x" gs(x) ?( ) Lo aSn%"

n=0

‘sx

If pp > 0 and 2 ppsax”® is convergent in the open interval (o, p,), and if
2+(%) tends to a finite limit / as x—p,, ~, we shall write
Sa~—{ (P).
This defines the summability method P; the method Q, associated
with the sequence {g,}, is defined similarly. The method P is said to be
regular if 5s,—/ (P) whenever s,—~Z. If p,=p, > 0 and s~/ (P) whenever

o2 (Q), P is said te include Q and we write PDQ If P20Q and
Q2P we write P~ Q.
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Suppose in what follows that y is a real function of bounded varization

1

in the interval [0, 1]. The main result to be established is:
THEOREM A.—If
1 1
(&) pn:gﬂ[ mdy(l) = BQ,J | dy() | (1>8>0, 2=, N+1,...)
Yo 0

(&) pp=p¢ > o and P is regular,
then P2 Q. .

In the next section we prove three subsidiary theorems which have
some bearing on Theorem 4. Theorem 1 states necessary and sufficient
conditions for Psto be regular; it is not new but its proof has Leen included
for the sake of completeness. Theorems 1 (ii) and 2 show that (&) is a
consequence of (@) when p,=c. Theorema 3 states a necessary and
sufficient condition for p, and p, to be equal when ® >'p, > 0 and (a)
holds with a moenotonic .

In § 4 Theorem A is linked with the theory of moment sequences;
and in the final section some examples are given.

2. SUBSIDIARY THEOREMS

THEOREM * 1.—(i) If @ > p=p, > 0, then a necessary and sufficient
condition for P 1o be regular is that 2, p.p" = .
(ii) If p, = © then P is regular.

Proof of (i).—Note first that, since p, > o,

Zop" > lim () > ZﬁnP (m > o),

I MB

and hence that : -

lim p(x) = anp

Z—>p—

Swufficiency. —Suppose that s,—+0 and let 7 be any positive integer.
Since, by hypothesis, p(x)— © as x—p —, we have

Tim [20) | < B == 2 g, |50 |an < 52 |5,],
z-—)-p-. Iﬂy-‘-?( J n=m n2m

which tends to zero as 7— 0. Hence p,(x)—0 as x—p -, and an immediate
conseguence is that P is regular.

* Hardy 1949, pp. 79-81.
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Necessity —Suppose that P is regular and let » be ah integer such
that p,, > 0. Detine a sequence {s,} as follows:

Sp=0 (n+m), S =1[P

Then 5,~0 and therefore 24x) =1/p(x)—0 as x—p —. Hence

;,J 2op™= lim p(x) = oo,

T=>p—

Proof of (ii)—Suppose that s,~0. Let m be any positive integer
and let £ be the first integer greater than » such that 21> 0. Then

o —_—xm m
lim < Hm e id = 3d
Jm 2@ 1< lim oo 3 g | s * M sl = 0 s,

and the final expression tends to zero as m—co. Hence P is regular.
THEOREM .2.—-!f Pn> 8,9, (n>N)

where w > §, =_|jz‘" [dx(®) ]| > o (n > o),

am{ if pp=w, then p, = .

1
Proof—Since 8, > o, J. | dx(?) | cannot be zero for all % in (o, 1).
Further '

1
Dn 2 guu™| | dy(?) | (1>u>0,n>N).

Since p,, = oo, it follows that Pq = .

1
THEOREM 3.—Suppose that n =gﬂjot"dx(t) (n > N) where y is non-

decreasing and bounded in [o, 1], and that o > Pp > 0. Then in order
that p, =p, it is necessary and sufficient that y(1) > x(2) whenever 1 > ¢ » o.

Proff. Sufficiency.—Let u be any number in the open interval (o, 1).
Then '{ dx(t) > o and

1 1
gﬁjudx(i) > p, > g“uﬂj dy(?) (2 > V).

Consequently p, > p, > 2p,, and it follows that Pp =P

N“f-’“ff}’-—"suppose that « is such that 1 > %> o0 and x(1) = y(%).
Then i

P =9'n_[0t"dx(t) S -x(©} (2> ).
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Since x(1) > x(0) and p, =p,, it follows that p, < #p,=up,, which is only
possible if % =1, since 0 < p, < . Hence the required result.
We shall use the following easily verified lemma in the proof of

Theorem A.
LEMMA.—If P is regular and p, =g, for n > N, then P = Q.

\

3. PROOF OF THEOREM. A

Suppose that-condition () holds with /' =0. In view of the lemma

this involves no loss in generality.
Let p=p,=p, and let {s,} be any sequence such that > g.s.w" is
convergent whenever |w | < p. Suppose that 0 < x <p. The equality

in (a)yields ‘
o w0 1 1 w»
> pataat= g,,s,,x“j mdy(l) =J dx(®) D 7asalxd);
n=0 n=0 ] 1] n=9_

the inversion being legitimate since

1 @ 1 @0
[ 1501 Sanlsul @< [ 1860 Saalsnlan < .
0 n=0 : (1] n=0

Hence
1

I
1) =——1 g(xt)g(xt)dx(?). 1
2= | afeatenaxs ®
Similarly, using the inequality in (z), we obtain

1
2(x) > SJ‘DQ(x!) | dx(®) |. , (2)

Further, in view of hypothesis (4) and Theorem 1,
2(x)>o as x—p-—. (3}

It follows from (1), (2) and (3) that, for 0 < w < p,

lim |2, |
]___' 1 wlz ) ( 5 = 1 1
< lim — S(x)g(x)dy(z lim — s
Bm L axag(aiy() | + Tim — L,f )

il i 1 w0 e : =k
zalps: -—‘h'[ | X @) | D 0n | 50| w7 4872 64 | g,(0) [ =871 32 | ¢,(2) |.
0 * n=0 v>w ~

z2—>p— P(x) t>w

Consequently s,—0 (P) whenever s,—o0 (Q); and hence P2 Q.
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4. MOMENT SEQUENCES

Given any function ¢ of bounded variation in [0, 1] we define an
associated normallzed function ¢* as follows:

o {f=q)
PO =1 Hp+) +(t )} -dlo) (o<t <1)
() =dlo)  (£=1).

Let a be a real function of bounded variation in [0, 1], then (Widder
1946, Theorem 842)

1 1
j da(f) :J da*(f) (n > 0),
0 ]
and (Widder 1946, Theorem 84 and Hobson 1927, § 247)
jt“ | da(?) | > J. | da*(t) l (ﬂ >0). |

Further, it is known (Hardy 1049, Theorem 203) that if B is a functlon
of bounded variation in [0, 1] such that

jt”dd(t)=j't"d[3(z’) (2 o S
0 1}
“then o*(#) =B*() foro < ¢ < 1.
A sequence {u,} is said to be an m-sequence (moment sequence) if
3 1 o O
,un=L:"dx<z> (n > o)
where ¥ is a real function of bounded variation in lo, 1]; if, in addition,

1
#n>3jt“la’x
0

(r>28>0, =N, N+1,...),

we shall call {u,} an si-sequence. In view of the introductory remarks
in this section the definition of 7-sequences is unambiguous.
We can now re- WOl‘d Theorem A as folIows

THEOREM A —If po=linga (2> N), where {,u.ﬂ} is an m-.regueme
‘ and, i pp=py> 0 and P is retmlar, then P2 Q. . : :
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We conclude this scction with some useful results concerning -

sequences.
A scquence {@,} is said to be totally monotone if

k
-ﬂr:dn:z(—l)"(bﬂnw >0 (=E, T, o) R=D, T, . .. L)
y=0

It is known (Hardy 1949, 2, § 11.8) that a necessary and sufficient condition
for {a,} to be totally monotone is that

=Jlt“d&(t) (n > o),
0

where % is non-decreasing and bounded in [o, 1].

Hence {u,) is an wmz-sequence if and only if u,=a, -4,, where {z,}
and {4,} are totally monotone,

The following propositions are easily verified:

L. If {pn) and {A,} are m-sequences, then so also are {u,A,} and {p, + A}
(¢f. Hardy 1949, Theorem 210).

I If pn=an = b, where {a,} and {6} are totally monotone, and if

a, > yb, y>1,a2=N N+1,...),

then {p,) is an m-sequence.
111, Any m-sequence whick converges to a positive limit is an -
sequence. T

IV. If both {u,} and {1]u,} are positive m-sequences, then they are
mi-sequences. .

Note that III is a consequence of II, and IV a consequence of III,

5. EXAMPLES

((n:a) (@> 1)

po=
1(?2 +1)7t (a=-1),

Let =

so that, for |z | < 1,

((1-x)=1 (a> —1)

> pene]

n=0 . H[-—xlog (r—x) (a= -1).

Denote the power series summablhty method associated with the sequence
{23} by A,. Ay is then the ordinary Abel method.
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For a > -1, the radius of convergence of > #%x" is unity and, by
Theorem 1 (i), A, is regular.
Let w> A> ~1. Then

- D+ :
SO -‘.t“.z”‘(r—t)“““"ldt,

0

24 T-Na+
so that the sequence { »}/p4} is totally monotone. Further

p;l I m+p+r 1

£op+1 om+r pEil

since {1/p5t} is totally monotone and {(» +u +1)/(% + 1)} is an m-sequence
(Hardy 1949, 264) which converges to unity, it follows, in view of
propositions I and III, that { p;}/h} is an -sequence.

Hence, by Theorem A’,

A2A, (>Az-1)*

Denote by A, the power series method associated with the sequence
{2+ 1)%}. It is known that, for a > ~1, both { p3/(z +1)°} and {(» + 1)?[pa}
are m-sequences (Hardy 1949, Theorem 211). Hence, by proposition
IV and Theorem A’,

Al = A

a

(a > ~1).
Let

I

=(a+1)(a+2)..-(a+”) (a>-1,n=1,2,...),

70=1, ¢
and denote by B, the method associated with the sequence {g3}. B, is
then the Borel exponential method.

The series ,4°%™ is convergent for all x and hence, by Theorem I (ii)
B, is regular for a > —1. Since '

w
g=§—2 A=>-1,p>-1),

it follows that
B,2B, (u>A>-1).

Finally, denote by B, the method associated with the sequence
{1/(n +1)°n!}, where a is any real number. As before we obtain

B,~B, (a>-1),

from which it follows that B, 2B, when u > A and A> --1. However

# Sec Borwein 1937, where the result Ay 2 A, (g > 4> —1) is proved.
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the restriction A > -1 is unnccessary in this case. Since B, is regular
for all real a and the sequence {(zz+1)*"*} is totally monotone whenever
g =A> o (Hardy 1049, 266), we have, by Theorem A,

B':)B; (u > A).

§—_—
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