Complete Lyapunov Functions and Control

Chris Kellett

University of Newcastle, Australia

Simsfest - 22 August 2015

- Lyapunov's Second Method
- Control Lyapunov Functions (CLFs)
- Fundamental Difficulties
- Complete Lyapunov Functions and Perplexity

Lyapunov's Second Method

<u>Theorem:</u> Given $\dot{x} = f(x)$ with $f(0) = 0$. If there exists a continuously differentiable $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ that is positive definite and radially unbounded and satisfies

$$
\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x) \rangle = L_f V(x) < 0
$$

then the origin is globally asymptotically stable for $\dot{x} = f(x)$.

Lyapunov's Second Method

<u>Theorem:</u> Given $\dot{x} = f(x)$ with $f(0) = 0$. If there exists a continuously differentiable $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ that is positive definite and radially unbounded and satisfies

$$
\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x) \rangle = L_f V(x) < 0
$$

then the origin is globally asymptotically stable for $\dot{x} = f(x)$.

A Lyapunov function, *V* , can be thought of as a generalized energy with the origin being a point of minimum energy.

Lyapunov's Second Method

<u>Theorem:</u> Given $\dot{x} = f(x)$ with $f(0) = 0$. If there exists a continuously differentiable $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ that is positive definite and radially unbounded and satisfies

$$
\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x) \rangle = L_f V(x) < 0
$$

then the origin is globally asymptotically stable for $\dot{x} = f(x)$.

A Lyapunov function, *V* , can be thought of as a generalized energy with the origin being a point of minimum energy.

A Lyapunov function for
$$
\dot{x} = \begin{bmatrix} 1 & 1 \\ -5 & 3 \end{bmatrix} x
$$
 is $V(x) = x^T \begin{bmatrix} 4.5 & 1 \\ 1 & 0.5 \end{bmatrix} x$.

Definition: A control Lyapunov function for $\dot{x} = f(x) + g(x)u$ is a continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ such that

$$
L_g V(x) = 0 \quad \Rightarrow \quad L_f V(x) < 0 \quad \text{for} \quad x \neq 0.
$$

Idea: *^d* $\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x) + g(x)u \rangle = L_fV(x) + L_qV(x)u$

V. Jurdjevic and J. P. Quinn, "Controllability and Stability", *J. Diff. Eqs.*, 1978.

Definition: A control Lyapunov function for $\dot{x} = f(x) + g(x)u$ is a continuously differentiable function $V:\mathbb{R}^n\rightarrow\mathbb{R}_{\geq 0}$ such that

$$
L_g V(x) = 0 \quad \Rightarrow \quad L_f V(x) < 0 \quad \text{for} \quad x \neq 0.
$$

$$
\underline{\text{Idea:}} \quad \frac{d}{dt} V(x(t)) = \langle \nabla V(x), f(x) + g(x)u \rangle = L_f V(x) + L_g V(x)u
$$

Jurdjevic-Quinn (Nonlinear Damping) Control: If *V* is such that $L_f V \leq 0$, then $u = -L_qV$ globally asymptotically stabilizes the origin.

Definition: A control Lyapunov function for $\dot{x} = f(x) + g(x)u$ is a continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ such that

$$
L_g V(x) = 0 \quad \Rightarrow \quad L_f V(x) < 0 \quad \text{for} \quad x \neq 0.
$$

$$
\underline{\text{Idea:}} \quad \frac{d}{dt} V(x(t)) = \langle \nabla V(x), f(x) + g(x)u \rangle = L_f V(x) + L_g V(x)u
$$

Jurdjevic-Quinn (Nonlinear Damping) Control: If *V* is such that $L_f V \leq 0$, then $u = -L_g V$ globally asymptotically stabilizes the origin.

Example: $\dot{x}_1 = x_2, \quad \dot{x}_2 = -x_1 + x_1u \quad \text{and} \quad V(x) = \frac{1}{2}(x_1^2 + x_2^2).$ $\dot{V} = x_1 x_2 - x_1 x_2 + x_1 x_2 u \Rightarrow u = -L_g V(x) = -x_1 x_2$

V. Jurdjevic and J. P. Quinn, "Controllability and Stability", *J. Diff. Eqs.*, 1978.

Definition: A control Lyapunov function for $\dot{x} = f(x) + g(x)u$ is a continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ such that

$$
L_g V(x) = 0 \quad \Rightarrow \quad L_f V(x) < 0 \quad \text{for} \quad x \neq 0.
$$

$$
\underline{\text{Idea:}} \quad \frac{d}{dt} V(x(t)) = \langle \nabla V(x), f(x) + g(x)u \rangle = L_f V(x) + L_g V(x)u
$$

Jurdjevic-Quinn (Nonlinear Damping) Control: If *V* is such that $L_f V \leq 0$, then $u = -L_qV$ globally asymptotically stabilizes the origin.

Example: $\dot{x}_1 = x_2, \quad \dot{x}_2 = -x_1 + x_1u \quad \text{and} \quad V(x) = \frac{1}{2}(x_1^2 + x_2^2).$ $\dot{V} = x_1 x_2 - x_1 x_2 + x_1 x_2 u \Rightarrow u = -L_q V(x) = -x_1 x_2$

V. Jurdjevic and J. P. Quinn, "Controllability and Stability", *J. Diff. Eqs.*, 1978.

Definition: A control Lyapunov function for $\dot{x} = f(x) + g(x)u$ is a continuously differentiable function $V:\mathbb{R}^n\rightarrow\mathbb{R}_{\geq 0}$ such that

$$
L_g V(x) = 0 \quad \Rightarrow \quad L_f V(x) < 0 \quad \text{for} \quad x \neq 0.
$$

Definition: A control Lyapunov function for $\dot{x} = f(x) + g(x)u$ is a continuously differentiable function $V:\mathbb{R}^n\rightarrow\mathbb{R}_{\geq 0}$ such that

$$
L_g V(x) = 0 \quad \Rightarrow \quad L_f V(x) < 0 \quad \text{for} \quad x \neq 0.
$$

Question: Given a control Lyapunov function, is it always possible to find a continuous feedback stabilizer?

Definition: A control Lyapunov function for $\dot{x} = f(x) + g(x)u$ is a continuously differentiable function $V:\mathbb{R}^n\rightarrow\mathbb{R}_{\geq 0}$ such that

$$
L_g V(x) = 0 \quad \Rightarrow \quad L_f V(x) < 0 \quad \text{for} \quad x \neq 0.
$$

Question: Given a control Lyapunov function, is it always possible to find a continuous feedback stabilizer?

Sontag's Formula:

$$
u(x) := \begin{cases} -\left(\frac{L_f V(x) + \sqrt{L_f V(x)^2 + L_g V(x)^2}}{L_g V(x)^2}\right) L_g V(x) & , & L_g V(x) \neq 0\\ 0 & , & L_g V(x) = 0 \end{cases}
$$

Definition: A control Lyapunov function for $\dot{x} = f(x) + g(x)u$ is a continuously differentiable function $V:\mathbb{R}^n\rightarrow\mathbb{R}_{\geq 0}$ such that

$$
L_g V(x) = 0 \quad \Rightarrow \quad L_f V(x) < 0 \quad \text{for} \quad x \neq 0.
$$

Question: Given a control Lyapunov function, is it always possible to find a continuous feedback stabilizer?

Sontag's Formula:

$$
u(x) := \begin{cases} -\left(\frac{L_f V(x) + \sqrt{L_f V(x)^2 + L_g V(x)^2}}{L_g V(x)^2}\right) L_g V(x) & , & L_g V(x) \neq 0\\ 0 & , & L_g V(x) = 0 \end{cases}
$$

Idea:

$$
\frac{d}{dt}V(x(t)) = L_f V(x) + L_g V(x)u = L_f V(x) - \left(\frac{L_f V(x) + \sqrt{L_f V(x)^2 + L_g V(x)^2}}{L_g V(x)^2}\right) L_g V(x)^2
$$

$$
= -\sqrt{L_f V(x)^2 + L_g V(x)^2} < 0
$$

E. D. Sontag, "A Universal Construction of Artstein's Theorem on Nonlinear Stabilization", *Sys. Ctrl. Lett.*, 1989.

Differential Inclusions - Controllability

System with input: $\dot{x} = f(x, u), x \in \mathbb{R}^n, u \in \mathcal{U} \subset \mathbb{R}^m$

Differential inclusion: $\dot{x} \in F(x) := \text{co} \left(\bigcup$ $u \in \mathcal{U}$ *f*(*x, u*) \setminus

Comparison Functions: continuous $\alpha : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$

- Class- \mathcal{K}_{∞} : zero at zero, strictly increasing, unbounded.
- *•* Class-*L*: strictly decreasing, zero in the limit

Differential Inclusions - Controllability

System with input: $\dot{x} = f(x, u), x \in \mathbb{R}^n, u \in \mathcal{U} \subset \mathbb{R}^m$

Differential inclusion: $\dot{x} \in F(x) := \text{co} \left(\bigcup$ $u \in \mathcal{U}$ *f*(*x, u*) \setminus

KL-stability: there exists $\beta \in \mathcal{KL}$ so that $|\phi(t,x)| \leq \beta(|x|,t), \quad \forall x \in \mathbb{R}^n, t \in \mathbb{R}_{\geq 0}$.

Strong \mathcal{KL} -*stability*: All solutions $\phi \in \mathcal{S}(x)$ *Weak* \mathcal{KL} -stability: At least one solution $\phi \in \mathcal{S}(x)$

Comparison Functions: continuous $\alpha : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$

- Class- \mathcal{K}_{∞} : zero at zero, strictly increasing, unbounded.
- *•* Class-*L*: strictly decreasing, zero in the limit

Differential Inclusions - Controllability

System with input: $\dot{x} = f(x, u), x \in \mathbb{R}^n, u \in \mathcal{U} \subset \mathbb{R}^m$

Differential inclusion: $\dot{x} \in F(x) := \text{co} \left(\bigcup$ $u \in \mathcal{U}$ *f*(*x, u*) \setminus

KL-stability: there exists $\beta \in \mathcal{KL}$ so that $|\phi(t,x)| \leq \beta(|x|,t), \quad \forall x \in \mathbb{R}^n, t \in \mathbb{R}_{\geq 0}$.

Strong \mathcal{KL} -stability: All solutions $\phi \in \mathcal{S}(x)$ *Weak* \mathcal{KL} -stability: At least one solution $\phi \in \mathcal{S}(x)$

Uniform Global Asymptotic Controllability: There exists $\beta \in \mathcal{KL}$ so that, for each $x \in \mathbb{R}^n$ there exists $u \in \mathcal{U}$ so that

$$
|\phi(t, x, u)| \le \beta(|x|, t), \quad \forall t \in \mathbb{R}_{\ge 0}.
$$

Comparison Functions: continuous $\alpha : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$

- Class- \mathcal{K}_{∞} : zero at zero, strictly increasing, unbounded.
- *•* Class-*L*: strictly decreasing, zero in the limit

Consider $\dot{x} \in \overline{\mathcal{B}}, x \in \mathbb{R}^2$. The set $\mathcal{A} := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}$ is weakly *KL*-stable.

Consider $\dot{x} \in \overline{\mathcal{B}}, x \in \mathbb{R}^2$. The set $\mathcal{A} := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}$ is weakly *KL*-stable.

Suppose a continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ so that

Consider $\dot{x} \in \overline{\mathcal{B}}, x \in \mathbb{R}^2$. The set $\mathcal{A} := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}$ is weakly *KL*-stable.

Suppose a continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ so that

 $\alpha_1(|x|_{\mathcal{A}}) \leq V(x) \leq \alpha_2(|x|_{\mathcal{A}}),$ and

Consider $\dot{x} \in \overline{\mathcal{B}}, x \in \mathbb{R}^2$. The set $\mathcal{A} := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}$ is weakly *KL*-stable.

Suppose a continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ so that

 $\alpha_1(|x|_{\mathcal{A}}) \leq V(x) \leq \alpha_2(|x|_{\mathcal{A}}),$ and

$$
\min_{w \in \overline{\mathcal{B}}} \langle \nabla V(x), w \rangle \le -V(x).
$$

Note: $\nabla V(x) \neq 0$ for all $x \in \mathbb{R}^2 \backslash \mathcal{A}$.

Note: *V* attains minimum on boundary of \overline{B} .

Consider $\dot{x} \in \overline{\mathcal{B}}, x \in \mathbb{R}^2$. The set $\mathcal{A} := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}$ is weakly *KL*-stable.

Suppose a continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ so that

 $\alpha_1(|x|_{\mathcal{A}}) \leq V(x) \leq \alpha_2(|x|_{\mathcal{A}}),$ and

$$
\min_{w \in \overline{\mathcal{B}}} \langle \nabla V(x), w \rangle \le -V(x).
$$

Note: $\nabla V(x) \neq 0$ for all $x \in \mathbb{R}^2 \backslash \mathcal{A}$.

Note: *V* attains minimum on boundary of \overline{B} .

Note: *V* attains maximum in interior of *B*.

Covering Condition

Theorem: Suppose $F : \mathbb{R}^n \implies \mathbb{R}^n$ satisfies certain basic conditions (e.g., convex) and there exists a continuously differentiable weak Lyapunov function; i.e., a continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and functions $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that, for all $x \in \mathbb{R}^n$ $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$, and

$$
\alpha_1(|x|) \le V(x) \le \alpha_2(|x|), \text{ and}
$$

$$
\min_{w \in F(x)} \langle \nabla V(x), w \rangle \le -V(x).
$$

Then, for any $\gamma \in \mathbb{R}_{>0}$ there exists $\Delta \in \mathbb{R}_{>0}$ such that

$$
\mathcal{B}_{\Delta} \subset F(\mathcal{B}_{\gamma}) := \bigcup_{x \in \mathcal{B}_{\gamma}} F(x).
$$

F.H. Clarke, Y.S. Ledyaev, R.J. Stern, "Asymptotic stability and smooth Lyapunov functions", *J. Differential Equations*, 1998. R.W. Brockett, "Asymptotic stability and feedback stabilization", *Differential Geometric Control Theory*, 1983

Covering Condition

Theorem: Suppose $F : \mathbb{R}^n \implies \mathbb{R}^n$ satisfies certain basic conditions (e.g., convex) and there exists a continuously differentiable weak Lyapunov function; i.e., a continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and functions $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that, for all $x \in \mathbb{R}^n$ $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$, and

$$
\nu_1(|x|) \le V(x) \le \alpha_2(|x|), \quad \text{and}
$$

$$
\min_{w \in F(x)} \langle \nabla V(x), w \rangle \le -V(x).
$$

Then, for any $\gamma \in \mathbb{R}_{>0}$ there exists $\Delta \in \mathbb{R}_{>0}$ such that

$$
\mathcal{B}_{\Delta} \subset F\left(\mathcal{B}_{\gamma}\right) := \bigcup_{x \in \mathcal{B}_{\gamma}} F(x).
$$

Brockett's (Nonholonomic) Integrator

$$
\dot{x}_1 = u_1
$$

\n
$$
\dot{x}_2 = u_2
$$

\n
$$
\dot{x}_3 = x_1 u_2 - x_2 u_1
$$

F.H. Clarke, Y.S. Ledyaev, R.J. Stern, "Asymptotic stability and smooth Lyapunov functions", *J. Differential Equations*, 1998. R.W. Brockett, "Asymptotic stability and feedback stabilization", *Differential Geometric Control Theory*, 1983

Brockett's Condition: Continuous feedback stabilizer implies for every $\gamma \in \mathbb{R}_{>0}$ there exists $\Delta \in \mathbb{R}_{>0}$ such that

$$
\mathcal{B}_{\Delta} \subset \bigcup_{u \in \mathcal{U}} f(x, u).
$$

Brockett's Condition: Continuous feedback stabilizer implies for every $\gamma \in \mathbb{R}_{>0}$ there exists $\Delta \in \mathbb{R}_{>0}$ such that

$$
\mathcal{B}_{\Delta} \subset \bigcup_{u \in \mathcal{U}} f(x, u).
$$

Consider $\dot{x}_1 = u_2 u_3, \quad \dot{x}_2 = u_1 u_3, \quad \dot{x}_3 = u_1 u_2, \quad u \in \mathcal{B}.$

Does not satisfy Brockett's condition \Rightarrow no continuous feedback stabiliser.

Brockett's Condition: Continuous feedback stabilizer implies for every $\gamma \in \mathbb{R}_{>0}$ there exists $\Delta \in \mathbb{R}_{>0}$ such that

$$
\mathcal{B}_{\Delta} \subset \bigcup_{u \in \mathcal{U}} f(x, u).
$$

Consider $\dot{x}_1 = u_2 u_3, \quad \dot{x}_2 = u_1 u_3, \quad \dot{x}_3 = u_1 u_2, \quad u \in \mathcal{B}.$

Does not satisfy Brockett's condition \Rightarrow no continuous feedback stabiliser.

 $V(x) = |x|^2$ is a smooth CLF \Rightarrow inclusion covering condition.

Brockett's Condition: Continuous feedback stabilizer implies for every $\gamma \in \mathbb{R}_{>0}$ there exists $\Delta \in \mathbb{R}_{>0}$ such that

$$
\mathcal{B}_{\Delta} \subset \bigcup_{u \in \mathcal{U}} f(x, u).
$$

Consider $\dot{x}_1 = u_2 u_3, \quad \dot{x}_2 = u_1 u_3, \quad \dot{x}_3 = u_1 u_2, \quad u \in \mathcal{B}.$

Does not satisfy Brockett's condition \Rightarrow no continuous feedback stabiliser.

To deal with the most general cases, we will need to resort to nonsmooth CLFs and discontinuous feedbacks.

$$
\dot{x}_1 = (x_1^2 - x_2^2)u
$$

$$
\dot{x}_2 = 2x_1x_2u
$$

 $u > 0 \Rightarrow$ counterclockwise

 $u < 0$ \Rightarrow clockwise (reversed for lower circles)

$$
\dot{x}_1 = (x_1^2 - x_2^2)u
$$

$$
\dot{x}_2 = 2x_1x_2u
$$

- $u > 0 \Rightarrow$ counterclockwise
- $u < 0$ \Rightarrow clockwise (reversed for lower circles)

Near the origin, stability requires $u > 0$ to the left and $u < 0$ to the right. Continuous stabilizer then requires $u = 0$ *somewhere* \Rightarrow equilibrium.

$$
\dot{x}_1 = (x_1^2 - x_2^2)u
$$

$$
\dot{x}_2 = 2x_1x_2u
$$

- $u > 0 \Rightarrow$ counterclockwise
- $u < 0$ \Rightarrow clockwise (reversed for lower circles)

Near the origin, stability requires $u > 0$ to the left and $u < 0$ to the right. Continuous stabilizer then requires $u = 0$ *somewhere* \Rightarrow equilibrium.

Control-affine: If there exists a differentiable CLF, then Sontag's formula is a continuous feedback stabilizer.

No continuous feedback stabilizer implies no differentiable CLF!

$$
\dot{x}_1 = (x_1^2 - x_2^2)u
$$

$$
\dot{x}_2 = 2x_1x_2u
$$

 $u > 0 \Rightarrow$ counterclockwise

 $u < 0$ \Rightarrow clockwise (reversed for lower circles)

Near the origin, stability requires $u > 0$ to the left and $u < 0$ to the right. Continuous stabilizer then requires $u = 0$ *somewhere* \Rightarrow equilibrium.

Control-affine: If there exists a differentiable CLF, then Sontag's formula is a continuous feedback stabilizer.

No continuous feedback stabilizer implies no differentiable CLF!

Discontinuous stabilizer and robustness for $u = \kappa(x + d)$? Solutions?

$$
\dot{x}_1 = (x_1^2 - x_2^2)u
$$

$$
\dot{x}_2 = 2x_1x_2u
$$

 $u > 0 \Rightarrow$ counterclockwise

 $u < 0$ \Rightarrow clockwise (reversed for lower circles)

Near the origin, stability requires $u > 0$ to the left and $u < 0$ to the right. Continuous stabilizer then requires $u = 0$ *somewhere* \Rightarrow equilibrium.

Control-affine: If there exists a differentiable CLF, then Sontag's formula is a continuous feedback stabilizer.

No continuous feedback stabilizer implies no differentiable CLF!

Discontinuous stabilizer and robustness for $u = \kappa(x + d)$? Solutions?

Solution: Sample-and-hold (i.e., discrete time).

Nonsmooth Control Lyapunov Functions

Lower Dini Derivative:

$$
DV(x; w) := \liminf_{\xi \to w, \varepsilon \to 0^+} \frac{V(x + \varepsilon \xi) - V(x)}{\varepsilon} = \liminf_{\varepsilon \to 0^+} \frac{V(x + \varepsilon w) - V(x)}{\varepsilon}
$$

Definition: For $\dot{x} = f(x, u), x \in \mathbb{R}^n$, $u \in \mathcal{U} \subset \mathbb{R}^m$, a locally Lipschitz function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is a nonsmooth CLF if there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ so that, for every $x \in \mathbb{R}^n$

 $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|)$ and

min $w \in f(x, \mathcal{U})$ $DV(x; w) < 0.$

C.M. Kellett and A.R. Teel, "Weak converse Lyapunov theorems and control Lyapunov functions", *SIAM J. Control Opt.*, 2004. F. Clarke, "Lyapunov functions and discontinuous stabilizing feedback", *Annual Reviews in Control*, 2011.

Nonsmooth Control Lyapunov Functions

Lower Dini Derivative:

$$
DV(x; w) := \liminf_{\xi \to w, \varepsilon \to 0^+} \frac{V(x + \varepsilon \xi) - V(x)}{\varepsilon} = \liminf_{\varepsilon \to 0^+} \frac{V(x + \varepsilon w) - V(x)}{\varepsilon}
$$

Definition: For $\dot{x} = f(x, u), x \in \mathbb{R}^n$, $u \in \mathcal{U} \subset \mathbb{R}^m$, a locally Lipschitz function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is a nonsmooth CLF if there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ so that, for every $x \in \mathbb{R}^n$

 $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|)$ and

$$
\min_{w \in f(x, \mathcal{U})} DV(x; w) < 0.
$$

Theorem: If $\dot{x} = f(x, u)$, $x \in \mathbb{R}^n$, $u \in \mathcal{U} \subset \mathbb{R}^m$, is asymptotically control*lable to the origin then there exists a control Lyapunov function.*

C.M. Kellett and A.R. Teel, "Weak converse Lyapunov theorems and control Lyapunov functions", *SIAM J. Control Opt.*, 2004. F. Clarke, "Lyapunov functions and discontinuous stabilizing feedback", *Annual Reviews in Control*, 2011.

Nonsmooth Control Lyapunov Functions

Lower Dini Derivative:

$$
DV(x; w) := \liminf_{\xi \to w, \varepsilon \to 0^+} \frac{V(x + \varepsilon \xi) - V(x)}{\varepsilon} = \liminf_{\varepsilon \to 0^+} \frac{V(x + \varepsilon w) - V(x)}{\varepsilon}
$$

Definition: For $\dot{x} = f(x, u), x \in \mathbb{R}^n$, $u \in \mathcal{U} \subset \mathbb{R}^m$, a locally Lipschitz function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is a nonsmooth CLF if there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ so that, for every $x \in \mathbb{R}^n$

 $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|)$ and

$$
\min_{w \in f(x, \mathcal{U})} DV(x; w) < 0.
$$

Theorem: If $\dot{x} = f(x, u)$, $x \in \mathbb{R}^n$, $u \in \mathcal{U} \subset \mathbb{R}^m$, is asymptotically control*lable to the origin then there exists a control Lyapunov function.*

Similar definition with proximal subgradients: sup $\zeta \in \partial_P V(x)$ min $u \in \mathcal{U}$ $\langle \zeta, f(x,w) \rangle < 0.$

C.M. Kellett and A.R. Teel, "Weak converse Lyapunov theorems and control Lyapunov functions", *SIAM J. Control Opt.*, 2004. F. Clarke, "Lyapunov functions and discontinuous stabilizing feedback", *Annual Reviews in Control*, 2011.

For $V : \mathbb{R}^n \to \mathbb{R}$ and $\ell_1 < \ell_2$, level set $\mathcal{V}(\ell_1, \ell_2) := \{x \in \mathbb{R}^n : \ell_1 \leq V(x) \leq \ell_2\}.$

(Discontinuous) Control:

1. In
$$
\mathcal{V}(\ell_1, \ell_2)
$$
, fix $r \in \left(0, \min\left\{\frac{\varepsilon_2}{L_V}, \varepsilon_3, \varepsilon_4, \frac{c}{L_f L_V}\right\}\right]$.

2. Measure *x*. For each $x \in \mathcal{V}(\ell_1, \ell_2 + \varepsilon_2)$,

(a) let $s \in \overline{\mathcal{B}}_n(x,r)$ be such that $V(s) \leq V(\xi)$ for all $\xi \in \overline{\mathcal{B}}_n(x,r)$; (b) let $\alpha \in \mathcal{U}$ be such that $\langle x - s, f(x, \alpha) \rangle \leq -\frac{c}{L_V}|x - s|$.

3. Take
$$
u = \alpha(x)
$$
.

 \cdots $V(x) = \ell_2 + \varepsilon_2$

C.M. Kellett and A.R. Teel, "Weak converse Lyapunov theorems and control Lyapunov functions", *SIAM J. Control Opt.*, 2004.

For $V : \mathbb{R}^n \to \mathbb{R}$ and $\ell_1 < \ell_2$, level set $\mathcal{V}(\ell_1, \ell_2) := \{x \in \mathbb{R}^n : \ell_1 \leq V(x) \leq \ell_2\}.$

(Discontinuous) Control:

1. In
$$
\mathcal{V}(\ell_1, \ell_2)
$$
, fix $r \in \left(0, \min\left\{\frac{\varepsilon_2}{L_V}, \varepsilon_3, \varepsilon_4, \frac{c}{L_f L_V}\right\}\right]$.

2. Measure *x*. For each $x \in \mathcal{V}(\ell_1, \ell_2 + \varepsilon_2)$,

- (a) let $s \in \overline{\mathcal{B}}_n(x,r)$ be such that $V(s) \leq V(\xi)$ for all $\xi \in \overline{\mathcal{B}}_n(x,r)$; (b) let $\alpha \in \mathcal{U}$ be such that $\langle x - s, f(x, \alpha) \rangle \leq -\frac{c}{L_V}|x - s|$.
- 3. Take $u = \alpha(x)$.

 \cdots $V(x) = \ell_2 + \varepsilon_2$

C.M. Kellett and A.R. Teel, "Weak converse Lyapunov theorems and control Lyapunov functions", *SIAM J. Control Opt.*, 2004.

For $V : \mathbb{R}^n \to \mathbb{R}$ and $\ell_1 < \ell_2$, level set $\mathcal{V}(\ell_1, \ell_2) := \{x \in \mathbb{R}^n : \ell_1 \leq V(x) \leq \ell_2\}.$

(Discontinuous) Control:

1. In
$$
\mathcal{V}(\ell_1, \ell_2)
$$
, fix $r \in \left(0, \min\left\{\frac{\varepsilon_2}{L_V}, \varepsilon_3, \varepsilon_4, \frac{c}{L_f L_V}\right\}\right]$.

2. Measure *x*. For each $x \in \mathcal{V}(\ell_1, \ell_2 + \varepsilon_2)$,

- (a) let $s \in \overline{\mathcal{B}}_n(x,r)$ be such that $V(s) \leq V(\xi)$ for all $\xi \in \overline{\mathcal{B}}_n(x,r)$; (b) let $\alpha \in \mathcal{U}$ be such that $\langle x - s, f(x, \alpha) \rangle \leq -\frac{c}{L_V}|x - s|$.
- 3. Take $u = \alpha(x)$.

 \cdots $V(x) = \ell_2 + \varepsilon_2$

C.M. Kellett and A.R. Teel, "Weak converse Lyapunov theorems and control Lyapunov functions", *SIAM J. Control Opt.*, 2004.

For $V : \mathbb{R}^n \to \mathbb{R}$ and $\ell_1 < \ell_2$, level set $\mathcal{V}(\ell_1, \ell_2) := \{x \in \mathbb{R}^n : \ell_1 \leq V(x) \leq \ell_2\}.$

(Discontinuous) Control:

1. In
$$
\mathcal{V}(\ell_1, \ell_2)
$$
, fix $r \in \left(0, \min\left\{\frac{\varepsilon_2}{L_V}, \varepsilon_3, \varepsilon_4, \frac{c}{L_f L_V}\right\}\right]$.

2. Measure *x*. For each $x \in \mathcal{V}(\ell_1, \ell_2 + \varepsilon_2)$,

(a) let $s \in \overline{\mathcal{B}}_n(x,r)$ be such that $V(s) \leq V(\xi)$ for all $\xi \in \overline{\mathcal{B}}_n(x,r)$; (b) let $\alpha \in \mathcal{U}$ be such that $\langle x - s, f(x, \alpha) \rangle \leq -\frac{c}{L_V}|x - s|$.

3. Take
$$
u = \alpha(x)
$$
.

 $\dots \dots \quad V(x) = \ell_2 + \varepsilon_2$

C.M. Kellett and A.R. Teel, "Weak converse Lyapunov theorems and control Lyapunov functions", *SIAM J. Control Opt.*, 2004.

For $V : \mathbb{R}^n \to \mathbb{R}$ and $\ell_1 < \ell_2$, level set $\mathcal{V}(\ell_1, \ell_2) := \{x \in \mathbb{R}^n : \ell_1 \leq V(x) \leq \ell_2\}.$

(Discontinuous) Control:

1. In
$$
\mathcal{V}(\ell_1, \ell_2)
$$
, fix $r \in \left(0, \min\left\{\frac{\varepsilon_2}{L_V}, \varepsilon_3, \varepsilon_4, \frac{c}{L_f L_V}\right\}\right]$.

2. Measure *x*. For each $x \in \mathcal{V}(\ell_1, \ell_2 + \varepsilon_2)$,

(a) let $s \in \overline{\mathcal{B}}_n(x,r)$ be such that $V(s) \leq V(\xi)$ for all $\xi \in \overline{\mathcal{B}}_n(x,r)$; (b) let $\alpha \in \mathcal{U}$ be such that $\langle x - s, f(x, \alpha) \rangle \leq -\frac{c}{L_V}|x - s|$.

3. Take
$$
u = \alpha(x)
$$
.

 \cdots $V(x) = \ell_2 + \varepsilon_2$

C.M. Kellett and A.R. Teel, "Weak converse Lyapunov theorems and control Lyapunov functions", *SIAM J. Control Opt.*, 2004.

Goal: For $\dot{x} = u, x \in \mathbb{R}^2, u \in [-1, 1]^2$, stabilise $\mathcal{A} := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}$.

Goal: For $\dot{x} = u, x \in \mathbb{R}^2, u \in [-1, 1]^2$, stabilise $\mathcal{A} := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}$.

Note: Doing so *destabilises* the origin.

Goal: For $\dot{x} = u, x \in \mathbb{R}^2, u \in [-1, 1]^2$, stabilise $\mathcal{A} := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}$.

Note: Doing so *destabilises* the origin.

Idea: In order to implement constraints, design a feedback controller to render the constraints (locally) unstable.

Goal: For $\dot{x} = u, x \in \mathbb{R}^2, u \in [-1, 1]^2$, stabilise $\mathcal{A} := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}$.

Note: Doing so *destabilises* the origin.

Idea: In order to implement constraints, design a feedback controller to render the constraints (locally) unstable.

Theorem: *Consider* $\dot{x} = f(x)$, $x \in \mathbb{R}^n$, $f(0) = 0$. $\{0\}$ *is unstable if and only if there exists* $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}, \ \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ so that, for all $x \in \mathbb{R}^n$

> $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$ $\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x) \rangle > 0.$

Goal: For $\dot{x} = u, x \in \mathbb{R}^2, u \in [-1, 1]^2$, stabilise $\mathcal{A} := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}$.

Note: Doing so *destabilises* the origin.

Idea: In order to implement constraints, design a feedback controller to render the constraints (locally) unstable.

Theorem: *Consider* $\dot{x} = f(x)$, $x \in \mathbb{R}^n$, $f(0) = 0$. $\{0\}$ *is unstable if and only if there exists* $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}, \ \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ so that, for all $x \in \mathbb{R}^n$

$$
\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)
$$

$$
\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x) \rangle > 0.
$$

Idea: Patch together stabilising / destabilising controllers (e.g., via hysteresis).

Example

Consider
$$
\dot{x} = f(x) + g(x)u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}
$$
.

Goal: Asymptotically stabilise the origin avoiding (1*,* 1).

Example

Consider
$$
\dot{x} = f(x) + g(x)u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}
$$
.

Goal: Asymptotically stabilise the origin avoiding (1*,* 1).

$$
V(x) = (x_1^2 + x_2^2)
$$

+ max {0, -10(x₁ - 1)² - 10(x₂ - 1)² + 2}

Example

Consider
$$
\dot{x} = f(x) + g(x)u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}
$$
.

Goal: Asymptotically stabilise the origin avoiding (1*,* 1).

$$
V(x) = (x_1^2 + x_2^2)
$$

+ max {0, -10(x₁ - 1)² - 10(x₂ - 1)² + 2}

Choose $u = -L_g V(x)$.

Complete Lyapunov Functions

Definition: A complete Lyapunov function for $\dot{x} = f(x)$ is a continuous function *V* : $\mathbb{R}^n \to \mathbb{R}$ which is constant on the chain-recurrent set, including attractors and repellers, and decreasing along flows elsewhere.

Theorem: If Λ is a compact invariant set containing all α and ω -limit sets (plus *some technical assumptions) then there exists a smooth complete Lyapunov function decreasing outside of* Λ .

Definition (and existence) of a complete control Lyapunov function?

Z. Nitecki and M. Shub, "Filtrations, Decompositions, and Explosions", *American J. Math.*, 1975.

Topological Perplexity

Topological Perplexity

Topological Perplexity

Topological Perplexity (Baryshnikov): The sum total of the Betti numbers.

A lower bound on the decision space, or, how often do I really have to choose a direction?

- Lyapunov-based feedback design
	- Necessity of nonsmooth Lyapunov functions (and discontinuous feedback)
- Destabilising constraints
	- Patching feedback controllers, Complete Lyapunov Functions, Topological Perplexity