
Computing Bernoulli numbers

David Harvey (joint work with Edgar Costa)

University of New South Wales

27th September 2017
Jonathan Borwein Commemorative Conference

Noah’s on the Beach, Newcastle, Australia



ζ(2) = 1 +
1

22
+

1

32
+ · · · =

π2

6
= 1.644934 . . .

ζ(4) = 1 +
1

24
+

1

34
+ · · · =

π4

90
= 1.082323 . . .

ζ(6) = 1 +
1

26
+

1

36
+ · · · =

π6

945
= 1.017343 . . .

ζ(8) = 1 +
1

28
+

1

38
+ · · · =

π8

9450
= 1.004077 . . .

ζ(10) = 1 +
1

210
+

1

310
+ · · · =

π10

93555
= 1.000994 . . .

ζ(12) = 1 +
1

212
+

1

312
+ · · · =

691π12

638512875
= 1.000246 . . .

2 / 20



ζ(2) = 1 +
1

22
+

1

32
+ · · · =

π2

6
= 1.644934 . . .

ζ(4) = 1 +
1

24
+

1

34
+ · · · =

π4

90
= 1.082323 . . .

ζ(6) = 1 +
1

26
+

1

36
+ · · · =

π6

945
= 1.017343 . . .

ζ(8) = 1 +
1

28
+

1

38
+ · · · =

π8

9450
= 1.004077 . . .

ζ(10) = 1 +
1

210
+

1

310
+ · · · =

π10

93555
= 1.000994 . . .

ζ(12) = 1 +
1

212
+

1

312
+ · · · =

691π12

638512875
= 1.000246 . . .

2 / 20



ζ(2) = 1 +
1

22
+

1

32
+ · · · =

π2

6
= 1.644934 . . .

ζ(4) = 1 +
1

24
+

1

34
+ · · · =

π4

90
= 1.082323 . . .

ζ(6) = 1 +
1

26
+

1

36
+ · · · =

π6

945
= 1.017343 . . .

ζ(8) = 1 +
1

28
+

1

38
+ · · · =

π8

9450
= 1.004077 . . .

ζ(10) = 1 +
1

210
+

1

310
+ · · · =

π10

93555
= 1.000994 . . .

ζ(12) = 1 +
1

212
+

1

312
+ · · · =

691π12

638512875
= 1.000246 . . .

2 / 20



ζ(2) = 1 +
1

22
+

1

32
+ · · · =

π2

6
= 1.644934 . . .

ζ(4) = 1 +
1

24
+

1

34
+ · · · =

π4

90
= 1.082323 . . .

ζ(6) = 1 +
1

26
+

1

36
+ · · · =

π6

945
= 1.017343 . . .

ζ(8) = 1 +
1

28
+

1

38
+ · · · =

π8

9450
= 1.004077 . . .

ζ(10) = 1 +
1

210
+

1

310
+ · · · =

π10

93555
= 1.000994 . . .

ζ(12) = 1 +
1

212
+

1

312
+ · · · =

691π12

638512875
= 1.000246 . . .

2 / 20



Euler’s formula for even n:

ζ(n) = 1 +
1

2n
+

1

3n
+ · · · = (−1)n/2+1 Bn

n!
(2π)n,

where Bn are the Bernoulli numbers defined by

t

et − 1
=
∞∑
n=0

Bn

n!
tn.

3 / 20



The first few Bernoulli numbers:

B0 = 1 B1 = −1/2

B2 = 1/6 B3 = 0

B4 = −1/30 B5 = 0

B6 = 1/42 B7 = 0

B8 = −1/30 B9 = 0

B10 = 5/66 B11 = 0

B12 = −691/2730 B13 = 0

B14 = 7/6 B15 = 0

A bigger Bernoulli number:

B100 = −9459803781912212529522743306

9493721872702841533066936133

385696204311395415197247711 / 33330

4 / 20



The first few Bernoulli numbers:

B0 = 1 B1 = −1/2

B2 = 1/6 B3 = 0

B4 = −1/30 B5 = 0

B6 = 1/42 B7 = 0

B8 = −1/30 B9 = 0

B10 = 5/66 B11 = 0

B12 = −691/2730 B13 = 0

B14 = 7/6 B15 = 0

A bigger Bernoulli number:

B100 = −9459803781912212529522743306

9493721872702841533066936133

385696204311395415197247711 / 33330

4 / 20



The denominator Dn of Bn is given by the von Staudt–Clausen formula:

Dn =
∏

p prime
p−1|n

p.

Example:
D100 = 2 · 3 · 5 · 11 · 101 = 33330.

The numerator Nn of Bn is an integer with n log2 n + O(n) bits.

5 / 20



The denominator Dn of Bn is given by the von Staudt–Clausen formula:

Dn =
∏

p prime
p−1|n

p.

Example:
D100 = 2 · 3 · 5 · 11 · 101 = 33330.

The numerator Nn of Bn is an integer with n log2 n + O(n) bits.

5 / 20



Computing Bernoulli numbers is a very interesting problem.

“We have B96 and are well on the way towards B99. I think that
the average time required for each B will simmer down to about
20 hours. About 1/3 of this time is used in typing results and
1/10 of it is in checking. Of course, the final check (the exact
division of a 250-digit number by a 50-digit number) would be
sufficient, but coming as it does at the end of 20 hours it is
necessary to check more frequently. We use as an additional
check the casting out of 1000000001.”

(Letter from Dick Lehmer to Harry Vandiver, 1934, quoted in Corry 2008.)

6 / 20



Computing Bernoulli numbers is a very interesting problem.

“We have B96 and are well on the way towards B99. I think that
the average time required for each B will simmer down to about
20 hours. About 1/3 of this time is used in typing results and
1/10 of it is in checking. Of course, the final check (the exact
division of a 250-digit number by a 50-digit number) would be
sufficient, but coming as it does at the end of 20 hours it is
necessary to check more frequently. We use as an additional
check the casting out of 1000000001.”

(Letter from Dick Lehmer to Harry Vandiver, 1934, quoted in Corry 2008.)

6 / 20



What would Lehmer have thought of this?

sage: time x = bernoulli(10000) # 28000 digits

Wall time: 9.68 ms

sage: time x = bernoulli(20000) # 61000 digits

Wall time: 60.9 ms

sage: time x = bernoulli(40000) # 135000 digits

Wall time: 229 ms

sage: time x = bernoulli(80000) # 294000 digits

Wall time: 982 ms

sage: time x = bernoulli(160000) # 636000 digits

Wall time: 4.02 s

Implementation uses FLINT library (Bill Hart et al).

Notice the running time is roughly quadratic in n.

7 / 20



What would Lehmer have thought of this?

sage: time x = bernoulli(10000) # 28000 digits

Wall time: 9.68 ms

sage: time x = bernoulli(20000) # 61000 digits

Wall time: 60.9 ms

sage: time x = bernoulli(40000) # 135000 digits

Wall time: 229 ms

sage: time x = bernoulli(80000) # 294000 digits

Wall time: 982 ms

sage: time x = bernoulli(160000) # 636000 digits

Wall time: 4.02 s

Implementation uses FLINT library (Bill Hart et al).

Notice the running time is roughly quadratic in n.

7 / 20



FLINT uses the zeta function algorithm:

Approximate ζ(n) to precision of O(n log n) bits using the Euler
product:

ζ(n) =
∏
p

(
1− 1

pn

)−1
.

To get enough bits, suffices to include primes up to about n/(2πe).

Approximate πn and n! to precision of O(n log n) bits.

Compute denominator Dn using von Staudt–Clausen formula.

Use Euler’s formula to deduce real approximation to Bn, and hence
recover Nn exactly.

All steps run in n1+o(1) time, except possibly the first.

8 / 20



FLINT uses the zeta function algorithm:

Approximate ζ(n) to precision of O(n log n) bits using the Euler
product:

ζ(n) =
∏
p

(
1− 1

pn

)−1
.

To get enough bits, suffices to include primes up to about n/(2πe).

Approximate πn and n! to precision of O(n log n) bits.

Compute denominator Dn using von Staudt–Clausen formula.

Use Euler’s formula to deduce real approximation to Bn, and hence
recover Nn exactly.

All steps run in n1+o(1) time, except possibly the first.

8 / 20



FLINT uses the zeta function algorithm:

Approximate ζ(n) to precision of O(n log n) bits using the Euler
product:

ζ(n) =
∏
p

(
1− 1

pn

)−1
.

To get enough bits, suffices to include primes up to about n/(2πe).

Approximate πn and n! to precision of O(n log n) bits.

Compute denominator Dn using von Staudt–Clausen formula.

Use Euler’s formula to deduce real approximation to Bn, and hence
recover Nn exactly.

All steps run in n1+o(1) time, except possibly the first.

8 / 20



FLINT uses the zeta function algorithm:

Approximate ζ(n) to precision of O(n log n) bits using the Euler
product:

ζ(n) =
∏
p

(
1− 1

pn

)−1
.

To get enough bits, suffices to include primes up to about n/(2πe).

Approximate πn and n! to precision of O(n log n) bits.

Compute denominator Dn using von Staudt–Clausen formula.

Use Euler’s formula to deduce real approximation to Bn, and hence
recover Nn exactly.

All steps run in n1+o(1) time, except possibly the first.

8 / 20



FLINT uses the zeta function algorithm:

Approximate ζ(n) to precision of O(n log n) bits using the Euler
product:

ζ(n) =
∏
p

(
1− 1

pn

)−1
.

To get enough bits, suffices to include primes up to about n/(2πe).

Approximate πn and n! to precision of O(n log n) bits.

Compute denominator Dn using von Staudt–Clausen formula.

Use Euler’s formula to deduce real approximation to Bn, and hence
recover Nn exactly.

All steps run in n1+o(1) time, except possibly the first.

8 / 20



Example for n = 100:

2100 = 1267650600228229401496703205376

3100 = 515377520732011331036461129765621272702107522001

5100 = 7888609052210118054117285652827862296732064351090230047702789306640625

7100 = 3234476509624757991344647769100216810857203198904625400933895331391691459636928060001

Corresponding factors in Euler product for ζ(100):(
1− 1

2100

)−1
= 1.0000000000000000000000000000007888609052210118054117285652834085312009925492797374(

1− 1

3100

)−1
= 1.0000000000000000000000000000000000000000000000019403252174826328375885060288046504(

1− 1

5100

)−1
= 1.0000000000000000000000000000000000000000000000000000000000000000000001267650600228(

1− 1

7100

)−1
= 1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000

9 / 20



Example for n = 100:

2100 = 1267650600228229401496703205376

3100 = 515377520732011331036461129765621272702107522001

5100 = 7888609052210118054117285652827862296732064351090230047702789306640625

7100 = 3234476509624757991344647769100216810857203198904625400933895331391691459636928060001

Corresponding factors in Euler product for ζ(100):(
1− 1

2100

)−1
= 1.0000000000000000000000000000007888609052210118054117285652834085312009925492797374(

1− 1

3100

)−1
= 1.0000000000000000000000000000000000000000000000019403252174826328375885060288046504(

1− 1

5100

)−1
= 1.0000000000000000000000000000000000000000000000000000000000000000000001267650600228(

1− 1

7100

)−1
= 1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000

9 / 20



What is the complexity?

There are O(n/ log n) primes up to n/(2πe).

For each prime, it costs O(M(n log n)) bit operations to compute the
Euler factor and accumulate it into the running product.

Total complexity, assuming FFT multiplication:

n2(log n)1+o(1).

This explains the quadratic behaviour of FLINT.

10 / 20



What is the complexity?

There are O(n/ log n) primes up to n/(2πe).

For each prime, it costs O(M(n log n)) bit operations to compute the
Euler factor and accumulate it into the running product.

Total complexity, assuming FFT multiplication:

n2(log n)1+o(1).

This explains the quadratic behaviour of FLINT.

10 / 20



In 2010 I published another quasi-quadratic algorithm for computing Bn,
called the multimodular algorithm.

It has nothing to do with the zeta function or Euler’s formula.

Instead, it uses Voronoi congruences.

For example, if p is a prime and 2n 6= 1 (mod p) then

Bn ≡
n

2(2n − 1)

(
1n−1 − 2n−1 + 3n−1 − · · · − (p − 1)n−1

)
(mod p).

Using congruences of this type, we can evaluate Bn (mod p) using O(p)
operations in Fp.

11 / 20



In 2010 I published another quasi-quadratic algorithm for computing Bn,
called the multimodular algorithm.

It has nothing to do with the zeta function or Euler’s formula.

Instead, it uses Voronoi congruences.

For example, if p is a prime and 2n 6= 1 (mod p) then

Bn ≡
n

2(2n − 1)

(
1n−1 − 2n−1 + 3n−1 − · · · − (p − 1)n−1

)
(mod p).

Using congruences of this type, we can evaluate Bn (mod p) using O(p)
operations in Fp.

11 / 20



We do this for all p < n log2 n + O(n), then reconstruct Bn using the
Chinese remainder theorem.

For example, for n = 10000, we need all primes up to 64013.

Theoretical complexity is
n2(log n)2+o(1).

In theory this is a factor of log n worse than the zeta function algorithm.

In practice, it seems to perform better than zeta function algorithm for
large n, say n > 106 or 107 or so.

The main reason for this is bettter locality. Each prime can be handled in
almost zero space, whereas the zeta function algorithm is constantly
manipulating enormous integers.

12 / 20



We do this for all p < n log2 n + O(n), then reconstruct Bn using the
Chinese remainder theorem.

For example, for n = 10000, we need all primes up to 64013.

Theoretical complexity is
n2(log n)2+o(1).

In theory this is a factor of log n worse than the zeta function algorithm.

In practice, it seems to perform better than zeta function algorithm for
large n, say n > 106 or 107 or so.

The main reason for this is bettter locality. Each prime can be handled in
almost zero space, whereas the zeta function algorithm is constantly
manipulating enormous integers.

12 / 20



We do this for all p < n log2 n + O(n), then reconstruct Bn using the
Chinese remainder theorem.

For example, for n = 10000, we need all primes up to 64013.

Theoretical complexity is
n2(log n)2+o(1).

In theory this is a factor of log n worse than the zeta function algorithm.

In practice, it seems to perform better than zeta function algorithm for
large n, say n > 106 or 107 or so.

The main reason for this is bettter locality. Each prime can be handled in
almost zero space, whereas the zeta function algorithm is constantly
manipulating enormous integers.

12 / 20



Edgar Costa and I have recently been thinking about how to combine
information from these two algorithms.

For example, we could:

Run the zeta function algorithm at half the target precision, to get
real approximation to Bn.

Run multimodular algorithm for half of the primes, to get modular
information about Bn.

Combining these two pieces of information, we can reconstruct Bn.

What does this do to the running time?

13 / 20



Recall that to run the zeta function algorithm at full precision, we need to
include Euler factors for O(n/ log n) primes.

To get half the precision, we only need O(
√

n/ log n) primes!

The small primes contribute much more information than the big primes.

Example: n = 10000.

For full precision, need Euler factors for p ≤ 587.

For half precision, only need p ≤ 23!!

This is basically because 2310000 has half as many bits as 58710000.

Conclusion: we can compute half the bits in only n3/2(log n)1+o(1) time,
which is asymptotically negligible!

14 / 20



Recall that to run the zeta function algorithm at full precision, we need to
include Euler factors for O(n/ log n) primes.

To get half the precision, we only need O(
√

n/ log n) primes!

The small primes contribute much more information than the big primes.

Example: n = 10000.

For full precision, need Euler factors for p ≤ 587.

For half precision, only need p ≤ 23!!

This is basically because 2310000 has half as many bits as 58710000.

Conclusion: we can compute half the bits in only n3/2(log n)1+o(1) time,
which is asymptotically negligible!

14 / 20



Recall that to run the zeta function algorithm at full precision, we need to
include Euler factors for O(n/ log n) primes.

To get half the precision, we only need O(
√

n/ log n) primes!

The small primes contribute much more information than the big primes.

Example: n = 10000.

For full precision, need Euler factors for p ≤ 587.

For half precision, only need p ≤ 23!!

This is basically because 2310000 has half as many bits as 58710000.

Conclusion: we can compute half the bits in only n3/2(log n)1+o(1) time,
which is asymptotically negligible!

14 / 20



On the other hand, for the multimodular algorithm, computing half of the
bits only takes 1/4 of the time needed to compute all the bits.

The small primes are cheaper than the big primes.

Conclusion: by combining the two algorithms, asymptotically we save a
factor of 4!

In fact, by adjusting the fraction of bits allocated to each algorithm, we
can (asymptotically) save any desired constant factor!

Obvious question: what if we let the fraction vary with n? What is the
best choice?

15 / 20



On the other hand, for the multimodular algorithm, computing half of the
bits only takes 1/4 of the time needed to compute all the bits.

The small primes are cheaper than the big primes.

Conclusion: by combining the two algorithms, asymptotically we save a
factor of 4!

In fact, by adjusting the fraction of bits allocated to each algorithm, we
can (asymptotically) save any desired constant factor!

Obvious question: what if we let the fraction vary with n? What is the
best choice?

15 / 20



Suppose we compute fraction α of the bits with multimodular algorithm,
and fraction 1− α with zeta function algorithm.

One can show that the zeta function algorithm contributes

n2−α(log n)1+o(1),

and multimodular algorithm contributes

α2n2(log n)2+o(1).

Optimal choice of α turns out to be around log log n/ log n. With this
choice, contribution from both parts is

n2(log n)o(1).

This is a factor of about log n faster than the zeta function algorithm!

16 / 20



Suppose we compute fraction α of the bits with multimodular algorithm,
and fraction 1− α with zeta function algorithm.

One can show that the zeta function algorithm contributes

n2−α(log n)1+o(1),

and multimodular algorithm contributes

α2n2(log n)2+o(1).

Optimal choice of α turns out to be around log log n/ log n. With this
choice, contribution from both parts is

n2(log n)o(1).

This is a factor of about log n faster than the zeta function algorithm!

16 / 20



Does it actually work?

Example: compute B106 .

FLINT: 170s

PARI: 190s (also uses zeta function algorithm)

multimodular: 175s

I wrote a not-so-optimised implementation of the “combination”
algorithm.

Tried several values of α, best seems to be α = 0.32.

Runs in 36.5s (speedup 4.7x). More precisely:

5.6s computing πn, n!, etc

8.7s evaluating Euler product

22.1s for multimodular computation

17 / 20



Does it actually work?

Example: compute B106 .

FLINT: 170s

PARI: 190s (also uses zeta function algorithm)

multimodular: 175s

I wrote a not-so-optimised implementation of the “combination”
algorithm.

Tried several values of α, best seems to be α = 0.32.

Runs in 36.5s (speedup 4.7x). More precisely:

5.6s computing πn, n!, etc

8.7s evaluating Euler product

22.1s for multimodular computation

17 / 20



Actually... this is not the asymptotically fastest algorithm known.

In 2014 I published an algorithm that computes Bn in time

n4/3(log n)11/3+o(1).

It is based on a “prime power” version of the Voronoi congruence.

It simultaneously computes Bn (mod pλ) for all primes up to
n1/3(log n)2/3, for λ around n2/3(log n)1/3, using fast polynomial
evaluation techniques.

To the best of my knowledge, a complete implementation does not yet
exist.

Edgar and I have been working on it, on and off for a few years.

18 / 20



Actually... this is not the asymptotically fastest algorithm known.

In 2014 I published an algorithm that computes Bn in time

n4/3(log n)11/3+o(1).

It is based on a “prime power” version of the Voronoi congruence.

It simultaneously computes Bn (mod pλ) for all primes up to
n1/3(log n)2/3, for λ around n2/3(log n)1/3, using fast polynomial
evaluation techniques.

To the best of my knowledge, a complete implementation does not yet
exist.

Edgar and I have been working on it, on and off for a few years.

18 / 20



Actually... this is not the asymptotically fastest algorithm known.

In 2014 I published an algorithm that computes Bn in time

n4/3(log n)11/3+o(1).

It is based on a “prime power” version of the Voronoi congruence.

It simultaneously computes Bn (mod pλ) for all primes up to
n1/3(log n)2/3, for λ around n2/3(log n)1/3, using fast polynomial
evaluation techniques.

To the best of my knowledge, a complete implementation does not yet
exist.

Edgar and I have been working on it, on and off for a few years.

18 / 20



So now we have three algorithms:

Zeta function algorithm

Multimodular algorithm

Prime power algorithm

They all compute independent information (more or less), so they could be
combined.

Unfortunately, in theory this yields at best a constant speedup over the
prime power algorithm.

The reason is: as soon as we compute more than 1/3 of the bits using the
Euler product, the complexity is already worse than n4/3. We would be
better off using the prime power algorithm alone.

In practice, for feasible values of n, I expect that some combination of all
three algorithms will be best.

We won’t know until we try it!

19 / 20



So now we have three algorithms:

Zeta function algorithm

Multimodular algorithm

Prime power algorithm

They all compute independent information (more or less), so they could be
combined.

Unfortunately, in theory this yields at best a constant speedup over the
prime power algorithm.

The reason is: as soon as we compute more than 1/3 of the bits using the
Euler product, the complexity is already worse than n4/3. We would be
better off using the prime power algorithm alone.

In practice, for feasible values of n, I expect that some combination of all
three algorithms will be best.

We won’t know until we try it!

19 / 20



Thank you!

20 / 20


