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Hans Rademacher Quote

. . . the impression may have prevailed that analytic number theory
deals foremost with asymptotic expressions for arithmetical
functions. This view, however, overlooks another side of analytic
number theory, which I may indicate by the words “identities,”
. . . “structural considerations.” This line of research is not yet so
widely known; it may very well be that methods of this type will
lead to the “deeper” results, will reveal the sources of some of the
results of the first direction of approach.

Hans Rademacher, September 5, 1941, address to the American
Mathematical Society
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Hans Rademacher Picture
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Partitions

Definition The partition function p(n) is defined to be the number
of ways a positive integer n can be written as a sum of positive
integers.

Example

p(4) = 5

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

p(5n + 4) ≡0 (mod 5),

p(7n + 5) ≡0 (mod 7),

p(11n + 6) ≡0 (mod 11).

11 / 45



Partitions

Definition The partition function p(n) is defined to be the number
of ways a positive integer n can be written as a sum of positive
integers.

Example

p(4) = 5

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

p(5n + 4) ≡0 (mod 5),

p(7n + 5) ≡0 (mod 7),

p(11n + 6) ≡0 (mod 11).

11 / 45



Partitions

Definition The partition function p(n) is defined to be the number
of ways a positive integer n can be written as a sum of positive
integers.

Example

p(4) = 5

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

p(5n + 4) ≡0 (mod 5),

p(7n + 5) ≡0 (mod 7),

p(11n + 6) ≡0 (mod 11).

11 / 45



Rademacher’s Primary Example

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)
√
k
d

dn


sinh

{
hK

k

(
n − 1

24

)1/2
}

(
n − 1

24

)1/2

 ,

where

Ak(n) =
∑

h (mod k)
(h,k)=1

ωh,ke
−2πhn/k , K = π

√
2/3,

ωh,k are certain roots of unity.

p(1729) = 1733054559437372469717283290044275542482740
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q-continued fractions

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 + · · ·

= b0 +
a1
b1 +

a2
b2 +

a3
b3 +

a4
b4 + · · ·

Rogers–Ramanujan continued fraction

R(q) :=
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · · , |q| < 1
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Leonard James Rogers
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Rademacher’s Second Example

∞∑
n=0

p(5n + 4)qn = 5
(q5; q5)5∞
(q; q)6∞

,

(a; q)∞ = (1− a)(1− aq)(1− aq2) · · · , |q| < 1.

R(q) :=
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · · , |q| < 1.

T (q) := 1 +
q

1 +
q2

1 +
q3

1 + · · ·

T (q5)− q − q2

T (q5)
=

(q; q)∞
(q25; q25)∞

.
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Circle Problem

Let r2(n) denote the number of representations of the positive
integer n as a sum of two squares. Different signs and different
orders of the summands yield distinct representations. E.g.,
r2(5) = 8.

Each representation of n as a sum of two squares can be associated
with a lattice point in the plane. For example, 5 = (−2)2 + 12 can
be associated with the lattice point (−2, 1). Then each lattice
point can be associated with a unit square, say that unit square for
which the lattice point is in the southwest corner.
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The Circle Problem

Circle Problem
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Circle Problem

R(x) :=
∑

0≤n≤x

′
r2(n) = πx + P(x), (1)

where the prime ′ on the summation sign on the left side indicates
that if x is an integer, only 1

2 r2(x) is counted.

R(x) < π(
√
x +
√

2)2,

R(x) > π(
√
x −
√

2)2,

R(x) = πx + O(
√
x) Gauss
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G. H. Hardy
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Circle Problem

Ramanujan (1914) and Hardy (1915) proved that

∑
0≤n≤x

′
r2(n) = πx +

∞∑
n=1

r2(n)
(x
n

)1/2
J1(2π

√
nx). (2)

Jν(z) :=
∞∑
n=0

(−1)n

n!Γ(ν + n + 1)

(z
2

)ν+2n
, 0 < |z | <∞, ν ∈ C.

Jν(z) =

(
2

πz

)1/2

cos

(
z − 1

2
πν − 1

4
π

)
+O

(
1

z3/2

)
, z →∞.
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Sierpinski’s Theorem

P(x) = O(x1/3), x →∞ Sierpinski (1906)

∑
n≤x

r2(n)(x − n) =
1

2
πx2 +

1

π

∞∑
n=1

r2(n)
(x
n

)
J2(2π

√
nx).

E. Landau, Vorlesungen über Zahlentheorie, Zweiter Band
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Ramanujan’s Second Identity and the Circle Problem

Identity of Jacobi

r2(n) = 4
∑
d |n

d odd

(−1)(d−1)/2.

∑
0<n≤x

′
r2(n) = 4

∑
0<n≤x

′∑
d |n

sin

(
πd

2

)

= 4
∑

0<dj≤x

′
sin

(
πd

2

)

= 4
∑

0<d≤x

′ [ x
d

]
sin

(
πd

2

)
,

where [x ] is the greatest integer ≤ x .
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Ramanujan’s First Claim

To state Ramanujan’s claims, we need to first define

F (x) =

{
[x ], if x is not an integer,

x − 1
2 , if x is an integer,

(3)

where, as customary, [x ] is the greatest integer less than or equal
to x .
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The First Claim – Now Proved by BCB, S. Kim,
A. Zaharescu

Theorem

Let F (x) be defined by (3), let J1(x) denote the ordinary Bessel
function of order 1, let 0 < θ < 1, and let x > 0. Then

∞∑
n=1

F
(x
n

)
sin(2πnθ) = πx

(
1

2
− θ
)
− 1

4
cot(πθ)

+
1

2

√
x
∞∑

m=1

∞∑
n=0

J1
(

4π
√
m(n + θ)x

)
√

m(n + θ)
−

J1
(

4π
√
m(n + 1− θ)x

)
√
m(n + 1− θ)

 .

BCB, S. Kim and A. Zaharescu, The circle and divisor problems,
and double series of Bessel functions, Adv. Math. 236 (2013),
24–59.
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Version of BCB & Zaharescu

Theorem

If 0 < θ < 1, x > 0, and J1(x) denotes the ordinary Bessel
function of order 1, then

∞∑
n=1

F
(x
n

)
sin(2πnθ) = πx

(
1

2
− θ
)
− 1

4
cot(πθ)

+
1

2

√
x
∞∑
n=0

∞∑
m=1

J1
(

4π
√
m(n + θ)x

)
√

m(n + θ)
−

J1
(

4π
√
m(n + 1− θ)x

)
√
m(n + 1− θ)

 .

BCB and A. Zaharescu, Weighted divisor sums and Bessel function
series, Math. Ann. 335 (2006), 249–283.
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Another Beautiful Identity of Ramanujan as Recorded by
Hardy

If a, b > 0, then

∞∑
n=0

r2(n)√
n + a

e−2π
√

(n+a)b =
∞∑
n=0

r2(n)√
n + b

e−2π
√

(n+b)a (4)

not given anywhere in Ramanujan’s work.

If we differentiate (4) with respect to b, let a→ 0, replace 2π
√
b

by s, and use analytic continuation, we find that, for Re s > 0,

∞∑
n=1

r2(n)e−s
√
n =

2π

s2
− 1 + 2πs

∞∑
n=1

r2(n)

(s2 + 4π2n)3/2
,

which was the key identity in Hardy’s proof of

P(x) = Ω±(x1/4), as x →∞.

26 / 45



Another Beautiful Identity of Ramanujan as Recorded by
Hardy

If a, b > 0, then

∞∑
n=0

r2(n)√
n + a

e−2π
√

(n+a)b =
∞∑
n=0

r2(n)√
n + b

e−2π
√

(n+b)a (4)

not given anywhere in Ramanujan’s work.

If we differentiate (4) with respect to b, let a→ 0, replace 2π
√
b

by s, and use analytic continuation, we find that, for Re s > 0,

∞∑
n=1

r2(n)e−s
√
n =

2π

s2
− 1 + 2πs

∞∑
n=1

r2(n)

(s2 + 4π2n)3/2
,

which was the key identity in Hardy’s proof of

P(x) = Ω±(x1/4), as x →∞.

26 / 45



Another Beautiful Identity of Ramanujan as Recorded by
Hardy

If a, b > 0, then

∞∑
n=0

r2(n)√
n + a

e−2π
√

(n+a)b =
∞∑
n=0

r2(n)√
n + b

e−2π
√

(n+b)a (4)

not given anywhere in Ramanujan’s work.

If we differentiate (4) with respect to b, let a→ 0, replace 2π
√
b

by s, and use analytic continuation, we find that, for Re s > 0,

∞∑
n=1

r2(n)e−s
√
n =

2π

s2
− 1 + 2πs

∞∑
n=1

r2(n)

(s2 + 4π2n)3/2
,

which was the key identity in Hardy’s proof of

P(x) = Ω±(x1/4), as x →∞.

26 / 45



Explanation of Notation

There exist a sequence {xn} → ∞ such that

P(xn) > C1x
1/4
n , n ≥ 1.

There exist a sequence {x ′n} → ∞ such that

P(x ′n) < −C2(x ′n)1/4, n ≥ 1.
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Logarithmic Mean Identites

∑
n≤x

r2(n) log
x

n
= πx − log x + ζ ′2(0)− 1

π

∞∑
n=1

r2(n)

n
J0(2π

√
nx),

ζk(s) :=
∞∑
n=1

rk(n)n−s , σ = Re s > 1
2k .

B.C. Berndt, S. Kim and A. Zaharescu, The Circle Problem of
Gauss and the Divisor Problem of Dirichlet–Still Unsolved,
Amer. Math. Monthly, to appear.
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The Riemann Zeta-Function

ζ(s) :=
∞∑
n=1

1

ns
, σ = Re s > 1

π−s/2Γ
( s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s)

θ(z) :=
∞∑

n=−∞
eπin

2z , Im z > 0

θ(−1/z) =
√
z/i θ(z)

29 / 45



The Riemann Zeta-Function

ζ(s) :=
∞∑
n=1

1

ns
, σ = Re s > 1

π−s/2Γ
( s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s)

θ(z) :=
∞∑

n=−∞
eπin

2z , Im z > 0

θ(−1/z) =
√
z/i θ(z)

29 / 45



The Riemann Zeta-Function

ζ(s) :=
∞∑
n=1

1

ns
, σ = Re s > 1

π−s/2Γ
( s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s)

θ(z) :=
∞∑

n=−∞
eπin

2z , Im z > 0

θ(−1/z) =
√
z/i θ(z)

29 / 45



The Riemann Zeta-Function

ζ(s) :=
∞∑
n=1

1

ns
, σ = Re s > 1

π−s/2Γ
( s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s)

θ(z) :=
∞∑

n=−∞
eπin

2z , Im z > 0

θ(−1/z) =
√
z/i θ(z)

29 / 45



Back to Sums of Squares

Let rk(n) denote the number of ways of representing the positive
integer n as a sum of k squares.

ζk(s) :=
∞∑
n=1

rk(n)

ns
, Re s > k/2.

Functional Equation

π−sΓ(s)ζk(s) = π−(k/2−s)Γ(k/2− s)ζk(k/2− s).

Theta Transformation Formula

∞∑
n=0

rk(n)e−πny = y−k/2
∞∑
n=0

rk(n)e−πn/y , Re y > 0.
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∞∑
n=1

rk(n)

ns
, Re s > k/2.

Functional Equation

π−sΓ(s)ζk(s) = π−(k/2−s)Γ(k/2− s)ζk(k/2− s).
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Sums of Squares

Bessel Series Identity
If x > 0 and q > 1

2(k − 3), then

1

Γ(q + 1)

∑
0≤n≤x

′
rk(n)(x − n)q

=
πk/2xk/2+q

Γ(q + 1 + k/2)
+

(
1

π

)q ∞∑
n=1

rk(n)
(x
n

)k/4+q/2
Jk/2+q(2π

√
nx).

Theorem

The functional equation, theta transformation formula, and Bessel
series identity are equivalent.
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An Identity of Popov

πk/2−1zk/4−1/2

Γ(12k)
+
∞∑
n=1

rk(n)
Jk/2−1(2π

√
nz)

nk/4−1/2
e−πnt

=
e−πz/t

t


πk/2−1zk/4−1/2

tk/2−1Γ(12k)
+
∞∑
n=1

rk(n)

Ik/2−1

(
2π
√
nz

t

)
nk/4−1/2

e−πn/t

 .

Iν(z) := e−πiν/2Jν(iz) =
∞∑
n=0

1

n!Γ(ν + n + 1)

(z
2

)ν+2n
, 0 < |z | <∞.

A. Popov, On Some Summation Formulas (in Russian),
Bull. Acad. Sci. USSR (1934), 801–802.
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Remarks

k ≥ 2 is an integer.

Popov does not give a proof. But from what he writes, his
argument was wrong.

Bruce Berndt, Atul Dixit, Sun Kim, and Alexandru Zaharescu,
Proc. Amer. Math. Soc. 145 (2017), 3795–3808.
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A. I. Popov

Alexander Ivanovich Popov (1899–1973)
He was born in the Pskov region in northwest Russia in 1899.
He graduated from Leningrad University and taught at Leningrad
Polytechnic Institute.
During the period 1930–1945 he published 13 papers in
mathematics.
He turned to Finno-Ugric Linguistics (group of languages in
northeast Europe including Finnish, Estonian, and Hungarian
languages) and wrote a doctoral thesis on toponymics.
He still taught mathematics and was the head of the Department
of Mathematical Logic at the Machine-building Institute at the
Leningrad State University.
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A. I. Popov
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A Formula of Ramanujan and Guinand

Entry (p. 253)

Let σk(n) =
∑

d |n d
k , and let ζ(s) denote the Riemann zeta

function. Let

Kν(z) :=
π

2

I−ν(z)− Iν(z)

sin(πν)
.

If α and β are positive numbers such that αβ = π2, and if s is any
complex number, then

√
α
∞∑
n=1

σ−s(n)ns/2Ks/2(2nα)−
√
β
∞∑
n=1

σ−s(n)ns/2Ks/2(2nβ)

=
1

4
Γ
( s

2

)
ζ(s){β(1−s)/2 − α(1−s)/2}

+
1

4
Γ
(
− s

2

)
ζ(−s){β(1+s)/2 − α(1+s)/2}. (5)

The identity (5) is equivalent to a formula established by Guinand
in 1955.
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A. P. Guinand)
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A Transformation Formula, Notation

ξ(s) := (s − 1)π−
1
2 sΓ(1 + 1

2s)ζ(s).

Then Riemann’s Ξ-function is defined by

Ξ(t) := ξ(12 + it).

ψ(x) :=
Γ′(x)

Γ(x)
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A Transformation Formula

Entry

Define

φ(x) := ψ(x) +
1

2x
− log x . (6)

If α and β are positive numbers such that αβ = 1, then

√
α

{
γ − log(2πα)

2α
+
∞∑
n=1

φ(nα)

}
=
√
β

{
γ − log(2πβ)

2β
+
∞∑
n=1

φ(nβ)

}

= − 1

π3/2

∫ ∞
0

∣∣∣∣Ξ(1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣2 cos
(
1
2 t logα

)
1 + t2

dt, (7)

where γ denotes Euler’s constant and Ξ(x) denotes Riemann’s
Ξ-function.
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Remarks on this Transformation Formula

Ramanujan writes that it “can be deduced from”

Entry

If n > 0,∫ ∞
0

(ψ(1 + x)− log x) cos(2πnx)dx =
1

2
(ψ(1 + n)− log n) . (8)

The first equality in (7) established by Guinand in 1947.

“This formula also seems to have been overlooked.”
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Remarks on this Transformation Formula

1 “Professor T. A. Brown tells me that he proved the
self-reciprocal property of ψ(1 + x)− log x some years ago,
and that he communicated the result to the late Professor
G. H. Hardy. Professor Hardy said that the result was also
given in a progress report to the University of Madras by
S. Ramanujan, but was not published elsewhere.”

2 For | arg z | < π, as z →∞,

ψ(z) ∼ log z − 1

2z
− 1

12z2
+

1

120z4
− 1

252z6
+ · · · .

3 Two proofs by BCB and Atul Dixit.

4 Dixit has found two further proofs, generalizations, and
analogues.
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The Four Tenth Order Mock Theta Functions

φ10(q) :=
∞∑
n=0

qn(n+1)/2

(q; q2)n+1
, ψ10(q) :=

∞∑
n=0

q(n+1)(n+2)/2

(q; q2)n+1
, (9)

X10(q) :=
∞∑
n=0

(−1)nqn
2

(−q; q)2n
, χ10(q) :=

∞∑
n=0

(−1)nq(n+1)2

(−q; q)2n+1
. (10)
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First Transformation Formula for Tenth Order Mock Theta
Functions

Entry (p. 9)

If φ10(q) and ψ10(q) are defined by (9), then, for n > 0,∫ ∞
0

e−πnx
2

cosh
2πx√

5
+

1 +
√

5

4

dx +
1√
n
eπ/(5n)ψ10(−e−π/n)

=

√
5 +
√

5

2
e−πn/5φ10(−e−πn)−

√
5 + 1

2
√
n

e−π/(5n)φ10(−e−π/n).

(11)
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Second Transformation Formula for Tenth Order Mock
Theta Functions

Entry (p. 9)

If φ10(q) and ψ10(q) are defined by (9), then, for n > 0,∫ ∞
0

e−πnx
2

cosh
2πx√

5
+

1−
√

5

4

dx +
1√
n
eπ/(5n)ψ10(−e−π/n)

= −

√
5−
√

5

2
eπn/5ψ10(−e−πn) +

√
5− 1

2
√
n

e−π/(5n)φ10(−e−π/n).

(12)

Y.-S. Choi, Tenth order mock theta functions in Ramanujan’s lost
notebook. IV, Trans. Amer. Math. Soc. 354 (2002), 705–733.
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Good-by and Thank You

Thank you for your attendance. May
you prove many beautiful identities
during your mathematical careers.
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