
Discovery vs Proof, and Visual Intuition

Mathematical Thinking Workshop 2022

Aidan Sims
University of Wollongong

University of Newcastle, September 27, 2022



Mathematical thinking (for me)

Discovery versus proof

Visual intuition - pros and cons



Mathematical thinking: an example

Some background:

▶ Topological group: group with a locally compact Hausdorff
topology with continuous group operation.

▶ Fundamental group: loops based at ⋆. That is, continuous
f : [0, 1] → X with f (0) = f (1) = ⋆, modulo deformation.
▶ Group operation is concatenation ◦ of loops

Fact: the fundamental group of a topological group is abelian.

How to understand why?

Lots to think about: continuity? Use sequential arguments? Build
explicit deformations from f ◦ g to g ◦ f ?



Mathematical thinking: an example

Some background:

▶ Topological group: group with a locally compact Hausdorff
topology with continuous group operation.

▶ Fundamental group: loops based at ⋆. That is, continuous
f : [0, 1] → X with f (0) = f (1) = ⋆, modulo deformation.

▶ Group operation is concatenation ◦ of loops

Fact: the fundamental group of a topological group is abelian.

How to understand why?

Lots to think about: continuity? Use sequential arguments? Build
explicit deformations from f ◦ g to g ◦ f ?



Mathematical thinking: an example

Some background:

▶ Topological group: group with a locally compact Hausdorff
topology with continuous group operation.

▶ Fundamental group: loops based at ⋆. That is, continuous
f : [0, 1] → X with f (0) = f (1) = ⋆, modulo deformation.
▶ Group operation is concatenation ◦ of loops

Fact: the fundamental group of a topological group is abelian.

How to understand why?

Lots to think about: continuity? Use sequential arguments? Build
explicit deformations from f ◦ g to g ◦ f ?



Mathematical thinking: an example

Some background:

▶ Topological group: group with a locally compact Hausdorff
topology with continuous group operation.

▶ Fundamental group: loops based at ⋆. That is, continuous
f : [0, 1] → X with f (0) = f (1) = ⋆, modulo deformation.
▶ Group operation is concatenation ◦ of loops

Fact: the fundamental group of a topological group is abelian.

How to understand why?

Lots to think about: continuity? Use sequential arguments? Build
explicit deformations from f ◦ g to g ◦ f ?



Mathematical thinking: an example

Some background:

▶ Topological group: group with a locally compact Hausdorff
topology with continuous group operation.

▶ Fundamental group: loops based at ⋆. That is, continuous
f : [0, 1] → X with f (0) = f (1) = ⋆, modulo deformation.
▶ Group operation is concatenation ◦ of loops

Fact: the fundamental group of a topological group is abelian.

How to understand why?

Lots to think about: continuity? Use sequential arguments? Build
explicit deformations from f ◦ g to g ◦ f ?



Mathematical thinking: an example

Some background:

▶ Topological group: group with a locally compact Hausdorff
topology with continuous group operation.

▶ Fundamental group: loops based at ⋆. That is, continuous
f : [0, 1] → X with f (0) = f (1) = ⋆, modulo deformation.
▶ Group operation is concatenation ◦ of loops

Fact: the fundamental group of a topological group is abelian.

How to understand why?

Lots to think about: continuity? Use sequential arguments? Build
explicit deformations from f ◦ g to g ◦ f ?



Eckmann–Hilton principle

My favourite explanation:

Two operations in play:

• concatenation ◦ of loops: (f ◦ g)(t) =
{

f (2t) t≤ 1
2
,

g(2t−1) t≥ 1
2

• pointwise multiplication ∗ of loops: (f · g)(t) = f (t)g(t).

They are linked:

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

Gives a quaternary operation
f g
h k

=
(f ◦h)
∗

(g◦k)
=

(
f
∗
g

)
◦
(

h
∗
k

)
.



Eckmann–Hilton principle

My favourite explanation:

Two operations in play:

• concatenation ◦ of loops: (f ◦ g)(t) =
{

f (2t) t≤ 1
2
,

g(2t−1) t≥ 1
2

• pointwise multiplication ∗ of loops: (f · g)(t) = f (t)g(t).

They are linked:

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

Gives a quaternary operation
f g
h k

=
(f ◦h)
∗

(g◦k)
=

(
f
∗
g

)
◦
(

h
∗
k

)
.



Eckmann–Hilton principle

My favourite explanation:

Two operations in play:

• concatenation ◦ of loops: (f ◦ g)(t) =
{

f (2t) t≤ 1
2
,

g(2t−1) t≥ 1
2

• pointwise multiplication ∗ of loops: (f · g)(t) = f (t)g(t).

They are linked:

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

Gives a quaternary operation
f g
h k

=
(f ◦h)
∗

(g◦k)
=

(
f
∗
g

)
◦
(

h
∗
k

)
.



Eckmann–Hilton principle

My favourite explanation:

Two operations in play:

• concatenation ◦ of loops: (f ◦ g)(t) =
{

f (2t) t≤ 1
2
,

g(2t−1) t≥ 1
2

• pointwise multiplication ∗ of loops: (f · g)(t) = f (t)g(t).

They are linked:

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

Gives a quaternary operation
f g
h k

=
(f ◦h)
∗

(g◦k)
=

(
f
∗
g

)
◦
(

h
∗
k

)
.



Eckmann–Hilton principle

My favourite explanation:

Two operations in play:

• concatenation ◦ of loops: (f ◦ g)(t) =
{

f (2t) t≤ 1
2
,

g(2t−1) t≥ 1
2

• pointwise multiplication ∗ of loops: (f · g)(t) = f (t)g(t).

They are linked:

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

Gives a quaternary operation
f g
h k

=
(f ◦h)
∗

(g◦k)
=

(
f
∗
g

)
◦
(

h
∗
k

)
.



Eckmann–Hilton principle

My favourite explanation:

Two operations in play:

• concatenation ◦ of loops: (f ◦ g)(t) =
{

f (2t) t≤ 1
2
,

g(2t−1) t≥ 1
2

• pointwise multiplication ∗ of loops: (f · g)(t) = f (t)g(t).

They are linked:

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

Gives a quaternary operation
f g
h k

=
(f ◦h)
∗

(g◦k)
=

(
f
∗
g

)
◦
(

h
∗
k

)
.



Eckmann–Hilton continued

Claim: If H is a set with binary operations ◦ and ∗ that admits an
identity 1∗ for ∗ and 1◦ for ◦ and satisfies

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

then 1∗ = 1◦, ∗ = ◦ and it is abelian.

1◦ =
1◦◦
1◦

=

1∗ 1◦
1◦ 1∗

= 1∗ ∗ 1∗ = 1∗.

a ◦ b =

a 1
1 b

= a ∗ b.

a ◦ b =

1 a
b 1

= b ∗ a.



Eckmann–Hilton continued

Claim: If H is a set with binary operations ◦ and ∗ that admits an
identity 1∗ for ∗ and 1◦ for ◦ and satisfies

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

then 1∗ = 1◦, ∗ = ◦ and it is abelian.

1◦ =
1◦◦
1◦

=

1∗ 1◦
1◦ 1∗

= 1∗ ∗ 1∗ = 1∗.

a ◦ b =

a 1
1 b

= a ∗ b.

a ◦ b =

1 a
b 1

= b ∗ a.



Eckmann–Hilton continued

Claim: If H is a set with binary operations ◦ and ∗ that admits an
identity 1∗ for ∗ and 1◦ for ◦ and satisfies

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

then 1∗ = 1◦, ∗ = ◦ and it is abelian.

1◦ =
1◦◦
1◦

=
1∗ 1◦
1◦ 1∗

= 1∗ ∗ 1∗ = 1∗.

a ◦ b =

a 1
1 b

= a ∗ b.

a ◦ b =

1 a
b 1

= b ∗ a.



Eckmann–Hilton continued

Claim: If H is a set with binary operations ◦ and ∗ that admits an
identity 1∗ for ∗ and 1◦ for ◦ and satisfies

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

then 1∗ = 1◦, ∗ = ◦ and it is abelian.

1◦ =
1◦◦
1◦

=
1∗ 1◦
1◦ 1∗

= 1∗ ∗ 1∗ = 1∗.

a ◦ b =

a 1
1 b

= a ∗ b.

a ◦ b =

1 a
b 1

= b ∗ a.



Eckmann–Hilton continued

Claim: If H is a set with binary operations ◦ and ∗ that admits an
identity 1∗ for ∗ and 1◦ for ◦ and satisfies

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

then 1∗ = 1◦, ∗ = ◦ and it is abelian.

1◦ =
1◦◦
1◦

=
1∗ 1◦
1◦ 1∗

= 1∗ ∗ 1∗ = 1∗.

a ◦ b =

a 1
1 b

= a ∗ b.

a ◦ b =

1 a
b 1

= b ∗ a.



Eckmann–Hilton continued

Claim: If H is a set with binary operations ◦ and ∗ that admits an
identity 1∗ for ∗ and 1◦ for ◦ and satisfies

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

then 1∗ = 1◦, ∗ = ◦ and it is abelian.

1◦ =
1◦◦
1◦

=
1∗ 1◦
1◦ 1∗

= 1∗ ∗ 1∗ = 1∗.

a ◦ b = a 1
1 b

= a ∗ b.

a ◦ b =

1 a
b 1

= b ∗ a.



Eckmann–Hilton continued

Claim: If H is a set with binary operations ◦ and ∗ that admits an
identity 1∗ for ∗ and 1◦ for ◦ and satisfies

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

then 1∗ = 1◦, ∗ = ◦ and it is abelian.

1◦ =
1◦◦
1◦

=
1∗ 1◦
1◦ 1∗

= 1∗ ∗ 1∗ = 1∗.

a ◦ b = a 1
1 b = a ∗ b.

a ◦ b =

1 a
b 1

= b ∗ a.



Eckmann–Hilton continued

Claim: If H is a set with binary operations ◦ and ∗ that admits an
identity 1∗ for ∗ and 1◦ for ◦ and satisfies

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

then 1∗ = 1◦, ∗ = ◦ and it is abelian.

1◦ =
1◦◦
1◦

=
1∗ 1◦
1◦ 1∗

= 1∗ ∗ 1∗ = 1∗.

a ◦ b = a 1
1 b = a ∗ b.

a ◦ b =

1 a
b 1

= b ∗ a.



Eckmann–Hilton continued

Claim: If H is a set with binary operations ◦ and ∗ that admits an
identity 1∗ for ∗ and 1◦ for ◦ and satisfies

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

then 1∗ = 1◦, ∗ = ◦ and it is abelian.

1◦ =
1◦◦
1◦

=
1∗ 1◦
1◦ 1∗

= 1∗ ∗ 1∗ = 1∗.

a ◦ b = a 1
1 b = a ∗ b.

a ◦ b = 1 a
b 1

= b ∗ a.



Eckmann–Hilton continued

Claim: If H is a set with binary operations ◦ and ∗ that admits an
identity 1∗ for ∗ and 1◦ for ◦ and satisfies

(f ◦ g) ∗ (h ◦ k) = (f ∗ h) ◦ (g ∗ k).

then 1∗ = 1◦, ∗ = ◦ and it is abelian.

1◦ =
1◦◦
1◦

=
1∗ 1◦
1◦ 1∗

= 1∗ ∗ 1∗ = 1∗.

a ◦ b = a 1
1 b = a ∗ b.

a ◦ b = 1 a
b 1 = b ∗ a.



What’s the point

Clever argument, but what’s the point?

Exhibits many hallmarks of mathematical thinking, and of
mathematical presentation

▶ We identified a very clear problem.

▶ We created a formal/symbolic approach to the problem.

▶ We did not include all specifics in our formalism.

▶ We explored the limits of the formal reasoning.



What’s the point

Clever argument, but what’s the point?

Exhibits many hallmarks of mathematical thinking, and of
mathematical presentation

▶ We identified a very clear problem.

▶ We created a formal/symbolic approach to the problem.

▶ We did not include all specifics in our formalism.

▶ We explored the limits of the formal reasoning.



What’s the point

Clever argument, but what’s the point?

Exhibits many hallmarks of mathematical thinking, and of
mathematical presentation

▶ We identified a very clear problem.

▶ We created a formal/symbolic approach to the problem.

▶ We did not include all specifics in our formalism.

▶ We explored the limits of the formal reasoning.



What’s the point

Clever argument, but what’s the point?

Exhibits many hallmarks of mathematical thinking, and of
mathematical presentation

▶ We identified a very clear problem.

▶ We created a formal/symbolic approach to the problem.

▶ We did not include all specifics in our formalism.

▶ We explored the limits of the formal reasoning.



What’s the point

Clever argument, but what’s the point?

Exhibits many hallmarks of mathematical thinking, and of
mathematical presentation

▶ We identified a very clear problem.

▶ We created a formal/symbolic approach to the problem.

▶ We did not include all specifics in our formalism.

▶ We explored the limits of the formal reasoning.



What’s the point

Clever argument, but what’s the point?

Exhibits many hallmarks of mathematical thinking, and of
mathematical presentation

▶ We identified a very clear problem.

▶ We created a formal/symbolic approach to the problem.

▶ We did not include all specifics in our formalism.

▶ We explored the limits of the formal reasoning.



Mathematical thinking

For me, mathematical thinking:

▶ Encodes problems in formalised/idealised language

▶ Carefully identifies the rules, assumptions of the formalism

▶ Uses abstraction/formalism to test intuition/analogy

▶ Uses intuition/analogy to inform formal thinking

▶ Seeks diverse formalisms to tap different intuition

▶ Tests formal conclusions against concrete examples.



Mathematical thinking

For me, mathematical thinking:

▶ Encodes problems in formalised/idealised language

▶ Carefully identifies the rules, assumptions of the formalism

▶ Uses abstraction/formalism to test intuition/analogy

▶ Uses intuition/analogy to inform formal thinking

▶ Seeks diverse formalisms to tap different intuition

▶ Tests formal conclusions against concrete examples.



Mathematical thinking

For me, mathematical thinking:

▶ Encodes problems in formalised/idealised language

▶ Carefully identifies the rules, assumptions of the formalism

▶ Uses abstraction/formalism to test intuition/analogy

▶ Uses intuition/analogy to inform formal thinking

▶ Seeks diverse formalisms to tap different intuition

▶ Tests formal conclusions against concrete examples.



Mathematical thinking

For me, mathematical thinking:

▶ Encodes problems in formalised/idealised language

▶ Carefully identifies the rules, assumptions of the formalism

▶ Uses abstraction/formalism to test intuition/analogy

▶ Uses intuition/analogy to inform formal thinking

▶ Seeks diverse formalisms to tap different intuition

▶ Tests formal conclusions against concrete examples.



Mathematical thinking

For me, mathematical thinking:

▶ Encodes problems in formalised/idealised language

▶ Carefully identifies the rules, assumptions of the formalism

▶ Uses abstraction/formalism to test intuition/analogy

▶ Uses intuition/analogy to inform formal thinking

▶ Seeks diverse formalisms to tap different intuition

▶ Tests formal conclusions against concrete examples.



Mathematical thinking

For me, mathematical thinking:

▶ Encodes problems in formalised/idealised language

▶ Carefully identifies the rules, assumptions of the formalism

▶ Uses abstraction/formalism to test intuition/analogy

▶ Uses intuition/analogy to inform formal thinking

▶ Seeks diverse formalisms to tap different intuition

▶ Tests formal conclusions against concrete examples.



Using computers I

How can we employ computers?

Obvious use: as in Four-Colour Theorem:

▶ Create a formalism for the problem.

▶ Use the formalism to reduce to problem to a finite number of
cases that must be checked.

▶ Automate the enumeration and checking of the cases.

This automates the checking, but not the mathematical thinking



Using computers I

How can we employ computers?

Obvious use: as in Four-Colour Theorem:

▶ Create a formalism for the problem.

▶ Use the formalism to reduce to problem to a finite number of
cases that must be checked.

▶ Automate the enumeration and checking of the cases.

This automates the checking, but not the mathematical thinking



Using computers II

Less obvious use: pattern recognition

▶ Solve small examples by hand

▶ Generate some numerical data

▶ Ask computers to recognise a pattern and generating formula

▶ Look for hints in the formula to inform formal solution.



Example: usage II (from work with Kumjian, Pask,
Whittaker)

Higher-rank graph: directed graph, but edges have colours, and
blue–red paths match up with red–blue paths to form commuting
squares, cubes etc.

By pasting topological intervals to edges, topological squares to
commuting squares, topological cubes to commuting cubes, etc,
obtain topological space.

u
w

v
x

g

h

e

f a
b

c

d



Example: usage II (from work with Kumjian, Pask,
Whittaker)

Higher-rank graph: directed graph, but edges have colours, and
blue–red paths match up with red–blue paths to form commuting
squares, cubes etc.

By pasting topological intervals to edges, topological squares to
commuting squares, topological cubes to commuting cubes, etc,
obtain topological space.

u
w

v
x

g

h

e

f a
b

c

d



Example: usage II (from work with Kumjian, Pask,
Whittaker)

Higher-rank graph: directed graph, but edges have colours, and
blue–red paths match up with red–blue paths to form commuting
squares, cubes etc.

By pasting topological intervals to edges, topological squares to
commuting squares, topological cubes to commuting cubes, etc,
obtain topological space.

u
w

v
x

g

h

e

f a
b

c

d



Example: usage II

General question: what spaces are achievable?

Specific question: are k-spheres (surface of k + 1-ball) achievable?

The 1-sphere is easy:

The 2-sphere slightly harder, but we could use the same idea: glue
two copies of the following 2-simplex on a common boundary:



Example: usage II

General question: what spaces are achievable?

Specific question: are k-spheres (surface of k + 1-ball) achievable?

The 1-sphere is easy:

The 2-sphere slightly harder, but we could use the same idea: glue
two copies of the following 2-simplex on a common boundary:



Example: usage II

General question: what spaces are achievable?

Specific question: are k-spheres (surface of k + 1-ball) achievable?

The 1-sphere is easy:

The 2-sphere slightly harder, but we could use the same idea: glue
two copies of the following 2-simplex on a common boundary:



Example: usage II

General question: what spaces are achievable?

Specific question: are k-spheres (surface of k + 1-ball) achievable?

The 1-sphere is easy:

The 2-sphere slightly harder, but we could use the same idea: glue
two copies of the following 2-simplex on a common boundary:



Example: usage II

The 3-sphere is getting ridicullous. I can’t picture gluing two
3-spheres on a common boundary. But we found, ad hoc, a graph
that worked: assemble 4 copies of the following with edges from
the circled vertices (of the circle’s colour) to a common central
vertex.

Now glue two of these simplices on their common boundary...



Example: usage II

The 3-sphere is getting ridicullous. I can’t picture gluing two
3-spheres on a common boundary. But we found, ad hoc, a graph
that worked: assemble 4 copies of the following with edges from
the circled vertices (of the circle’s colour) to a common central
vertex.

Now glue two of these simplices on their common boundary...



Example: usage II

4-sphere? Stuck. Something maybe inductive, but next example
too big do draw, and in 4d—no visual intuition.

So we counted vertices in simplices: 1-simplex: 3 vertices;
2-simplex: 13 vertices; 3-simplex: 75 vertices.

We asked a computer (specifically, the Online Encyclopedia of
Integer Sequences https://oeis.org) about these numbers.

It knew them: the number of possible outcomes of a k-horse
horserace, allowing for ties. OR, the number of functions
f : {1, . . . , k} → {1, . . . , k} such that
f (j) =

∣∣{i : f (i) < f (j) for all j}
∣∣.

Now we could reverse-engineer labellings of vertices so that edges
made sense, and solve the problem for all k.

https://oeis.org


Example: usage II

4-sphere? Stuck. Something maybe inductive, but next example
too big do draw, and in 4d—no visual intuition.

So we counted vertices in simplices: 1-simplex: 3 vertices;

2-simplex: 13 vertices; 3-simplex: 75 vertices.

We asked a computer (specifically, the Online Encyclopedia of
Integer Sequences https://oeis.org) about these numbers.

It knew them: the number of possible outcomes of a k-horse
horserace, allowing for ties. OR, the number of functions
f : {1, . . . , k} → {1, . . . , k} such that
f (j) =

∣∣{i : f (i) < f (j) for all j}
∣∣.

Now we could reverse-engineer labellings of vertices so that edges
made sense, and solve the problem for all k.

https://oeis.org


Example: usage II

4-sphere? Stuck. Something maybe inductive, but next example
too big do draw, and in 4d—no visual intuition.

So we counted vertices in simplices: 1-simplex: 3 vertices;
2-simplex: 13 vertices;

3-simplex: 75 vertices.

We asked a computer (specifically, the Online Encyclopedia of
Integer Sequences https://oeis.org) about these numbers.

It knew them: the number of possible outcomes of a k-horse
horserace, allowing for ties. OR, the number of functions
f : {1, . . . , k} → {1, . . . , k} such that
f (j) =

∣∣{i : f (i) < f (j) for all j}
∣∣.

Now we could reverse-engineer labellings of vertices so that edges
made sense, and solve the problem for all k.

https://oeis.org


Example: usage II

4-sphere? Stuck. Something maybe inductive, but next example
too big do draw, and in 4d—no visual intuition.

So we counted vertices in simplices: 1-simplex: 3 vertices;
2-simplex: 13 vertices; 3-simplex: 75 vertices.

We asked a computer (specifically, the Online Encyclopedia of
Integer Sequences https://oeis.org) about these numbers.

It knew them: the number of possible outcomes of a k-horse
horserace, allowing for ties. OR, the number of functions
f : {1, . . . , k} → {1, . . . , k} such that
f (j) =

∣∣{i : f (i) < f (j) for all j}
∣∣.

Now we could reverse-engineer labellings of vertices so that edges
made sense, and solve the problem for all k.

https://oeis.org


Example: usage II

4-sphere? Stuck. Something maybe inductive, but next example
too big do draw, and in 4d—no visual intuition.

So we counted vertices in simplices: 1-simplex: 3 vertices;
2-simplex: 13 vertices; 3-simplex: 75 vertices.

We asked a computer (specifically, the Online Encyclopedia of
Integer Sequences https://oeis.org) about these numbers.

It knew them: the number of possible outcomes of a k-horse
horserace, allowing for ties. OR, the number of functions
f : {1, . . . , k} → {1, . . . , k} such that
f (j) =

∣∣{i : f (i) < f (j) for all j}
∣∣.

Now we could reverse-engineer labellings of vertices so that edges
made sense, and solve the problem for all k.

https://oeis.org


Example: usage II

4-sphere? Stuck. Something maybe inductive, but next example
too big do draw, and in 4d—no visual intuition.

So we counted vertices in simplices: 1-simplex: 3 vertices;
2-simplex: 13 vertices; 3-simplex: 75 vertices.

We asked a computer (specifically, the Online Encyclopedia of
Integer Sequences https://oeis.org) about these numbers.

It knew them: the number of possible outcomes of a k-horse
horserace, allowing for ties. OR, the number of functions
f : {1, . . . , k} → {1, . . . , k} such that
f (j) =

∣∣{i : f (i) < f (j) for all j}
∣∣.

Now we could reverse-engineer labellings of vertices so that edges
made sense, and solve the problem for all k.

https://oeis.org


Example: usage II

4-sphere? Stuck. Something maybe inductive, but next example
too big do draw, and in 4d—no visual intuition.

So we counted vertices in simplices: 1-simplex: 3 vertices;
2-simplex: 13 vertices; 3-simplex: 75 vertices.

We asked a computer (specifically, the Online Encyclopedia of
Integer Sequences https://oeis.org) about these numbers.

It knew them: the number of possible outcomes of a k-horse
horserace, allowing for ties. OR, the number of functions
f : {1, . . . , k} → {1, . . . , k} such that
f (j) =

∣∣{i : f (i) < f (j) for all j}
∣∣.

Now we could reverse-engineer labellings of vertices so that edges
made sense, and solve the problem for all k.

https://oeis.org


What’s the point?

This wasn’t a very sophisticated use of a computer.

But it illustrates how computation can enhance mathematical
thinking.

Our brains seem better at finding connections between things that
can be counted (what’s the relationship between the number of
outcomes of a k + 1-horse race and of a k-horse race?) than
between numbers (3, 13, 75; what comes next?)

Computers can help us with the latter.



What’s the point?

This wasn’t a very sophisticated use of a computer.

But it illustrates how computation can enhance mathematical
thinking.

Our brains seem better at finding connections between things that
can be counted (what’s the relationship between the number of
outcomes of a k + 1-horse race and of a k-horse race?) than
between numbers (3, 13, 75; what comes next?)

Computers can help us with the latter.



What’s the point?

This wasn’t a very sophisticated use of a computer.

But it illustrates how computation can enhance mathematical
thinking.

Our brains seem better at finding connections between things that
can be counted (what’s the relationship between the number of
outcomes of a k + 1-horse race and of a k-horse race?) than
between numbers (3, 13, 75; what comes next?)

Computers can help us with the latter.



What’s the point?

This wasn’t a very sophisticated use of a computer.

But it illustrates how computation can enhance mathematical
thinking.

Our brains seem better at finding connections between things that
can be counted (what’s the relationship between the number of
outcomes of a k + 1-horse race and of a k-horse race?) than
between numbers (3, 13, 75; what comes next?)

Computers can help us with the latter.



Usage III: finding formulas

A third use can be in identifying general formulas.

Straight to an example (from work with Mundey):

Given groups G ,H that act on each other we can blend them in a
Zappa-Szep product (like a semidirect product) G ▷◁ H.

The nth homology groups of G ▷◁ H should relate to those of G ,H.



Usage III: finding formulas

A third use can be in identifying general formulas.

Straight to an example (from work with Mundey):

Given groups G ,H that act on each other we can blend them in a
Zappa-Szep product (like a semidirect product) G ▷◁ H.

The nth homology groups of G ▷◁ H should relate to those of G ,H.



Usage III: finding formulas

A third use can be in identifying general formulas.

Straight to an example (from work with Mundey):

Given groups G ,H that act on each other we can blend them in a
Zappa-Szep product (like a semidirect product) G ▷◁ H.

The nth homology groups of G ▷◁ H should relate to those of G ,H.



Usage III: finding formulas

A third use can be in identifying general formulas.

Straight to an example (from work with Mundey):

Given groups G ,H that act on each other we can blend them in a
Zappa-Szep product (like a semidirect product) G ▷◁ H.

The nth homology groups of G ▷◁ H should relate to those of G ,H.



Usage III: finding formulas

Theory says we just need to find maps between integer-valued
functions on length-n staircase-shaped paths and on length-n
up-across shaped paths in diagrams like:

satisfying some relations.

Finding them felt like trial-and-error...

...exclusively error once n got to 3.



Usage III: finding formulas

Theory says we just need to find maps between integer-valued
functions on length-n staircase-shaped paths and on length-n
up-across shaped paths in diagrams like:

satisfying some relations.

Finding them felt like trial-and-error...

...exclusively error once n got to 3.



Usage III: finding formulas

Theory says we just need to find maps between integer-valued
functions on length-n staircase-shaped paths and on length-n
up-across shaped paths in diagrams like:

satisfying some relations.

Finding them felt like trial-and-error...

...exclusively error once n got to 3.



Usage III

But the problem is an integer linear-algebra problem with
coefficients of ±1.

So Alex write some Python code to try all possible combinations.

This gave us formulas for n = 3, 4, 5.

Now with enough data points for some pattern recognition, we
could guess a formula, and then verify it formally by induction.

How much of this could have been done by well-trained machine
learning? Maybe a lot.



Usage III

But the problem is an integer linear-algebra problem with
coefficients of ±1.

So Alex write some Python code to try all possible combinations.

This gave us formulas for n = 3, 4, 5.

Now with enough data points for some pattern recognition, we
could guess a formula, and then verify it formally by induction.

How much of this could have been done by well-trained machine
learning? Maybe a lot.



Usage III

But the problem is an integer linear-algebra problem with
coefficients of ±1.

So Alex write some Python code to try all possible combinations.

This gave us formulas for n = 3, 4, 5.

Now with enough data points for some pattern recognition, we
could guess a formula, and then verify it formally by induction.

How much of this could have been done by well-trained machine
learning? Maybe a lot.



Usage III

But the problem is an integer linear-algebra problem with
coefficients of ±1.

So Alex write some Python code to try all possible combinations.

This gave us formulas for n = 3, 4, 5.

Now with enough data points for some pattern recognition, we
could guess a formula, and then verify it formally by induction.

How much of this could have been done by well-trained machine
learning? Maybe a lot.



Usage III

But the problem is an integer linear-algebra problem with
coefficients of ±1.

So Alex write some Python code to try all possible combinations.

This gave us formulas for n = 3, 4, 5.

Now with enough data points for some pattern recognition, we
could guess a formula, and then verify it formally by induction.

How much of this could have been done by well-trained machine
learning? Maybe a lot.



Visual intuition - strengths

I think visually.

Generally speaking “Let X be a blah,” −→ mental picture.

If not, I have to build one.

This often helps me:

▶ formulate hypotheses

▶ construct proof strategies

▶ spot gaps in arguments.



Visual intuition - strengths

I think visually.

Generally speaking “Let X be a blah,” −→ mental picture.

If not, I have to build one.

This often helps me:

▶ formulate hypotheses

▶ construct proof strategies

▶ spot gaps in arguments.



Visual intuition - strengths

I think visually.

Generally speaking “Let X be a blah,” −→ mental picture.

If not, I have to build one.

This often helps me:

▶ formulate hypotheses

▶ construct proof strategies

▶ spot gaps in arguments.



Visual intuition - strengths

I think visually.

Generally speaking “Let X be a blah,” −→ mental picture.

If not, I have to build one.

This often helps me:

▶ formulate hypotheses

▶ construct proof strategies

▶ spot gaps in arguments.



Visual intuition - strengths

I think visually.

Generally speaking “Let X be a blah,” −→ mental picture.

If not, I have to build one.

This often helps me:

▶ formulate hypotheses

▶ construct proof strategies

▶ spot gaps in arguments.



Visual intuition - strengths

I think visually.

Generally speaking “Let X be a blah,” −→ mental picture.

If not, I have to build one.

This often helps me:

▶ formulate hypotheses

▶ construct proof strategies

▶ spot gaps in arguments.



Visual intuition - strengths

I think visually.

Generally speaking “Let X be a blah,” −→ mental picture.

If not, I have to build one.

This often helps me:

▶ formulate hypotheses

▶ construct proof strategies

▶ spot gaps in arguments.



Visual intuition - limitations

But the pictures are pretty limited.

Eg: I reckon < 10 mental pictures of topological spaces.

I really don’t understand why this small bank of pictures works.



Visual intuition - limitations

But the pictures are pretty limited.

Eg: I reckon < 10 mental pictures of topological spaces.

I really don’t understand why this small bank of pictures works.



Visual intuition - limitations

But the pictures are pretty limited.

Eg: I reckon < 10 mental pictures of topological spaces.

I really don’t understand why this small bank of pictures works.



Visual intuition: cons

I suspect my visual thinking hinders me in

▶ Quickly and accurately assimilating new ideas,

▶ Recognising how broad (or limited) a concept is

▶ Disproving “reasonable” conjectures.

Example: question “does every minimal, effective non-Hausdorff
groupoid have property X?”

I pictured things that failed X . Tried to make them minimal and
effective.

Couldn’t; and now I could only “see” examples like them.



Visual intuition: cons

I suspect my visual thinking hinders me in

▶ Quickly and accurately assimilating new ideas,

▶ Recognising how broad (or limited) a concept is

▶ Disproving “reasonable” conjectures.

Example: question “does every minimal, effective non-Hausdorff
groupoid have property X?”

I pictured things that failed X . Tried to make them minimal and
effective.

Couldn’t; and now I could only “see” examples like them.



Visual intuition: cons

I suspect my visual thinking hinders me in

▶ Quickly and accurately assimilating new ideas,

▶ Recognising how broad (or limited) a concept is

▶ Disproving “reasonable” conjectures.

Example: question “does every minimal, effective non-Hausdorff
groupoid have property X?”

I pictured things that failed X . Tried to make them minimal and
effective.

Couldn’t; and now I could only “see” examples like them.



Visual intuition: cons

I suspect my visual thinking hinders me in

▶ Quickly and accurately assimilating new ideas,

▶ Recognising how broad (or limited) a concept is

▶ Disproving “reasonable” conjectures.

Example: question “does every minimal, effective non-Hausdorff
groupoid have property X?”

I pictured things that failed X . Tried to make them minimal and
effective.

Couldn’t; and now I could only “see” examples like them.



Visual intuition: cons

I suspect my visual thinking hinders me in

▶ Quickly and accurately assimilating new ideas,

▶ Recognising how broad (or limited) a concept is

▶ Disproving “reasonable” conjectures.

Example: question “does every minimal, effective non-Hausdorff
groupoid have property X?”

I pictured things that failed X . Tried to make them minimal and
effective.

Couldn’t; and now I could only “see” examples like them.



Visual intuition: cons

I suspect my visual thinking hinders me in

▶ Quickly and accurately assimilating new ideas,

▶ Recognising how broad (or limited) a concept is

▶ Disproving “reasonable” conjectures.

Example: question “does every minimal, effective non-Hausdorff
groupoid have property X?”

I pictured things that failed X . Tried to make them minimal and
effective.

Couldn’t; and now I could only “see” examples like them.



Visual intuition: cons

I suspect my visual thinking hinders me in

▶ Quickly and accurately assimilating new ideas,

▶ Recognising how broad (or limited) a concept is

▶ Disproving “reasonable” conjectures.

Example: question “does every minimal, effective non-Hausdorff
groupoid have property X?”

I pictured things that failed X . Tried to make them minimal and
effective.

Couldn’t;

and now I could only “see” examples like them.



Visual intuition: cons

I suspect my visual thinking hinders me in

▶ Quickly and accurately assimilating new ideas,

▶ Recognising how broad (or limited) a concept is

▶ Disproving “reasonable” conjectures.

Example: question “does every minimal, effective non-Hausdorff
groupoid have property X?”

I pictured things that failed X . Tried to make them minimal and
effective.

Couldn’t; and now I could only “see” examples like them.



Visual intuition: cons

A clever approach (Nekrashevych):

▶ describe algebraic ways of constructing complex groupoids
from finite data

▶ identify algebraic conditions equivalent to

1. Hausdorffness
2. minimality
3. effectiveness.

▶ now seek examples that satisfy (2) and (3) but not (1).
He found one!



Visual intuition: cons

A clever approach (Nekrashevych):

▶ describe algebraic ways of constructing complex groupoids
from finite data

▶ identify algebraic conditions equivalent to

1. Hausdorffness
2. minimality
3. effectiveness.

▶ now seek examples that satisfy (2) and (3) but not (1).
He found one!



Visual intuition: cons

A clever approach (Nekrashevych):

▶ describe algebraic ways of constructing complex groupoids
from finite data

▶ identify algebraic conditions equivalent to

1. Hausdorffness
2. minimality
3. effectiveness.

▶ now seek examples that satisfy (2) and (3) but not (1).
He found one!



Visual intuition: cons

A clever approach (Nekrashevych):

▶ describe algebraic ways of constructing complex groupoids
from finite data

▶ identify algebraic conditions equivalent to

1. Hausdorffness

2. minimality
3. effectiveness.

▶ now seek examples that satisfy (2) and (3) but not (1).
He found one!



Visual intuition: cons

A clever approach (Nekrashevych):

▶ describe algebraic ways of constructing complex groupoids
from finite data

▶ identify algebraic conditions equivalent to

1. Hausdorffness
2. minimality

3. effectiveness.

▶ now seek examples that satisfy (2) and (3) but not (1).
He found one!



Visual intuition: cons

A clever approach (Nekrashevych):

▶ describe algebraic ways of constructing complex groupoids
from finite data

▶ identify algebraic conditions equivalent to

1. Hausdorffness
2. minimality
3. effectiveness.

▶ now seek examples that satisfy (2) and (3) but not (1).
He found one!



Visual intuition: cons

A clever approach (Nekrashevych):

▶ describe algebraic ways of constructing complex groupoids
from finite data

▶ identify algebraic conditions equivalent to

1. Hausdorffness
2. minimality
3. effectiveness.

▶ now seek examples that satisfy (2) and (3) but not (1).

He found one!



Visual intuition: cons

A clever approach (Nekrashevych):

▶ describe algebraic ways of constructing complex groupoids
from finite data

▶ identify algebraic conditions equivalent to

1. Hausdorffness
2. minimality
3. effectiveness.

▶ now seek examples that satisfy (2) and (3) but not (1).
He found one!



Thoughts we cannot think?

Recently saw a quote:
Are there thoughts we cannot think?

I thought about my visual-thinking problem, Nekrashevych’s
solution.

There are definitely “pictures I cannot see.”

Mathematical formalism/thinking can circumvent limitations on
“what we can think.”

But we usually convert to problems we can think about directly.

Should we get better at finding out what computers can learn and
at converting to problems they are good at?



Thoughts we cannot think?

Recently saw a quote:
Are there thoughts we cannot think?

I thought about my visual-thinking problem, Nekrashevych’s
solution.

There are definitely “pictures I cannot see.”

Mathematical formalism/thinking can circumvent limitations on
“what we can think.”

But we usually convert to problems we can think about directly.

Should we get better at finding out what computers can learn and
at converting to problems they are good at?



Thoughts we cannot think?

Recently saw a quote:
Are there thoughts we cannot think?

I thought about my visual-thinking problem, Nekrashevych’s
solution.

There are definitely “pictures I cannot see.”

Mathematical formalism/thinking can circumvent limitations on
“what we can think.”

But we usually convert to problems we can think about directly.

Should we get better at finding out what computers can learn and
at converting to problems they are good at?



Thoughts we cannot think?

Recently saw a quote:
Are there thoughts we cannot think?

I thought about my visual-thinking problem, Nekrashevych’s
solution.

There are definitely “pictures I cannot see.”

Mathematical formalism/thinking can circumvent limitations on
“what we can think.”

But we usually convert to problems we can think about directly.

Should we get better at finding out what computers can learn and
at converting to problems they are good at?



Thoughts we cannot think?

Recently saw a quote:
Are there thoughts we cannot think?

I thought about my visual-thinking problem, Nekrashevych’s
solution.

There are definitely “pictures I cannot see.”

Mathematical formalism/thinking can circumvent limitations on
“what we can think.”

But we usually convert to problems we can think about directly.

Should we get better at finding out what computers can learn and
at converting to problems they are good at?



Thoughts we cannot think?

Recently saw a quote:
Are there thoughts we cannot think?

I thought about my visual-thinking problem, Nekrashevych’s
solution.

There are definitely “pictures I cannot see.”

Mathematical formalism/thinking can circumvent limitations on
“what we can think.”

But we usually convert to problems we can think about directly.

Should we get better at finding out what computers can learn and
at converting to problems they are good at?


	Mathematical thinking (for me)
	Discovery versus proof
	Visual intuition - pros and cons

