ON THE OESARO SUMMABILITY OF INTEGRALS

D. BorwEIN*.

[Ewtracted from the Journal of the London Mathematical Society, Vol. 25, 1950.]

1. It is to be supposed in all that follows that g(t) is integrable in every
finite interval (1, X)t.

* Received 20 July, 1949; read 17 November, 1949,
f Throughout the paper, every integral over a finite range is a Lebesgue integral,

and j denotes lim r, if this limit exists, finite or infinite.
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290 D. BorRwWEIN
We write, for ¢ =1,
Iyg(t)y = Go(t) = g(2),

Lgl) = Gu(t) = 1 [ t—wrryman @0,

= (d/d) ™ G () (e <<O)¥,
Mo g(f) = g.(t) = L(a+1)t2 G, (1) (a=0).

We shall apply the same system of notation to letters other than g, G.

It is well known that, for a > 0, @, (¢) exists almost everywhere in (1, )
(everywhere if o >>1) and is integrable in every finite interval (1, X);
and that, for « >0, B> 0,

1y G, (1) = G.a(t),

whenever the right-hand side exists. Consequently, for a =0, G, (f) is
absolutely continuoust.
If, for a =0, I'(a+1)=G, ., (t) 1 as t—>o0, we write

fg(t} dt=1(C, a),

and say that the integral is summable (C, «) to I, and if in addition
7 Gy (t) is of bounded variation in (1, <o), we replace (C, a) by |C, .

2. We shall prove the following theorems.

THEOREM 1. For p<<0,A=a >0, a necessary and sufficient condition
that

[irowa=10,n for o)
18 that

0 T(—
L = G, (£) dt — F(i_f;)) 1@ o) | & At

THEOREM 2. If p<<0, a<<0, A0, G, (t) is absolutely continuous,
cmdj pg(t)dt is summable (C, ) [or |C, Al menj @, (1) dt 45 sum-
1 a5
mable (C, A—a) [or |C, A—al].

* At the point ¢ = 1, d/d¢ denotes differentiation on the right.
T Where no interval of absolute centinuity is specitied, it is to be understood that the
property pertains to every finite interval (1, X),
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TaroreM 3. If p>0 (p#£1,2,3,..), A=0, A—a >0, G, () is
absolutely continuous, and J 1P g(t) dt vs summable (C, A) [or | C, A], then there
1

are constants Sy, Sp, ..., S Such that*

& [p]+1
j b+ {Gu(0)— = s,t}dt is summable (C, \—a) [or |C, A—al].
r=1

1

If p is @ non-negative integer, the theorem holds only if p—a is a non-
negative integer.

Analogous results for series, which include well known theorems of
Hardy and Littlewood and of Andersen, have been established by
Bosanquet{, who has also proved a result for Cesaro-Lebesgue integrals
similar to the first version of Theorem 1.

3. In this section we establish some lemmas.

Lemma 1§, If
PHLF() = ﬁw‘g(u) i (3.1)

where p 18 a real number and t = 1, then, for a > 0,

Pl (1) = Y ur— @, (u) du. (3.2)

1

Differentiating (3.1) we get

: g(t)= (p+1) S )+ (0).
Consequently

Gopa(t)= (p+1) o1 O)+ L1 {8 ()}
= (p+1) Faya (O)+t Lo f' () —(a+1) Lo f'(2)-
It follows, since f() is absolutely continuous and f(1) = 0, that
Guta(t) = (p—a) Fopy(t)+1 F.(t). (3.3)
Now differentiating (3.3) we get
Gu()= (p+1—a) F () +L F.' (1),

* Clearly the constants are unique,

T L. 8. Bosanquet [1], Journal London Math. Soc., 26 (1950), 72-80.

1 L. 8. Bosanquet [2], Proc. London Math. Soc. (2), 49 (1945), 40-62, Theorem 22.
§ Cf. Bosanquet [2], Theorem 21.
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and hence

7 . pel du, being absolutely continuous, is a bounded non-
tP—“Gu(t)Ei{tH'lﬁ“F“(t)}. ( B gtuldu g

ng function of ¢ in (1, ). Hence the result.*
On integrating (3. 4) we obtain (3. 2), since, by (3. 3), F,(t) is absolu
continuous and F,(1)=0. P ersion of the following lemma is contained in a result

LEMMA 2. ] f 8> 0 and n is a positive integer, then* nquetf. We shall, however, prove it by a new method, similar

Q. ( 1 g(u) | used in establishing the second version.

: o U

(i) ptn—i \6\*); e P . If,fOT A> 0 and p4+A > —1, tPm,g(t) =0(1) as t—>co [or
=@ (o) 1 (®]g(w) ed variation in (1, )], then, for p4q > —1, £2-9m, {t4g9(¢)} =o0(1)

(i) L u’; =y s o). j ‘ __g du. o0 [or is of bounded variation in (1, c0)].

The results are obtained by inductive arguments based respectiv

t such that
on the mequahtles

RS <o (1), (4.1)
t“""l ‘H‘“’” TOtn—1 1y | uttnt o
d 4
i ' ) S AN
® @, (u) E gota. T grtet 1( ¢
j e du <J u—‘““duJ’ lGn_l(v)|dv-~J‘ b v)[dvj W= s ;
1 -
i e ) = o | =2 (1= 5) g du
=i n—1
=y L pp e dv.

[ —apsgtuas § Colatiur

% L tp+]\ ey nl
EMMA 3. If g(t) = o(1) as t—co [or is of bounded variation in (1, o)l L

then, for & > 0, t“‘j wg(u)du=o(1) as t—>co [or is of bounded variation

e E M=)y Y (t—u)*1g () du
in (1, )].

_ﬂ=0 n!t”"‘""‘"‘ 1

The first version is easily verified.

In the second version it is enough to suppose that g(¢) is positive, bounded
and non-decreasing in (1, ©). Then, for ¢ 1L

G,\ i = (—Q)n (A)ﬂ. GJ\ n(t) .
e TenE SLath el @)

rsion being justiﬁed by (4.1), since (—q), is of one sign for all n
ciently large. We write

)

dt {t—sj u*tg(u) du} tg(t)— SHHIJ g (u) du

oI Grpn(t
B(i)=ﬂ§1( qg)ﬁ(h)n B +(n)_ (4.3)

ik ﬁu&ul e First version. Since the validity of (4.1), for all sufficiently large ¢,
nplicit in the hypothesis, it is sufficient, in virtue of (4. 2), to prove that
= o0(1) as t->o0.

and

0t f w1 g(u)du < 51g(t).
1

'his proof was suggested to me by Dr. J. Cossar.
4. 8. Bosanquet, Journal London Math. Soc., 23 (1948), 35-38, Lemma 1. The
ment of O by o presents no difficulty.

* (8)e =8 (84+1)...(64+n—1), and max denotes the essential upper bound.
t Cf. L. 8. Bosanquet, Proc. Edinburgh Math. Soc. (2), 4 (1934), 12-17, Lemma 2.
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Now
Ghrinlt) &
it = oo [ Gactl®) iy (=1, 2,3, ) (4.9

and, since t»-:@, (; A()=o0(1) as t—>00 and p4+-A+1>0, it follows, by
Lemma 3 and induction, that

f}}i{‘&: (1) as t>o0 (n=1,23,..). (4.5)

There is thus 3 constant M such that, for all £ >1,

Gh 1 () M
{o+A+1 \P“H\*l-l’
and hence, by Lemma 2(i), with n, 8 replaced by n—1, p+A+}-2,
Gy (t) M
—Aj'_’@_v s sl b —
Also, since PHA4+1>2—g,
3 | (=2)s ) %
Blpar1y [ = @ (4.7)

It follows from (4.6) and (4.7) that the series defining B(¢) in (4. 3)

converges uniformly with respect to ¢ in (I, o), and thus, by (4.5)
B(t)=o0(1) as t—co,

H

Second version,
forall¢ > 1, it is suff
variation in (1, ).

Since @, 1)
function A (¢ Ik

Since in this case G, (¢) exists, and thus (4.1) holds,
cient, in view of (4.2), to prove that B(t) is of bounded

is absolutely continuous and G,,1(1) =0, there is g
integrable in every finite interval (1, X), such that

— 1uﬁ,\wdu. (4.8)
Thus, by Lemma I

M St H'n,—-l (u)

tetifn — Wﬁd’“ fn=1 2.3 ... (4.9)

Now from (4 . 4),

with n = 1, and the hypothesis, it follows, by Lemma, 3,
that 210, (s

1s of bounded variation in (1, ©). Hence, by (4.8),
e L B

* K. Knopp, Infinite series, p- 299,
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there is & finite number M for which

r @) | g, M
L | wPtAER PIALT’
and thus, by Lemma 2(ii), with », 3 replaced by n—1, 2+A+2,
ET ﬁ%—,ﬂ% du gw—}\ﬂﬂ‘ﬂ; (n=1,23..) (4.10)
Then, by (4.7) and (4.10),
S S T2l | gy < o0 (4.11)
= !

In view now of (4.3), (£.9) and (4.11), we have

(_g)n (’\)'n St H ( ) du — ‘r E ( )'.r;. (A)'n H'n—l(u)
1 n

—n=11 " .,
= up+?\+'n.+1 8 uPHA+ngl 0

Bt)= =

and since, by (4.11), the fina] integral is of bounded variation in (1, oo0),
this completes the proof.

5. Proof of Theorem 1* (first version). Necessity. We write
]
trrLf(t) = 5 uf g (u) du. (5.1)
1

The hypothesis is then equivalent to
my {1 f(t)—1} = o(1) as t—>o0.

Since p < 0, it follows by Lemma 4, that
i m, { f(t)—U*1} = 0(1) as t—0.
Hence pri-nm, JF. (=1Lt =o(1) as t—>o.
Since p <A, & further application of Lemma 4 now gives
{tp-t—l—a F, (1)l Iat—kl} =o(l) a8 t—00. (5.2)

It is familiar that, since p <0, == I t—15T'(— p)/T'(a—p) as t—c0,
d thus, in view of (5.1) and Lemma 1, the result follows from (5. 2),
an ;

Sufficiency. We may reverse the argument to obtain the required

16. 2k
resuA similar proof, in which the terms multiplied by ! do not appear, can

be used to establish the second version of the theorem.

* (f. Bosanquet [2], Theorem 22,
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6. We shall require the following lemma in the proof of Theorem 2.

LeMMA 5. If pis a real number, A > 0, g(t) is absolutely continuous, and
ft*’g(t) dt s summable (C, ) [or |C, A[], then ft*’“g’(t)dt is summable
(0, A4-1) [or | C, A+-1]1.

We have

[larg ) du =190 —g()— (o4 1) [ gty

The result follows, since a well known and easily proved consequence of
the main hypothesis is that m, ., {#*g(t)} =o0(1) as t—>o0 [and is of
bounded variation in (1, oo)].

Proof of Theorem 2 (first version)*. We write 5 =a—[a], and so
0<8<<1l. Since G, (t)= (d/dt)-=-1G;(t) is absolutely continuous, so
is G4(t), and thus :

= 11
j' wrtl=8 gy | (u)duzt*’+1—'5Ga(t)-Ga(l)—(p+1—8)J‘ uP Gs(u) du.  (6.1)
1 1
It follows from our main hypothesis that J w g(u)du is summable
1
(C, A4-1), and thus, by Theorem 1,

ru"—s Gs(w)du is summable (C, A41—38). (6.2)
1

Another consequence of this hypothesis is the result stated in the proof of

Lemma 5; namelyt
M1 {FT1g(8)} = o(1) as t->o0.
Proceeding now as in the proof of Theorem 1, we obtain
My g 5 {FPT10 Go(t)} = 0(1) as {—oco. (6.3)
In view of (6. 1), (6.2), and (6 .3),

j w4 Gy (u)du is summable (O, A\-1—3§),

1

and the result is now obtained by —[a]—1 applications of Lemma 5.

* The proof of the second version is similar.
t I am indebted to Dr. Bosanquet for pointing out that this result could be used in
the proof.
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7. We require another lemma.

Lemma 6*. If, for p>0 and A >1, 5 trg(t)dt is summable (C, })
1

[or | C, A[], then there is a constant s such thatt
j =1 {G,(t)—s}dt is summable (C, A—1) [or |C, XA—1]].
1

We suppose first that s is an arbitrary constant, and fix its value in
the course of the proof.
We write

2(t) ='5 wyg(u)du, w(t)= jiup—l{Gl(u)as} da,

1

and
$(t) = v (f)—sA(f—1 )11, (7.1)
We shall first establish the following identities, for A>1, ¢ > 1.
oa(8) = Mty (B)— (p-+-X) 20, (1) 5 (1— 1o, (7.2)
vy (8) = tw," () — prwy () +s(1— 1/t (7=3)
trw,’(t) = J’t uP b (u) du. (7.4)
We have :

t
o\ (f) = J’ (t—u) urg(u)du
i
= [w(t—u)?\ {& (u)—g}:L
_Y {Gy(uw)—sHpw = (t—uP —dwr (t—u) T} du
1

=s(t— 1) —pt* w, (t)+A Si (t—uPLur{G(u)—s}du

= 8(t— 1) —pt* wy (0) +A* {w_4 (£)—wn (2)} 5
from which (7.2) follows.

* See G. H. Hardy and J. E. Littlewood, Proc. London Math. Soc. (2), 27 (1928),
327-348, Theorem 2, for the case A an integer of the first version. See also A. F. Andersen,
Proc. London Math. Soc. (2), 27 (1928), 39-71, Hardy and Littlewood, loc. ¢it., C. E. Winn,
Journal London Math. Soc., T (1932), 227-230, and L. S. Bosanquet and H. C. Chow,
Journal London Math. Soc., 16 (1941), 42-48, for series analogues.

@

1 Since J t~ldt = o0, s is unique,
1



298 D. BorRWEIN

Now
twy! (£) = DAL 1) 6(d/de) ft Wi (1)} = DA+ DA Wiy () =X Wi (0}
= My, () —w, (0} (7.5)

Substituting (7.5) in (7.2), we get (7.3).
Differentiating (7.3), we get

o ()= (1—p) wy (O)-F " (B)+-aA(— 1222,
and hence, in view of (7.1),
e d(t) =t {(1—p)wy’ () +twy (1)} = (d/de) {fw, (1)}

Identity

(
and w,’(1

7.4) now follows, since, by (7.3), w,’(¢) is absolutely continuous
E=10).

Proof of Lemma 6. Since either hypothesis ensures the convergence of

S w?v,’ (w)du, we may now fix s so that j wP p(u)du = 0%,
1 1

Tt follows then from (7.4) that, for £ >1,

Hrw, (t) = —S:O wP () du. (7.6)

First version. By hypothesis v, (¢) tends to a finite limit as {—> o, and
consequently, j é(u)du is convergent. It follows then from (7.6) that
1

tw,’(t) = o0(1) as t—>o0, and hence, by (7.3), w,(¢) tends to a finite limit.
The result now follows from (7.2).

Second wversion. By hypothesis j | v, (¢)|dt < oo, and hence
1

fmwm<m

* If J wrg(u) du = 0, then, by (7.1),
1

B ; , ‘
j we va(w) du = s\ J (L—1/up~ u=r—2 du = sA j (1—t)—1 0 d.
1 1 0

Pl tly (. B Dl e b
Thus 8= I‘(A+1}F{p+l)j1 w—r S (u) du AT 1) () L uw vy () du.
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Now, by (7.6),
5 Iwh'(mdt\_{S tP“ldtJ u—ﬂ};&(u)]du:j u_“’]QS(%)]durt"‘ldt
1 1 ¢ 1 1

L2 [0 < oo

Thus w, () is of bounded variation in (1, o), and the result follows from
(7.2).

8. Proof of Theorem 3% (first version)t.

Case 1. Suppose that p>1 (p#£2, 3, ...), a>—1, and assume the
theorem with p replaced by p—1.

Tt is well known and simply proved that
I, {tg ()} =10, 1 () —(a41) G, 1,(0) (8.1)

whenever @,,,(¢) exists. Since @,,,(t) is by hypothesis absolutely con-
tinuous, (8.1) holds for all ¢ >1, and

I, {tg(t)} is absolutely continuous. (8.2)
Hence, differentiating (8.1), we get
1 (g0} =16, () — Gy 0). (8.3)

Now J t*-1 . tg(t)dt is summable (C, ), and thus, in view of (8.2)
1

and our assumption, there are constants a,, a,, ..., oy such that

[« o] [ ] v
Sﬂ**@dmm—éamﬂdﬁsmmmMGWJw@ (8.4)
1 r=1

(= 4]

By Lemma 6, since j’ trg(t)dt is summable (O, A41), there is a
1

constant a such that j #-1{@,(t)—a}dt is summable (C,A). Since
1

a>—1, I, ,{G(¢{)—a} is absolutely continuous. Thus, in view of our

assumption, there are constants b, by, by, ..., by, such that

il L¢3
g 12 {Q, . ()—b(t—1)*— X b,t*"} dt is summable (C,A—a). (8.5)
1 r=1

* (f. Bosanquet [1], Theorem 2.
t The proof of the second version is similar,
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Also, since o > —1,
@ il =
g e (t— 1y 5 STk per|dh < 0. (8.6)
1 r=0 r

In view now of (8.3), (8.4), (8.5) and (8.6), there are constants
81, 835 «uvy Spp141 Such that

o [l +1
5 = {G,(t) — X s, t*"}db is summable (C, A—a), (8.7)
1 r=1

and thus the proof of Case 1 can be completed by induction, once the
following case is established.

CasE 2. Suppose that 0 < p<1and « > —1. We argue as in Case 1,
justifying (8.4) and (8.5), from which the sum terms are now omitted,
by Theorem 1, when a == 0, and by Theorem 2, when —1 <<a < 0. Then
(8.7) is the required result.

Case 3. Suppose that p=>0 (p#1,2, ...), and a<<—1. Let m
denote the positive integer for which —1 < a+m < 0. Then, in view of
the results already established, there are constants a;, s, ..., @41 such
that

2 ; [p1+1
5 i (8 ()= 53 a,t+m-r}dt is summable (C, A—a—m),
1 =1

and the result follows by m applications of Lemma 5.

Case 4. Suppose that p and p—a are non-negative integers. 'The result
is obtained by —a applications of Lemma 5, when a < 0, and « applications
of Lemma 6, when a > 0.

The exceptional case. Suppose that p is a mon-negative integer and that

p—0+%0,1,2, ... Assume that, whenever G, (t) is absolutely continuous

anid g tog(t)di is summable (C, X), there are CONSLAnts 8y, Sgy «-vs Spp1 SUCH
-1

that

["r=fo.0- =

s,,t«—r} dt is summable (O)*. (8.8)
1 r=1

Now let m = max (—[a], 0), 7(t) = (d/dt)+ {1/log (t4+1)}, and take

g(t) =t+m2 L, I {r+mn()} (¢=1). (8.9)
Tt follows from (8.9) that
#g(t) =t (t)+0(2) = O(1/{t log? (t+1)}) 5 (8.10)

* () denotes (C, p) for some u > 0,
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and that there are constants iy, fig, +..s fpsy SUCh that
pt1
G, () = Llog (t+ 1)+ 2 pyt—1PHr40(). (8.11)
re=1

Tt is clear from (8.9) that, when m =1,
Go(l) = G—1(1) = Gl—m(l) =0,
and thus, for m =0,
Ga+1(t) = IL—m Gn+m(t) = Il#m Id+2m G-—m(t) == Ia+m+1 Gﬁm(t)-

Henoce, since a+m-+12=1, G ;() is absolutely continuous. Also, by

(8.10), 5 #g(t)dt is absolutely convergent, and so is summable (C, A).
1

Suppose now that o =p+1. Tt follows from (8.8) that there are
constants ay, Gg, <oy Tpy guch that*

o 1
5 tP—“{Gﬂ(t)J Pﬁ ar(t—l)“—"}dt iy summable (C).
1 r=1

Hence, by Theorem 2, with p, a replaced by p—a, p+1—a, there are con-
stants a,, ay, ..., @,y Such that

w +1
' 5 t"{GPH(t)— o5 a, (t—1) Fl—"} di is summable (C).
1

r=1

However, in contradiction to this, it is evident from (8.11) that the final
integral is strictly divergent.

Suppose finally that o < p+1, and let # be the non-negative integer for
which p+1>a+n>p. It follows from (8.8), after n applications of
Lemma 6, that there are constants by, by, ..., byi1s €1y Cgs -es Gy SUCh that

j? tP—“*”{ G )= %11 b, (t— 1)t — 7%1 ¢, (t— 1‘}3”—7} dtt is summable (C).

(8.12)

Hence, by Theorem 1, with p, a replaced by p—a—n, p+1—a—n, there
are constants B, Ba, «-os Bog1s Y1 Y2s s ¥ such that

r t‘l{Gp_H(t)— S B, (—1pHr— %(t—l)pﬂ%—r} dt iz summshle (€),

1 r=1 r=1 ®.18)

* Here and in (8.12), we make use of the result:

.
b

+1 it
p-r—'3 (B ”) (=1~
1 Pt v—r

dit < o (B>p, 7= 1,2, .. p 1)

t Here and in (8. 13), the second sum disappears when n = 0.
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and this also is incompatible with (8.11); and thus the assumption cannot
be valid.

This completes the proof of the theorem.

Tn conclusion, I wish to thank Dr. L. S. Bosanquet for his valuable
suggestions and criticisms.

University College,
London.
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